1
|
Alsharifi A, Carter N, Irampaye A, Stevens C, Mejia E, Steier J, Rafferty GF. Ventilatory response to head-down-tilt in healthy human subjects. Exp Physiol 2024; 109:2134-2146. [PMID: 39447579 DOI: 10.1113/ep092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
Postural fluid shifts may directly affect respiratory control via a complex interaction of baro- and chemo-reflexes, and cerebral blood flow. Few data exist concerning the steady state ventilatory responses during head-down tilt. We examined the cardiorespiratory responses during acute 50° head-down tilt (HDT) in 18 healthy subjects (mean [SD] age 27 [10] years). Protocol 1 (n = 8, two female) was 50° HDT from 60° head-up posture sustained for 10 min, while exposed to normoxia, normoxic hypercapnia (5% CO2), hypoxia (12% inspired O2) or hyperoxic hypercapnia (95% O2, 5% CO2). Protocol 2 (n = 10, four female) was 50° HDT from supine, sustained for 10 min, while breathing either medical air or normoxic hypercapnic (5% CO2) gas. Ventilation (V ̇ E ${{\dot{V}}_E}$ , pneumotachograph), end-tidal O2 and CO2 concentration and blood pressure (Finapres) were measured continuously throughout each protocol. Middle cerebral artery blood flow velocity (MCAv; transcranial Doppler) was also measured during protocol 2. Ventilation increased significantly (P < 0.05) compared to baseline during HDT in both hyperoxic hypercapnia (protocol 1 by mean [SD] 139 [26]%) and normoxic hypercapnia (protocol 1 by mean [SD] 131 [21]% and protocol 2 by 129 [23]%), despite no change inP ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_2}}}$ orP ET O 2 ${{P}_{{\mathrm{ET}}{{{\mathrm{O}}}_2}}}$ from baseline. No change inV ̇ E ${{\dot{V}}_E}$ was observed during HDT with medical air or hypoxia, and there was no significant change in MCAv during HDT compared to baseline. The absence of change in cerebral blood flow leads us to postulate that the augmented ventilatory response during steep HDT may involve mechanisms related to cerebral venous pressure and venous outflow.
Collapse
Affiliation(s)
- Abdulaziz Alsharifi
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Respiratory Therapy, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Niamh Carter
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Akbar Irampaye
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Charlotte Stevens
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisa Mejia
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Joerg Steier
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
- Lane Fox Unit/Sleep Disorders Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Gerrard F Rafferty
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Nastasi N, Bope A, Meyer ME, Horack JM, Dannemiller KC. Predicting how varying moisture conditions impact the microbiome of dust collected from the International Space Station. MICROBIOME 2024; 12:171. [PMID: 39256883 PMCID: PMC11386075 DOI: 10.1186/s40168-024-01864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/25/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The commercialization of space travel will soon lead to many more people living and working in unique built environments similar to the International Space Station, which is a specialized closed environment that contains its own indoor microbiome. Unintended microbial growth can occur in these environments as in buildings on Earth from elevated moisture, such as from a temporary ventilation system failure. This growth can drive negative health outcomes and degrade building materials. We need a predictive approach for modeling microbial growth in these critical indoor spaces. RESULTS Here, we demonstrate that even short exposures to varying elevated relative humidity can facilitate rapid microbial growth and microbial community composition changes in dust from spacecraft. We modeled fungal growth in dust from the International Space Station using the time-of-wetness framework with activation and deactivation limited growth occurring at 85% and 100% relative humidity, respectively. Fungal concentrations ranged from an average of 4.4 × 106 spore equivalents per milligram of dust in original dust with no exposure to relative humidity to up to 2.1 × 1010 when exposed to 100% relative humidity for 2 weeks. As relative humidity and time-elevated increased, fungal diversity was significantly reduced for both alpha (Q < 0.05) and beta (R2 = 0.307, P = 0.001) diversity metrics. Bacteria were unable to be modeled using the time-of-wetness framework. However, bacterial communities did change based on constant relative humidity incubations for both beta (R2 = 0.22, P = 0.001) and alpha diversity decreasing with increasing moisture starting at 85% relative humidity (Q < 0.05). CONCLUSION Our results demonstrate that moisture conditions can be used to develop and predict changes in fungal growth and composition onboard human-occupied spacecraft. This predictive model can be expanded upon to include other spacecraft environmental factors such as microgravity, elevated carbon dioxide conditions, and radiation exposure. Understanding microbial growth in spacecraft can help better protect astronaut health, fortify spacecraft integrity, and promote planetary protection as human activity increases in low-Earth orbit, the moon, Mars, and beyond. Video Abstract.
Collapse
Affiliation(s)
- Nicholas Nastasi
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, College of Engineering, Environmental, and Geodetic Engineering, Ohio State University, 470 Hitchcock Hall, 2050 Neil Ave, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
| | - Ashleigh Bope
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, College of Engineering, Environmental, and Geodetic Engineering, Ohio State University, 470 Hitchcock Hall, 2050 Neil Ave, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
| | - Marit E Meyer
- NASA Glenn Research Center, Cleveland, OH, 44135, USA
| | - John M Horack
- Department of Mechanical and Aerospace Engineering, College of Engineering and John Glenn College of Public Affairs, Ohio State University, Columbus, OH, 43210, USA
| | - Karen C Dannemiller
- Department of Civil, College of Engineering, Environmental, and Geodetic Engineering, Ohio State University, 470 Hitchcock Hall, 2050 Neil Ave, Columbus, OH, 43210, USA.
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Ge J, Yue Y, Nie HY, Liu KG, Li H, Lin HG, Zhang T, Yan HF, Sun HW, Yang JW, Zhou JL, Cui Y. Simulated microgravity altered the gene expression profiles and inhibited the proliferation of Kupffer cells in the early phase by downregulating LMO2 and EZH2. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:21-34. [PMID: 38245345 DOI: 10.1016/j.lssr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/30/2023] [Accepted: 11/08/2023] [Indexed: 01/22/2024]
Abstract
Microgravity is a primary challenge that need to overcome, when human travel to space. Our study provided evidence that Kupffer cells (KCs) are sensitive to simulated microgravity (SMG), and no similar research report has been found in the literature. Using transcriptome sequencing technology, it was showed that 631 genes were upregulated and 801 genes were downregulated in KCs after treatment under SMG for 3 days. The GO analysis indicated that the proliferation of KCs was affected when exposed to SMG for 3 days. CCK-8 assay confirmed that the proliferation of KCs was inhibited in the third day under the environment of SMG. Furthermore, we identified 8 key genes that affect the proliferation of KCs and predicted 2 transcription factors (TFs) that regulate the 8 key genes. Significantly, we found that microgravity could affect the expression of LMO2 and EZH2 to reduce the transcription of Racgap1, Ccna2, Nek2, Aurka, Plk1, Haus4, Cdc20, Bub1b, which resulting in the reduction in KCs proliferation. These finding suggested that the inhibition of KCs proliferation under microgravity may influence the homeostasis of liver, and LMO2 and EZH2 can be the targets in management of KCs' disturbance in the future practice of space medicine.
Collapse
Affiliation(s)
- Jun Ge
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing, 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing, 100101, China
| | - Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing, 100101, China
| | - Kai-Ge Liu
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, 100101, China.
| | - Hai-Guan Lin
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing, 100101, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing, 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing, 100101, China.
| |
Collapse
|
4
|
Quantitative evaluation of bioaerosols in different particle size fractions in dust collected on the International Space Station (ISS). Appl Microbiol Biotechnol 2019; 103:7767-7782. [PMID: 31388730 DOI: 10.1007/s00253-019-10053-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Exposure to bioaerosols can adversely influence human health through respiratory tract, eye, and skin irritation. Bioaerosol composition is unique on the International Space Station (ISS), where the size distribution of particles in the air differs from those on Earth. This is due to the lack of gravitational settling and sources of biological particles. However, we do not understand how microbes are influenced by particle size in this environment. We analyzed two types of samples from the ISS: (1) vacuum bag debris which had been sieved into five different size fractions and (2) passively collected particles on a tape substrate with a passive aerosol sampler. Using quantitative polymerase chain reaction (qPCR), the highest concentration of fungal spores was found in the 106-150 μm-sized sieved dust particles, while the highest concentration of bacterial cells was found in the 150-250 μm-sized sieved dust particles. Illumina MiSeq DNA sequencing revealed that particle size was associated with bacterial and fungal communities and statistically significant (p = 0.035, p = 0.036 respectively). Similar fungal and bacterial species were found within the passive aerosol sample and the sieved dust samples. The most abundant fungal species identified in the aerosol and sieved samples are commonly found in food and plant material. Abundant bacterial species were most associated with the oral microbiome and human upper respiratory tract. One limitation to this study was the suboptimal storage conditions of the sieved samples prior to analysis. Overall, our results indicate that microbial exposure in space may depend on particle size. This has implications for ventilation and filtration system design for future space vehicles and habitats.
Collapse
|
5
|
Affiliation(s)
- Jan Stepanek
- From the Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ (J.S., R.S.B.); and Fluidity Technologies, Houston (S.P.)
| | - Rebecca S Blue
- From the Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ (J.S., R.S.B.); and Fluidity Technologies, Houston (S.P.)
| | - Scott Parazynski
- From the Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ (J.S., R.S.B.); and Fluidity Technologies, Houston (S.P.)
| |
Collapse
|
6
|
Prisk GK. Effects of Partial Gravity on the Function and Particle Handling of the Human Lung. CURRENT PATHOBIOLOGY REPORTS 2019; 6:159-166. [PMID: 30687585 DOI: 10.1007/s40139-018-0174-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of Review The challenges presented to the lung by the space environment are the effects of prolonged absence of gravity, the challenges of decompression stress associated with spacewalking, and the changes in the deposition of inhaled particulate matter. Recent Findings Although there are substantial changes in the function of the lung in partial gravity, the lung is largely unaffected by sustained exposure, returning rapidly to a normal state after return to 1G. Provided there is adequate denitrogenation prior to a spacewalk, avoiding the development of venous gas emboli, the lung copes well with the low pressure environment of the spacesuit. Particulate deposition is reduced in partial gravity, but where that deposition occurs is likely in the more peripheral airspaces, with associated longer retention times, potentially raising the toxicological potential of toxic dusts. Summary Despite its delicate structure the lung performs well in partial gravity, with the greatest threat likely arising from inhaled particulate matter (extra-terrestrial dusts).
Collapse
Affiliation(s)
- G Kim Prisk
- Department of Medicine, University of California, San Diego
| |
Collapse
|
7
|
Malaeva VV, Korenbaum VI, Pochekutova IA, Kostiv AE, Shin SN, Katuntsev VP, Baranov VM. A Technique of Forced Expiratory Noise Time Evaluation Provides Distinguishing Human Pulmonary Ventilation Dynamics During Long-Term Head-Down and Head-Up Tilt Bed Rest Tests Simulating Micro and Lunar Gravity. Front Physiol 2018; 9:1255. [PMID: 30327607 PMCID: PMC6174225 DOI: 10.3389/fphys.2018.01255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Estimating the effect of microgravity/hypogravity on pulmonary ventilation function remains topical. Recently developed acoustic techniques based on the evaluation of the forced expiratory noise time (FETa) were hypothesized to be a promising tool for this aim. The aim of the protocol is to study the effect of two different modalities of bed rest space simulations (microgravity and lunar gravity) on FETa and spirometric indices. The FETa in the frequency band of 200-2000 Hz, recorded above human trachea, was evaluated. The 21st-day exposure to 6 degree head-down tilt (HDT) bed rest, simulating microgravity, and 9.6 degree head-up tilt (HUT) bed rest with head-zero tilt (HZT) rest intervals (HUT + HZT), simulating lunar gravity, in statistically identical subgroups of five and six healthy male volunteers, was studied. In the course of HDT bed rest, a significant elongation of FETa was found in relation to background measurements in "sitting" position (p = 0.016). The effect corresponded to a significant decrease of basic spirometric indices (p < 0.02). Moreover, FETa provided reliable discrimination of HDT and HUT + HZT bed rest tests (p = 0.018), while spirometric indices did not (p > 0.05). Based on previously found correlations (Korenbaum and Pochekutova, 2008; Malaeva et al., 2017), a FETa elongation in response to HDT bed rest was attributed to an increase of aerodynamic resistance of the respiratory tract. The technique seems promising to monitor human pulmonary ventilation dynamics in long-term space missions; however, new studies are welcome to verify it in real spaceflight.
Collapse
Affiliation(s)
- Veronika V. Malaeva
- Department of Acoustic Tomography, V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Vladimir I. Korenbaum
- Department of Acoustic Tomography, V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Irina A. Pochekutova
- Department of Acoustic Tomography, V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Anatoly E. Kostiv
- Department of Acoustic Tomography, V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Svetlana N. Shin
- Department of Acoustic Tomography, V. I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Vladimir P. Katuntsev
- Research Institute for Space Medicine, Federal Biomedical Agency of Russia, Federal Research Clinical Center, Moscow, Russia
| | - Viktor M. Baranov
- Research Institute for Space Medicine, Federal Biomedical Agency of Russia, Federal Research Clinical Center, Moscow, Russia
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Unusual headache disorders are less commonly discussed and may be misdiagnosed. These headache disorders frequently have a benign natural history; however, without reassurance, therapeutic education, and treatment, they can negatively affect the health and function of patients. RECENT FINDINGS This article reviews the clinical features, diagnosis, workup, and proposed treatments for several unusual headache disorders including primary cough headache, primary headache associated with sexual activity, primary exercise headache, cold-stimulus headache, primary stabbing headache, nummular headache, hypnic headache, and headache attributed to travel in space. Exploding head syndrome is also discussed, which is a sleep disorder commonly confused with a headache disorder. SUMMARY Unusual headache disorders are usually benign, yet without the correct diagnosis can be very worrisome for many patients. Through greater awareness of these headache disorders, neurologists can evaluate and effectively manage unusual headache disorders, which offers significant benefits to patients and practice satisfaction to neurologists.
Collapse
|
9
|
Ogoh S, Hirasawa A, de Abreu S, Denise P, Normand H. Internal carotid, external carotid and vertebral artery blood flow responses to 3 days of head-out dry immersion. Exp Physiol 2017; 102:1278-1287. [DOI: 10.1113/ep086507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering; Toyo University; Kawagoe-Shi Saitama Japan
| | - Ai Hirasawa
- Faculty of Health Science, Department of Health and Welfare; Kyorin University; Mitaka-shi Tokyo Japan
| | - Steven de Abreu
- Normandie University, Unicaen; Inserm Comete; Chu Caen France
| | - Pierre Denise
- Normandie University, Unicaen; Inserm Comete; Chu Caen France
| | - Hervé Normand
- Normandie University, Unicaen; Inserm Comete; Chu Caen France
| |
Collapse
|
10
|
Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, Angeloni D. Human Pathophysiological Adaptations to the Space Environment. Front Physiol 2017; 8:547. [PMID: 28824446 PMCID: PMC5539130 DOI: 10.3389/fphys.2017.00547] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.
Collapse
Affiliation(s)
| | - Marco M Germani
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Enrico G Caiani
- Department of Electronics, Information and Biomedical Engineering, Politecnico di MilanoMilan, Italy
| | - Ivana Barravecchia
- Department of Pharmacy, University of PisaPisa, Italy.,MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Claudio Passino
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy.,Fondazione Toscana G. MonasterioPisa, Italy
| | - Debora Angeloni
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| |
Collapse
|
11
|
Yu C, Hansen JHL. A study of voice production characteristics of astronuat speech during Apollo 11 for speaker modeling in space. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1605. [PMID: 28372057 DOI: 10.1121/1.4976048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human physiology has evolved to accommodate environmental conditions, including temperature, pressure, and air chemistry unique to Earth. However, the environment in space varies significantly compared to that on Earth and, therefore, variability is expected in astronauts' speech production mechanism. In this study, the variations of astronaut voice characteristics during the NASA Apollo 11 mission are analyzed. Specifically, acoustical features such as fundamental frequency and phoneme formant structure that are closely related to the speech production system are studied. For a further understanding of astronauts' vocal tract spectrum variation in space, a maximum likelihood frequency warping based analysis is proposed to detect the vocal tract spectrum displacement during space conditions. The results from fundamental frequency, formant structure, as well as vocal spectrum displacement indicate that astronauts change their speech production mechanism when in space. Moreover, the experimental results for astronaut voice identification tasks indicate that current speaker recognition solutions are highly vulnerable to astronaut voice production variations in space conditions. Future recommendations from this study suggest that successful applications of speaker recognition during extended space missions require robust speaker modeling techniques that could effectively adapt to voice production variation caused by diverse space conditions.
Collapse
Affiliation(s)
- Chengzhu Yu
- Center for Robust Speech Systems (CRSS), The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - John H L Hansen
- Center for Robust Speech Systems (CRSS), The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
12
|
Ade CJ, Broxterman RM, Barstow TJ. VO(2max) and Microgravity Exposure: Convective versus Diffusive O(2) Transport. Med Sci Sports Exerc 2016; 47:1351-61. [PMID: 25380479 DOI: 10.1249/mss.0000000000000557] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure to a microgravity environment decreases the maximal rate of O2 uptake (VO(2max)) in healthy individuals returning to a gravitational environment. The magnitude of this decrease in VO(2max) is, in part, dependent on the duration of microgravity exposure, such that long exposure may result in up to a 38% decrease in VO(2max). This review identifies the components within the O(2) transport pathway that determine the decrease in postmicrogravity VO(2max) and highlights the potential contributing physiological mechanisms. A retrospective analysis revealed that the decline in VO(2max) is initially mediated by a decrease in convective and diffusive O(2) transport that occurs as the duration of microgravity exposure is extended. Mechanistically, the attenuation of O(2) transport is the combined result of a deconditioning across multiple organ systems including decreases in total blood volume, red blood cell mass, cardiac function and mass, vascular function, skeletal muscle mass, and, potentially, capillary hemodynamics, which become evident during exercise upon re-exposure to the head-to-foot gravitational forces of upright posture on Earth. In summary, VO(2max) is determined by the integration of central and peripheral O(2) transport mechanisms, which, if not maintained during microgravity, will have a substantial long-term detrimental impact on space mission performance and astronaut health.
Collapse
Affiliation(s)
- Carl J Ade
- 1Department of Health and Exercise Science, University of Oklahoma, Norman, OK; 2Department of Kinesiology, Kansas State University, Manhattan, KS; and 3Department of Anatomy and Physiology, Kansas State University, Manhattan, KS
| | | | | |
Collapse
|
13
|
Etheridge T, Szewczyk NJ, Zuo L, Chuang CC, Liu Z, Ward AT, Dier NL, Rotarius TR, Lalande S, Zhang X, Zhang M, Li G, Dong L, Gao F. Commentaries on Viewpoint: A call for research to assess and promote functional resilience in astronaut crews. J Appl Physiol (1985) 2016; 120:473-4. [PMID: 26879659 DOI: 10.1152/japplphysiol.01036.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Timothy Etheridge
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - Nathaniel J Szewczyk
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - Li Zuo
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - Chia-Chen Chuang
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - Zewen Liu
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - A T Ward
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - N L Dier
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - T R Rotarius
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - S Lalande
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - Xing Zhang
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - Min Zhang
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - Guohua Li
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - Ling Dong
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| | - Feng Gao
- University of ExeterUniversity of NottinghamAssistant ProfessorThe Ohio State University College of MedicineDepartment of Kinesiology University of Toledo, OhioDept. of Aerospace Medicine Fourth Military Medical University
| |
Collapse
|
14
|
Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, Imbriani M, Visai L, Rizzo AM. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics 2015; 137:3-18. [PMID: 26571091 DOI: 10.1016/j.jprot.2015.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Space is a hostile environment characterized by high vacuum, extreme temperatures, meteoroids, space debris, ionospheric plasma, microgravity and space radiation, which all represent risks for human health. A deep understanding of the biological consequences of exposure to the space environment is required to design efficient countermeasures to minimize their negative impact on human health. Recently, proteomic approaches have received a significant amount of attention in the effort to further study microgravity-induced physiological changes. In this review, we summarize the current knowledge about the effects of microgravity on microorganisms (in particular Cupriavidus metallidurans CH34, Bacillus cereus and Rhodospirillum rubrum S1H), plants (whole plants, organs, and cell cultures), mammalian cells (endothelial cells, bone cells, chondrocytes, muscle cells, thyroid cancer cells, immune system cells) and animals (invertebrates, vertebrates and mammals). Herein, we describe their proteome's response to microgravity, focusing on proteomic discoveries and their future potential applications in space research. BIOLOGICAL SIGNIFICANCE Space experiments and operational flight experience have identified detrimental effects on human health and performance because of exposure to weightlessness, even when currently available countermeasures are implemented. Many experimental tools and methods have been developed to study microgravity induced physiological changes. Recently, genomic and proteomic approaches have received a significant amount of attention. This review summarizes the recent research studies of the proteome response to microgravity inmicroorganisms, plants, mammalians cells and animals. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of all proteomes. Understanding gene and/or protein expression is the key to unlocking the mechanisms behind microgravity-induced problems and to finding effective countermeasures to spaceflight-induced alterations but also for the study of diseases on earth. Future perspectives are also highlighted.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Francesco Cristofaro
- Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Via Taramelli 3/b, 27100 Pavia, Italy
| | - Giuseppe Pani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| | - Barbara Pascucci
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Sandip A Ghuge
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, V.le Forlanini 8, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Via Taramelli 3/b, 27100 Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy.
| | - Angela M Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
15
|
Nelson ES, Mulugeta L, Myers JG. Microgravity-induced fluid shift and ophthalmic changes. Life (Basel) 2014; 4:621-65. [PMID: 25387162 PMCID: PMC4284461 DOI: 10.3390/life4040621] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/17/2014] [Accepted: 10/17/2014] [Indexed: 11/16/2022] Open
Abstract
Although changes to visual acuity in spaceflight have been observed in some astronauts since the early days of the space program, the impact to the crew was considered minor. Since that time, missions to the International Space Station have extended the typical duration of time spent in microgravity from a few days or weeks to many months. This has been accompanied by the emergence of a variety of ophthalmic pathologies in a significant proportion of long-duration crewmembers, including globe flattening, choroidal folding, optic disc edema, and optic nerve kinking, among others. The clinical findings of affected astronauts are reminiscent of terrestrial pathologies such as idiopathic intracranial hypertension that are characterized by high intracranial pressure. As a result, NASA has placed an emphasis on determining the relevant factors and their interactions that are responsible for detrimental ophthalmic response to space. This article will describe the Visual Impairment and Intracranial Pressure syndrome, link it to key factors in physiological adaptation to the microgravity environment, particularly a cephalad shifting of bodily fluids, and discuss the implications for ocular biomechanics and physiological function in long-duration spaceflight.
Collapse
Affiliation(s)
- Emily S Nelson
- NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA.
| | - Lealem Mulugeta
- Universities Space Research Association, Division of Space Life Sciences, 3600 Bay Area Boulevard, Houston, TX 77058, USA.
| | - Jerry G Myers
- NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA.
| |
Collapse
|
16
|
Darquenne C. Aerosol deposition in the human lung in reduced gravity. J Aerosol Med Pulm Drug Deliv 2014; 27:170-7. [PMID: 24870702 PMCID: PMC4088354 DOI: 10.1089/jamp.2013.1079] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/12/2013] [Indexed: 10/25/2022] Open
Abstract
The deposition of aerosol in the human lung occurs mainly through a combination of inertial impaction, gravitational sedimentation, and diffusion. For 0.5- to 5-μm-diameter particles and resting breathing conditions, the primary mechanism of deposition in the intrathoracic airways is sedimentation, and therefore the fate of these particles is markedly affected by gravity. Studies of aerosol deposition in altered gravity have mostly been performed in humans during parabolic flights in both microgravity (μG) and hypergravity (~1.6G), where both total deposition during continuous aerosol mouth breathing and regional deposition using aerosol bolus inhalations were performed with 0.5- to 3-μm particles. Although total deposition increased with increasing gravity level, only peripheral deposition as measured by aerosol bolus inhalations was strongly dependent on gravity, with central deposition (lung depth<200 mL) being similar between gravity levels. More recently, the spatial distribution of coarse particles (mass median aerodynamic diameter≈5 μm) deposited in the human lung was assessed using planar gamma scintigraphy. The absence of gravity caused a smaller portion of 5-μm particles to deposit in the lung periphery than in the central region, where deposition occurred mainly in the airways. Indeed, 5-μm-diameter particles deposit either by inertial impaction, a mechanism most efficient in the large and medium-sized airways, or by gravitational sedimentation, which is most efficient in the distal lung. On the contrary, for fine particles (~1 μm), both aerosol bolus inhalations and studies in small animals suggest that particles deposit more peripherally in μG than in 1G, beyond the reach of the mucociliary clearance system.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California , San Diego, La Jolla, CA
| |
Collapse
|
17
|
The Mechanisms of Compensatory Responses of the Respiratory System to Simulated Central Hypervolemia in Normal Subjects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 858:9-17. [DOI: 10.1007/5584_2014_100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
18
|
Hahn G, Just A, Hellige G, Dittmar J, Quintel M. How absolute EIT reflects the dependence of unilateral lung aeration on hyper-gravity and weightlessness? Physiol Meas 2013; 34:1063-74. [DOI: 10.1088/0967-3334/34/9/1063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Wang J, Liu C, Li T, Wang Y, Wang D. Proteomic analysis of pulmonary tissue in tail-suspended rats under simulated weightlessness. J Proteomics 2012; 75:5244-53. [DOI: 10.1016/j.jprot.2012.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
|
20
|
Guo Y, Guo N, Liu C, Wang D, Wang J, Sun X, Fan S, Wang C, Yang C, Zhang Y, Lu D, Yao Y. Effect of artificial gravity with exercise training on lung function during head-down bed rest in humans. Clin Physiol Funct Imaging 2012; 33:24-9. [PMID: 23216762 DOI: 10.1111/j.1475-097x.2012.01155.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Yinghua Guo
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Na Guo
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Changting Liu
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Delong Wang
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Junfeng Wang
- Nanlou Respiratory Department; Chinese PLA General Hospital, Chinese PLA Medical College; Beijing; China
| | - Xiqing Sun
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| | - Shangchun Fan
- School of Instrumentation, Beijing University of Aeronautics and Astronautics; Beijing; China
| | - Changyong Wang
- Department of Tissue Engineering; Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences; Beijing; China
| | - Changbin Yang
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| | - Yu Zhang
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| | - Dongyuan Lu
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| | - Yongjie Yao
- Department of Aerospace Biodynamics, Faculty of Aerospace Medicine; Fourth Military Medical University; Xi'an; China
| |
Collapse
|
21
|
Torday JS, Rehan VK. A cell-molecular approach predicts vertebrate evolution. Mol Biol Evol 2011; 28:2973-81. [PMID: 21593047 DOI: 10.1093/molbev/msr134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In contrast to the conventional use of genes to determine the evolution of phenotypes, we have functionally integrated epithelial-mesenchymal interactions that have facilitated lung phylogeny and ontogeny in response to major geologic epochs. As such, this model reveals the underlying principles of lung physiology based on the evolutionary interactions between internal and external selection pressures, providing a novel understanding of lung biology. As a result, it predicts how cell-molecular changes in this process can cause disease and offers counterintuitive insights to diagnosis and treatment based on evolutionary principles.
Collapse
Affiliation(s)
- John Steven Torday
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.
| | | |
Collapse
|
22
|
|
23
|
Segizbaeva MO, Pogodin MA, Lavrova IN, Balykin MV, Aleksandrova NP. Effect of head-down tilt on respiratory responses and human inspiratory muscle activity. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s0362119711020198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Navasiolava NM, Custaud MA, Tomilovskaya ES, Larina IM, Mano T, Gauquelin-Koch G, Gharib C, Kozlovskaya IB. Long-term dry immersion: review and prospects. Eur J Appl Physiol 2010; 111:1235-60. [PMID: 21161267 DOI: 10.1007/s00421-010-1750-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2010] [Indexed: 11/29/2022]
Abstract
Dry immersion, which is a ground-based model of prolonged conditions of microgravity, is widely used in Russia but is less well known elsewhere. Dry immersion involves immersing the subject in thermoneutral water covered with an elastic waterproof fabric. As a result, the immersed subject, who is freely suspended in the water mass, remains dry. For a relatively short duration, the model can faithfully reproduce most physiological effects of actual microgravity, including centralization of body fluids, support unloading, and hypokinesia. Unlike bed rest, dry immersion provides a unique opportunity to study the physiological effects of the lack of a supporting structure for the body (a phenomenon we call 'supportlessness'). In this review, we attempt to provide a detailed description of dry immersion. The main sections of the paper discuss the changes induced by long-term dry immersion in the neuromuscular and sensorimotor systems, fluid-electrolyte regulation, the cardiovascular system, metabolism, blood and immunity, respiration, and thermoregulation. The long-term effects of dry immersion are compared with those of bed rest and actual space flight. The actual and potential uses of dry immersion are discussed in the context of fundamental studies and applications for medical support during space flight and terrestrial health care.
Collapse
|
25
|
Lung function is unchanged in the 1 G environment following 6-months exposure to microgravity. Eur J Appl Physiol 2008; 103:617-23. [PMID: 18481079 DOI: 10.1007/s00421-008-0754-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Many organ systems adapt in response to the removal of gravity, such as that occurring during spaceflight. Such adaptation occurs over varying time periods depending on the organ system being considered, but the effect is that upon a return to the normal 1 G environment, the organ system is ill-adapted to that environment. As a consequence, either countermeasures to the adaptive process in flight, or rehabilitation upon return to 1 G is required. To determine whether the lung changed in response to a long period without gravity, we studied numerous aspects of lung function on ten subjects (one female) before and after they were exposed to 4-6 months of microgravity (microG, weightlessness) in the normobaric normoxic environment of the International Space Station. With the exception of small (and likely physiologically inconsequential) changes in expiratory reserve volume, one index of peripheral gas mixing in the periphery of the lung, and a possible slight reduction in D(L)CO in the early postflight period despite an unchanged cardiac output, lung function was unaltered by 4-6 months in microG. These results suggest that unlike many other organ systems in the human body, lung function returns to normal after long term exposure to the removal of gravity. We conclude that that in a normoxic, normobaric environment, lung function is not a concern following long-duration future spaceflight exploration missions of up to 6 months.
Collapse
|
26
|
Barratt M, Hanson A, Plescia J. Thinking About NASA's Future. Science 2006; 311:469. [PMID: 16439645 DOI: 10.1126/science.311.5760.469a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
Grönkvist MJ, Bergsten E, Eiken O, Gustafsson PM. Contributions of lower limb and abdominal compression to ventilation inhomogeneity in hypergravity. Respir Physiol Neurobiol 2005; 148:113-23. [PMID: 15996906 DOI: 10.1016/j.resp.2005.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/17/2005] [Accepted: 05/19/2005] [Indexed: 11/25/2022]
Abstract
Gravito-inertial load in the head-to-foot direction (Gz) and compression of the lower body half by an anti-G suit (AGS) are both known to influence ventilation distribution in the lungs. To study the interaction of Gz and AGS and to asses the separate contributions from lower limbs and abdominal compressions to large and small-scale ventilation inhomogeneities nine males performed SF6/He vital capacity (VC) single-breath washouts at 1, 2, and 3 Gz in a centrifuge, with abdominal and/or lower limbs compressions. SF6/He and (SF6-He) phase III slopes were used for determination of overall and small-scale ventilation inhomogeneity. Closing volume and phase IV height were used as measures of large-scale inhomogeneity. VC decreased marginally with G-load but markedly with lower limbs compression. Small-scale ventilation inhomogeneity increased slightly with G-load, but substantially with AGS pressurization. Small-scale ventilation inhomogeneity increased with AGS pressurization. Large-scale inhomogeneity increased markedly with G-load. Translocation of blood to the lungs might be the key determinant for changes in small-scale ventilation inhomogeneity when pressurizing an AGS.
Collapse
Affiliation(s)
- Mikael J Grönkvist
- Swedish Defence Research Agency, Department of Defence Medicine, Aviation Medicine, P.O. Box 13400, S-580 13 Linköping, Sweden.
| | | | | | | |
Collapse
|
28
|
Dellacá RL, Bettinelli D, Kays C, Techoueyres P, Lachaud JL, Vaïda P, Miserocchi G. Effect of changing the gravity vector on respiratory output and control. J Appl Physiol (1985) 2004; 97:1219-26. [PMID: 15155713 DOI: 10.1152/japplphysiol.00845.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the respiratory output in five subjects exposed to parabolic flights [gravity vector 1, 1.8 and 0 gravity vector in the craniocaudal direction (Gz)] and when switching from sitting to supine (legs bent at the knees). Despite differences in total respiratory compliance (highest at 0 Gz and in supine and minimum at 1.8 Gz), no significant changes in elastic inspiratory work were observed in the various conditions, except when comparing 1.8 Gz with 1 Gz (subjects were in the seated position in all circumstances), although the elastic work had an inverse relationship with total respiratory compliance that was highest at 0 Gz and in supine posture and minimum at 1.8 Gz. Relative to 1 Gz, lung resistance (airways plus lung tissue) increased significantly by 52% in the supine but slightly decreased at 0 Gz. We calculated, for each condition, the tidal volume changes based on the energy available in the preceding phase and concluded that an increase in inspiratory muscle output occurs when respiratory load increases (e.g., going from 0 to 1.8 Gz), whereas a decrease occurs in the opposite case (e.g., from 1.8 to 0 Gz). Despite these immediate changes, ventilation increased, going to 1.8 and 0 Gz (up to ≈23%), reflecting an increase in mean inspiratory flow rate, tidal volume, and respiratory frequency, while ventilation decreased (approximately −14%), shifting to supine posture (transition time ∼15 s). These data suggest a remarkable feature in the mechanical arrangement of the respiratory system such that it can maintain the ventilatory output with small changes in inspiratory muscle work in face of considerable changes in configuration and mechanical properties.
Collapse
Affiliation(s)
- R L Dellacá
- TBM Lab, Dipartimento di Bioingegneria, Politecnico di Milano, I-20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Rohdin M, Sundblad P, Linnarsson D. Effects of hypergravity on the distributions of lung ventilation and perfusion in sitting humans assessed with a simple two-step maneuver. J Appl Physiol (1985) 2004; 96:1470-7. [PMID: 14672971 DOI: 10.1152/japplphysiol.00627.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased gravity impairs pulmonary distributions of ventilation and perfusion. We sought to develop a method for rapid, simultaneous, and noninvasive assessments of ventilation and perfusion distributions during a short-duration hypergravity exposure. Nine sitting subjects were exposed to one, two, and three times normal gravity (1, 2, and 3 G) in the head-to-feet direction and performed a rebreathing and a single-breath washout maneuver with a gas mixture containing C2H2, O2, and Ar. Expirograms were analyzed for cardiogenic oscillations (COS) and for phase IV amplitude to analyze inhomogeneities in ventilation (Ar) and perfusion [CO2-to-Ar ratio (CO2/Ar)] distribution, respectively. COS were normalized for changes in stroke volume. COS for Ar increased from 1-G control to 128 ± 6% (mean ± SE) at 2 G ( P = 0.02 for 1 vs. 2 G) and 165 ± 13% at 3 G ( P = 0.002 for 2 vs. 3 G). Corresponding values for CO2/Ar were 135 ± 12% ( P = 0.04) and 146 ± 13%. Phase IV amplitude for Ar increased to 193 ± 39% ( P = 0.008) at 2 G and 229 ± 51% at 3 G compared with 1 G. Corresponding values for CO2/Ar were 188 ± 29% ( P = 0.02) and 219 ± 18%. We conclude that not only large-scale ventilation and perfusion inhomogeneities, as reflected by phase IV amplitude, but also smaller-scale inhomogeneities, as reflected by the ratio of COS to stroke volume, increase with hypergravity. Except for small-scale ventilation distribution, most of the impairments observed at 3 G had been attained at 2 G. For some of the parameters and gravity levels, previous comparable data support the present simplified method.
Collapse
Affiliation(s)
- Malin Rohdin
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|