1
|
Meade RD, Akerman AP, Notley SR, McGarr GW, McCourt ER, Kirby NV, Costello JT, Cotter JD, Crandall CG, Zanobetti A, Kenny GP. Meta-analysis of heat-induced changes in cardiac function from over 400 laboratory-based heat exposure studies. Nat Commun 2025; 16:2543. [PMID: 40087302 PMCID: PMC11909281 DOI: 10.1038/s41467-025-57868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Heat waves are associated with increased fatalities from adverse cardiovascular events attributed to the negative effects of heat on cardiac function. However, scientific understanding of acute cardiac adjustments to heat has come primarily from laboratory experiments employing insulated and encapsulated heating modalities, most commonly water-perfused suits. We evaluated whether findings from those studies reflect cardiac responses during more natural exposures to hot ambient conditions simulated in climate-controlled chambers by synthesizing the findings from over 400 laboratory-based heat exposure studies (6858 participant-exposures) published between 1961-2024. Among all included studies, median (interquartile range) elevations in core temperature and heart rate from baseline to end-exposure were 0.9 (0.5-1.3)°C and 27 (15-40) beats/min. Multilevel mixed-effects meta-analyses revealed exacerbated elevations in heart rate, cardiac output, and rate pressure product (estimate of cardiac workload) and blunted falls in systolic pressure in participants heated via encapsulated modalities. Leveraging the large dataset, we also provide empirical estimates of body temperature and cardiovascular responses to a wide range of conditions experienced during heat waves. With rising global temperatures, ecologically-minded physiological research is needed to improve understanding of the effects of heat stress on cardiac responses and further the development of robust climate health models and evidence-based heat-health guidance.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Emma R McCourt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph T Costello
- School of Psychology, Sport & Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Gemae MR, Akerman AP, McGarr GW, Meade RD, Notley SR, Schmidt MD, Rutherford MM, Kenny GP. Myths and methodologies: Reliability of forearm cutaneous vasodilatation measured using laser‐Doppler flowmetry during whole‐body passive heating. Exp Physiol 2020; 106:634-652. [DOI: 10.1113/ep089073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mohamed R. Gemae
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Ashley P. Akerman
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Gregory W. McGarr
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Sean R. Notley
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Madison D. Schmidt
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Maura M. Rutherford
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
3
|
Luetkemeier MJ, Allen DR, Huang M, Pizzey FK, Parupia IM, Wilson TE, Davis SL. Skin tattooing impairs sweating during passive whole body heating. J Appl Physiol (1985) 2020; 129:1033-1038. [PMID: 32881627 DOI: 10.1152/japplphysiol.00427.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tattooing of the skin involves repeated needle insertions to deposit ink into the dermal layer of the skin, potentially damaging eccrine sweat glands and the cutaneous vasculature. This study tested the hypothesis that reflex increases in sweat rate (SR) and cutaneous vasodilation are blunted in tattooed skin (TAT) compared with adjacent healthy skin (CON) during a passive whole body heat stress (WBH). Ten individuals (5 males and 5 females) with a sufficient area of tattooed skin participated in the study. Intestinal temperature (Tint), skin temperature (Tskin), skin blood flow (laser Doppler flux; LDF), and SR were continuously measured during normothermic baseline (34°C water perfusing a tube-lined suit) and WBH (increased Tint 1.0°C via 48°C water perfusing suit). SR throughout WBH was lower for TAT compared with CON (P = 0.033). Accumulated sweating responses during WBH (area under curve) were attenuated in TAT relative to CON (23.1 ± 12.9, 26.9 ± 14.5 mg/cm2, P = 0.043). Sweating threshold, expressed as the onset of sweating in time or Tint from the initiation of WBH, was not different between TAT and CON. Tattooing impeded the ability to obtain LDF measurements. These data suggest that tattooing functionally damages secretion mechanisms, affecting the reflex capacity of the gland to produce sweat, but does not appear to affect neural signaling to initiate sweating. Decreased sweating could impact heat dissipation especially when tattooing covers a higher percentage of body surface area and could be considered a potential long-term clinical side effect of tattooing.NEW & NOTEWORTHY This study is the first to assess the reflex control of sweating in tattooed skin. The novel findings are twofold. First, attenuated increases in sweat rate were observed in tattooed skin compared with adjacent healthy non-tattooed skin in response to a moderate increase (1.0°C) in internal temperature during a passive whole body heat stress. Second, reduced sweating in tattooed skin is likely related to functional damage to the secretory mechanisms of eccrine sweat glands, rendering it less responsive to cholinergic stimulation.
Collapse
Affiliation(s)
| | - Dustin R Allen
- Applied Physiology and Wellness, Southern Methodist University, Dallas, Texas.,Health Sciences, Boston University, Boston, Massachusetts
| | - Mu Huang
- Applied Physiology and Wellness, Southern Methodist University, Dallas, Texas.,Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Faith K Pizzey
- Applied Physiology and Wellness, Southern Methodist University, Dallas, Texas
| | - Iqra M Parupia
- Applied Physiology and Wellness, Southern Methodist University, Dallas, Texas
| | - Thad E Wilson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Scott L Davis
- Applied Physiology and Wellness, Southern Methodist University, Dallas, Texas.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Effects of normobaric hypoxic bed rest on the thermal comfort zone. J Therm Biol 2015; 49-50:39-46. [DOI: 10.1016/j.jtherbio.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 11/19/2022]
|
5
|
Yang Z, Fei J, Song D, Zhao Y, Yu J, Yu X. Effects of simulated natural air movement on thermoregulatory response during head-down bed rest. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2013.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Navasiolava NM, de Germain V, Levrard T, Larina IM, Kozlovskaya IB, Diquet B, Le Bouil A, Custaud MA, Fortrat JO. Skin vascular resistance in the standing position increases significantly after 7 days of dry immersion. Auton Neurosci 2010; 160:64-8. [PMID: 21071283 DOI: 10.1016/j.autneu.2010.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 09/23/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Actual and simulated microgravity induces hypovolemia and cardiovascular deconditioning, associated with vascular dysfunction. We hypothesized that vasoconstriction of skin microcirculatory bed should be altered following 7 days of simulated microgravity in order to maintain cardiovascular homeostasis during active standing. Eight healthy men were studied before and after 7 days of simulated microgravity modeled by dry immersion (DI). Changes of plasma volume and orthostatic tolerance were evaluated. Calf skin blood flow (laser-Doppler flowmetry), ECG and blood pressure signal during a 10-min stand test were recorded, and skin vascular resistance, central hemodynamics, baroreflex sensitivity and heart rate variability were estimated. After DI we observed increased calf skin vascular resistance in the standing position (12.0 ± 1.0 AU-after- vs. 6.8 ± 1.4 AU-before), while supine it was unchanged. Cardiovascular deconditioning was confirmed by greater tachycardia on standing and by hypovolemia (-16 ± 3% at day 7 of DI). Total peripheral resistance and indices of cardiovascular autonomic control were not modified. In conclusion, unchanged autonomic control and total peripheral resistance suggest that increased skin vasoconstriction to standing involves rather local mechanisms-as venoarteriolar reflex-and might compensate insufficient vasoconstriction of other vascular beds.
Collapse
|
7
|
Sato M, Kanikowska D, Iwase S, Shimizu Y, Inukai Y, Nishimura N, Sugenoya J. Effects of encouraged water drinking on thermoregulatory responses after 20 days of head-down bed rest in humans. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2009; 53:443-449. [PMID: 19412625 DOI: 10.1007/s00484-009-0230-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/09/2009] [Accepted: 04/12/2009] [Indexed: 05/27/2023]
Abstract
We tested the hypothesis that encouraged water drinking according to urine output for 20 days could ameliorate impaired thermoregulatory function under microgravity conditions. Twelve healthy men, aged 24 +/- 1.5 years (mean +/- SE), underwent -6 degrees head-down bed rest (HDBR) for 20 days. During bed rest, subjects were encouraged to drink the same amount of water as the 24-h urine output volume of the previous day. A heat exposure test consisting of water immersion up to the knees at 42 degrees C for 45 min after a 10 min rest (baseline) in the sitting position was performed 2 days before the 20-day HDBR (PRE), and 2 days after the 20-day HDBR (POST). Core temperature (tympanic), skin temperature, skin blood flow and sweat rate were recorded continuously. We found that the -6 degrees HDBR did not increase the threshold temperature for onset of sweating under the encouraged water drinking regime. We conclude that encouraged water drinking could prevent impaired thermoregulatory responses after HDBR.
Collapse
Affiliation(s)
- Maki Sato
- Department of Physiology, Aichi Medical University, Aichi, 480-1195, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Van Duijnhoven NTL, Janssen TWJ, Green DJ, Minson CT, Hopman MTE, Thijssen DHJ. Effect of functional electrostimulation on impaired skin vasodilator responses to local heating in spinal cord injury. J Appl Physiol (1985) 2009; 106:1065-71. [PMID: 19228983 DOI: 10.1152/japplphysiol.91611.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) induces vascular adaptations below the level of the lesion, such as impaired cutaneous vasodilation. However, the mechanisms underlying these differences are unclear. The aim of this study is to examine arm and leg cutaneous vascular conductance (CVC) responses to local heating in 17 able-bodied controls (39 +/- 13 yr) and 18 SCI subjects (42 +/- 8 yr). SCI subjects were counterbalanced for functional electrostimulation (FES) cycling exercise (SCI-EX, n = 9) or control (SCI-C, n = 9) and reanalyzed after 8 wk. Arm and leg skin blood flow were measured by laser-Doppler flowmetry during local heating (42 degrees C), resulting in an axon-reflex mediated first peak, nadir, and a primarily nitric oxide-dependent plateau phase. Data were expressed as a percentage of maximal CVC (44 degrees C). CVC responses to local heating in the paralyzed leg, but also in the forearm of SCI subjects, were lower than in able-bodied controls (P < 0.05 and 0.01, respectively). The 8-wk intervention did not change forearm and leg CVC responses to local heating in SCI-C and SCI-EX, but increased femoral artery diameter in SCI-EX (P < 0.05). Interestingly, findings in skin microvessels contrast with conduit arteries, where physical (in)activity contributes to adaptations in SCI. The lower CVC responses in the paralyzed legs might suggest a role for inactivity in SCI, but the presence of impaired CVC responses in the normally active forearm suggests other mechanisms. This is supported by a lack of adaptation in skin microcirculation after FES cycle training. This might relate to the less frequent and smaller magnitude of skin blood flow responses to heat stimuli, compared with controls, than physical inactivity per se.
Collapse
Affiliation(s)
- Noortje T L Van Duijnhoven
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | | | | | | | | | | |
Collapse
|
9
|
Shibasaki M, Wilson TE, Crandall CG. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol (1985) 2006; 100:1692-701. [PMID: 16614366 DOI: 10.1152/japplphysiol.01124.2005] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, evaporative heat loss from eccrine sweat glands is critical for thermoregulation during exercise and/or exposure to hot environmental conditions, particularly when environmental temperature is greater than skin temperature. Since the time of the ancient Greeks, the significance of sweating has been recognized, whereas our understanding of the mechanisms and controllers of sweating has largely developed during the past century. This review initially focuses on the basic mechanisms of eccrine sweat secretion during heat stress and/or exercise along with a review of the primary controllers of thermoregulatory sweating (i.e., internal and skin temperatures). This is followed by a review of key nonthermal factors associated with prolonged heat stress and exercise that have been proposed to modulate the sweating response. Finally, mechanisms pertaining to the effects of heat acclimation and microgravity exposure are presented.
Collapse
Affiliation(s)
- Manabu Shibasaki
- Department of Environmental Health, Nara Women's University, Nara, Japan.
| | | | | |
Collapse
|
10
|
Vainer BG. FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans. Phys Med Biol 2005; 50:R63-94. [PMID: 16306642 DOI: 10.1088/0031-9155/50/23/r01] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review gives an overview of focal plane array (FPA)-based infrared (IR) thermography as a powerful research method in the field of physiology and medicine. Comparison of the gained results with the data previously obtained by other authors with other research tools is given. Outer thermoregulatory manifestations displayed by the human organism subjected to whole-body heating (sauna bath) and physical loads (exercise bicycling) are quantitatively analysed. Some details of human body emotional sweating (psycho-physiological effect) are reported. Particular attention is paid to studying active sweat glands as individual objects. All experimental data were obtained with the help of a high-sensitivity (0.03 degrees C) fast 128 x 128 InAs IR detector-based thermal imaging system operating in the short-wave spectral region (2.5 to 3 microm) and perfectly suiting medical purposes. It is shown that IR thermography makes it possible to overcome limitations inherent to contact measuring means that were traditionally used before in thermal studies. It is also shown that heterogeneous thermograms displayed by organisms with disturbed inner equilibrium can be quantitatively analysed in terms of statistical parameters of related surface-temperature histograms, such as the mean temperature and the standard deviation of temperature (SDT). The increase and the decrease in SDT turned out to be typical of prolonged physical load and subsequent relaxation, and of external whole-body heating, respectively. Explanation of this result based on a hypothesis advanced within the context of the doctrine of human-organism evolution is given. Skin-temperature distribution function accompanying the relaxed organism in normality was found to closely resemble normal-distribution function. Symmetry break down and variation of the shape of this characteristic may serve as an indicator of homeostasis shift and can be used as a quantitative criterion for the latter. A new phenomenon, stable punctate hidrosis, is discovered and described. The term sweatology is introduced to refer to the discussed specific research area in biomedical science.
Collapse
Affiliation(s)
- Boris G Vainer
- Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk.
| |
Collapse
|