1
|
Shiozawa K, Saito M, Lee JB, Seo N, Kondo H, Kashima H, Endo MY, Ishida K, Millar PJ, Katayama K. Aging in females has minimal effect on changes in celiac artery blood flow during dynamic light-intensity exercise. Am J Physiol Regul Integr Comp Physiol 2024; 327:R14-R24. [PMID: 38738294 DOI: 10.1152/ajpregu.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Blood flow to the active muscles and arterial blood pressure (ABP) increase during dynamic exercise, whereas blood flow to inactive organs (e.g., splanchnic organs and inactive limbs) declines. Aging leads to exaggerated ABP responses to exercise in females, but whether this is related to greater splanchnic vasoconstriction is unknown. This study sought to clarify the effect of aging in females on celiac artery blood flow during dynamic light-intensity exercise. Twelve healthy young females (YF: 20 ± 2 yr, mean ± SD) and 12 healthy older females (OF: 71 ± 4 yr) performed dynamic knee-extension and knee-flexion exercises at 30% of heart rate reserve for 4 min. The absolute changes from baseline (Δ) for mean arterial blood pressure (MAP), celiac artery mean blood flow (celMBF), and celiac vascular conductance (celVC) during exercise were calculated. ABP was measured using an automated sphygmomanometer, and celMBF was recorded by Doppler ultrasonography. The increase in MAP during exercise was greater in OF than in YF (YF: +14 ± 7 mmHg, OF: +24 ± 13 mmHg, P = 0.028). The celMBF decreased during exercise in both groups, but there was no significant difference in the response between YF and OF (YF: -93.0 ± 66.1 mL/min, OF: -89.6 ± 64.0 mL/min, P = 0.951). The celVC also decreased during exercise and remained lower than baseline during exercise. However, the response was not different between YF and OF (YF: -1.8 ± 1.0 mL/min/mmHg, OF: -1.5 ± 0.6 mL/min/mmHg, P = 0.517). These results demonstrate that aging in females has minimal influence on splanchnic artery hemodynamic responses during dynamic light-intensity exercise, suggesting that exaggerated ABP responses during exercise in OF are not due to greater splanchnic vasoconstriction.NEW & NOTEWORTHY During exercise, the splanchnic arteries vasoconstrict, contributing to blood flow redistribution and the blood pressure response. Blood pressure responses to exercise are exaggerated with aging in females; however, the physiological mechanism responsible has not been clarified. We show that celiac artery blood flow changes during light-intensity dynamic exercise do not differ with age in females. This indicates the exaggerated blood pressure to exercise with aging is likely not due to a difference in splanchnic vasoconstriction.
Collapse
Affiliation(s)
- Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Jordan B Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Natsuki Seo
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Haruna Kondo
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideaki Kashima
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Masako Yamaoka Endo
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Koji Ishida
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keisho Katayama
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Rice D, Martinelli GP, Jiang W, Holstein GR, Rajguru SM. Pulsed Infrared Stimulation of Vertical Semicircular Canals Evokes Cardiovascular Changes in the Rat. Front Neurol 2021; 12:680044. [PMID: 34122320 PMCID: PMC8193737 DOI: 10.3389/fneur.2021.680044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.
Collapse
Affiliation(s)
- Darrian Rice
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weitao Jiang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States.,Department of Otolaryngology, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Vignaux G, Besnard S, Denise P, Elefteriou F. The Vestibular System: A Newly Identified Regulator of Bone Homeostasis Acting Through the Sympathetic Nervous System. Curr Osteoporos Rep 2015; 13:198-205. [PMID: 26017583 DOI: 10.1007/s11914-015-0271-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The vestibular system is a small bilateral structure located in the inner ear, known as the organ of balance and spatial orientation. It senses head orientation and motion, as well as body motion in the three dimensions of our environment. It is also involved in non-motor functions such as postural control of blood pressure. These regulations are mediated via anatomical projections from vestibular nuclei to brainstem autonomic centers and are involved in the maintenance of cardiovascular function via sympathetic nerves. Age-associated dysfunction of the vestibular organ contributes to an increased incidence of falls, whereas muscle atrophy, reduced physical activity, cellular aging, and gonadal deficiency contribute to bone loss. Recent studies in rodents suggest that vestibular dysfunction might also alter bone remodeling and mass more directly, by affecting the outflow of sympathetic nervous signals to the skeleton and other tissues. This review will summarize the findings supporting the influence of vestibular signals on bone homeostasis, and the potential clinical relevance of these findings.
Collapse
Affiliation(s)
- G Vignaux
- Department of Medicine, Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 1235 Medical Research Building IV, 2215B Garland Avenue, Nashville, TN, 37232-0575, USA
| | | | | | | |
Collapse
|
4
|
Muller MD, Drew RC, Cui J, Blaha CA, Mast JL, Sinoway LI. Effect of oxidative stress on sympathetic and renal vascular responses to ischemic exercise. Physiol Rep 2013; 1. [PMID: 24098855 PMCID: PMC3787721 DOI: 10.1002/phy2.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Reactive oxygen species (ROS), produced acutely during skeletal muscle contraction, are known to stimulate group IV muscle afferents and accentuate the exercise pressor reflex (EPR) in rodents. The effect of ROS on the EPR in humans is unknown. We conducted a series of studies using ischemic fatiguing rhythmic handgrip to acutely increase ROS within skeletal muscle, ascorbic acid infusion to scavenge free radicals, and hyperoxia inhalation to further increase ROS production. We hypothesized that ascorbic acid would attenuate the EPR and that hyperoxia would accentuate the EPR. Ten young healthy subjects participated in two or three experimental trials on separate days. Beat-by-beat measurements of heart rate (HR), mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), and renal vascular resistance index (RVRI) were measured and compared between treatments (saline and ascorbic acid; room air and hyperoxia). At fatigue, the reflex increases in MAP (31 ± 3 versus 29 ± 2 mmHg), HR (19 ± 3 versus 20 ± 3 bpm), MSNA burst rate (21 ± 4 versus 23 ± 4 burst/min), and RVRI (39 ± 12 versus 44 ± 13%) were not different between saline and ascorbic acid. Relative to room air, hyperoxia did not augment the reflex increases in MAP, HR, MSNA, or RVRI in response to exercise. Muscle metaboreflex activation and time/volume control experiments similarly showed no treatment effects. While contrary to our initial hypotheses, these findings suggest that ROS do not play a significant role in the normal reflex adjustments to ischemic exercise in young healthy humans.
Collapse
Affiliation(s)
- Matthew D Muller
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, 500 University Drive, Hershey, PA 17033
| | | | | | | | | | | |
Collapse
|
5
|
Patel HM, Mast JL, Sinoway LI, Muller MD. Effect of healthy aging on renal vascular responses to local cooling and apnea. J Appl Physiol (1985) 2013; 115:90-6. [PMID: 23640587 DOI: 10.1152/japplphysiol.00089.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sympathetically mediated renal vasoconstriction may contribute to the pathogenesis of hypertension in older adults, but empirical data in support of this concept are lacking. In 10 young (26 ± 1 yr) and 11 older (67 ± 2 yr) subjects, we quantified acute hemodynamic responses to three sympathoexcitatory stimuli: local cooling of the forehead, cold pressor test (CPT), and voluntary apnea. We hypothesized that all stimuli would increase mean arterial blood pressure (MAP) and renal vascular resistance index (RVRI) and that aging would augment these effects. Beat-by-beat MAP, heart rate (HR), and renal blood flow velocity (from Doppler) were measured in the supine posture, and changes from baseline were compared between groups. In response to 1°C forehead cooling, aging was associated with an augmented MAP (20 ± 3 vs. 6 ± 2 mmHg) and RVRI (35 ± 6 vs. 16 ± 9%) but not HR. In older adults, there was a positive correlation between the cold-induced pressor response and forehead pain (R = 0.726), but this effect was not observed in young subjects. The CPT raised RVRI in both young (56 ± 13%) and older (45 ± 8%) subjects, but this was not different between groups. Relative to baseline, end-expiratory apnea increased RVRI to a similar extent in both young (46 ± 14%) and older (41 ± 9%) subjects. During sympathetic activation, renal vasoconstriction occurred in both groups. Forehead cooling caused an augmented pressor response in older adults that was related to pain perception.
Collapse
Affiliation(s)
- Hardikkumar M Patel
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
6
|
Muller MD, Mast JL, Cui J, Heffernan MJ, McQuillan PM, Sinoway LI. Tactile stimulation of the oropharynx elicits sympathoexcitation in conscious humans. J Appl Physiol (1985) 2013; 115:71-7. [PMID: 23599399 DOI: 10.1152/japplphysiol.00197.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tactile stimulation of the oropharynx (TSO) elicits the gag reflex and increases heart rate (HR) and mean arterial pressure (MAP) in anesthetized patients. However, the interaction between upper-airway defense reflexes and the sympathetic nervous system has not been investigated in conscious humans. In Experiment 1, beat-by-beat measurements of HR, MAP, muscle sympathetic nerve activity (MSNA), and renal vascular resistance (RVR) were measured during TSO and tactile stimulation of the hard palate (Sham) in the supine posture. In Experiment 2, TSO was performed before (pre) and after (post) inhalation of 4% lidocaine via nebulizer. Rate pressure product (RPP) was determined. Compared with Sham, TSO elicited the gag reflex and increased RPP [absolute change (Δ)36 ± 6 vs. 17 ± 5%], MSNA (Δ122 ± 39 vs. 19 ± 19%), and RVR (Δ55 ± 11 vs. 4 ± 4%). This effect occurred within one to two cardiac cycles of TSO. The ΔMAP (12 ± 3 vs. 6 ± 1 mmHg) and the ΔHR (10 ± 3 vs. 3 ± 3 beats/min) were also greater following TSO compared with Sham. Lidocaine inhalation blocked the gag reflex and attenuated increases in MAP (Δpre: 16 ± 2; Δpost: 5 ± 2 mmHg) and HR (Δpre: 12 ± 3; Δpost: 2 ± 2 beats/min) in response to TSO. When mechanically stimulated, afferents in the oropharynx not only serve to protect the airway but also cause reflex increases in MSNA, RVR, MAP, and HR. An augmented sympathoexcitatory response during intubation and laryngoscopy may contribute to perioperative cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
7
|
Cook JS, Ray CA. Melatonin attenuates the vestibulosympathetic but not vestibulocollic reflexes in humans: selective impairment of the utricles. J Appl Physiol (1985) 2010; 109:1697-701. [PMID: 20829497 DOI: 10.1152/japplphysiol.00698.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Melatonin has been reported to decrease nerve activity of medial vestibular nuclei in the rat and is associated with attenuated muscle sympathetic nerve activity (MSNA) responses to baroreceptor unloading in humans. The purpose of this study was to determine if melatonin alters the vestibulosympathetic reflex (VSR) and vestibulocollic reflex (VCR) in humans. In study 1, MSNA, arterial blood pressure, and heart rate were measured in 12 healthy subjects (28 ± 1 yr; 6 men, 6 women) during head-down rotation (HDR) before and 45 min after ingestion of either melatonin (3 mg) or placebo (sucrose). Subjects returned at least 2 days later at the same time of day to repeat the trial after ingesting the opposite treatment (melatonin or placebo). Melatonin significantly attenuated MSNA responses during HDR compared with placebo (burst frequency Δ 4 ± 1 vs. Δ 7 ± 1 bursts/min, and total MSNA Δ 51 ± 20 and Δ 96 ± 15%, respectively; P < 0.02). In study 2, vestibular evoked myogenic potentials (VEMP) were measured in 10 healthy subjects (26 ± 1 yr; 4 men and 6 women) before and after ingestion of 3 mg melatonin. Melatonin did not alter the timing of the p13 and n23 peaks (pre-melatonin 13.2 ± 0.4 and 21.3 ± 0.6 ms vs. post-melatonin 13.5 ± 0.4 and 21.4 ± 0.7 ms, respectively) or the p13-n23 interpeak amplitudes [pre-melatonin 22.5 ± 4.6 arbitrary units (au) and post-melatonin 22.7 ± 4.6 au]. In summary, melatonin attenuates the VSR and supports the concept that melatonin negatively affects orthostatic tolerance. However, melatonin does not alter the VCR in humans suggesting melatonin's effect on the VSR appears to be mediated by the utricles.
Collapse
Affiliation(s)
- Jonathan S Cook
- Department of Cellular and Molecular Physiology, General Clinical Research Center, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-2390, USA
| | | |
Collapse
|
8
|
Conboy EE, Fogelman AE, Sauder CL, Ray CA. Endurance training reduces renal vasoconstriction to orthostatic stress. Am J Physiol Renal Physiol 2009; 298:F279-84. [PMID: 19923408 DOI: 10.1152/ajprenal.00447.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endurance training has been associated with increased orthostatic intolerance. The purpose of the present study was to test the hypothesis that endurance training reduces renal vasoconstriction to orthostatic stress. Blood pressure, heart rate, and renal blood flow velocity were measured during a 25-min 60 degrees head-up tilt (HUT) test before and after 8 wk of endurance training in eight healthy sedentary subjects (26 +/- 1 yrs). Training elicited a 21 +/- 3% increase in peak oxygen uptake (V(O(2)peak)) and a reduction in heart rate at rest of 8 +/- 2 beats/min. During HUT, heart rate progressively increased (approximately 20 beats/min) over the 25-min HUT trial both before and after training. Systolic arterial blood pressure during HUT was unchanged with training, whereas diastolic arterial blood pressure was lower at the end of HUT after training. Before training renal blood flow velocity (Delta14 +/- 5 cm/s) and renal vascular conductance (Delta22 +/- 7%) decreased during HUT, whereas after training renal blood flow velocity (Delta2 +/- 5 cm/s) and renal vascular conductance (Delta1 +/- 12%) did not change significantly during HUT. Renal blood flow velocity and vascular conductance responses to HUT did not change in control subjects during the 8-wk period. These results demonstrate that endurance training reduces renal vasoconstriction during an orthostatic challenge and may contribute to training-induced orthostatic intolerance.
Collapse
Affiliation(s)
- Erin E Conboy
- Heart and Vascular Institute, General Clinical Research Center, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-2390, USA
| | | | | | | |
Collapse
|