1
|
Chang L, Gardner L, House C, Daly C, Allsopp A, Roiz de Sa D, Shaw MA, Hopkins PM. Comparison of Transcriptomic Changes in Survivors of Exertional Heat Illness with Malignant Hyperthermia Susceptible Patients. Int J Mol Sci 2023; 24:16124. [PMID: 38003313 PMCID: PMC10671540 DOI: 10.3390/ijms242216124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Exertional heat illness (EHI) is an occupational health hazard for athletes and military personnel-characterised by the inability to thermoregulate during exercise. The ability to thermoregulate can be studied using a standardised heat tolerance test (HTT) developed by The Institute of Naval Medicine. In this study, we investigated whole blood gene expression (at baseline, 2 h post-HTT and 24 h post-HTT) in male subjects with either a history of EHI or known susceptibility to malignant hyperthermia (MHS): a pharmacogenetic condition with similar clinical phenotype. Compared to healthy controls at baseline, 291 genes were differentially expressed in the EHI cohort, with functional enrichment in inflammatory response genes (up to a four-fold increase). In contrast, the MHS cohort featured 1019 differentially expressed genes with significant down-regulation of genes associated with oxidative phosphorylation (OXPHOS). A number of differentially expressed genes in the inflammation and OXPHOS pathways overlapped between the EHI and MHS subjects, indicating a common underlying pathophysiology. Transcriptome profiles between subjects who passed and failed the HTT (based on whether they achieved a plateau in core temperature or not, respectively) were not discernable at baseline, and HTT was shown to elevate inflammatory response gene expression across all clinical phenotypes.
Collapse
Affiliation(s)
- Leon Chang
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (L.C.); (M.-A.S.)
| | - Lois Gardner
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (L.C.); (M.-A.S.)
| | - Carol House
- Survival and Thermal Medicine Department, Institute of Naval Medicine, Alverstoke, Hampshire PO12 2DL, UK
| | - Catherine Daly
- Malignant Hyperthermia Unit, St James’s University Hospital, Leeds LS9 7TF, UK;
| | - Adrian Allsopp
- Survival and Thermal Medicine Department, Institute of Naval Medicine, Alverstoke, Hampshire PO12 2DL, UK
| | - Daniel Roiz de Sa
- Survival and Thermal Medicine Department, Institute of Naval Medicine, Alverstoke, Hampshire PO12 2DL, UK
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (L.C.); (M.-A.S.)
| | - Philip M. Hopkins
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds LS9 7TF, UK; (L.C.); (M.-A.S.)
- Malignant Hyperthermia Unit, St James’s University Hospital, Leeds LS9 7TF, UK;
| |
Collapse
|
2
|
Wu J, Yang S, Wang T, Wu Q, Liao X, Yao R, Du L. Comparison of immune cell profiles associated with heatstroke, sepsis, or cardiopulmonary bypass: Study protocol for an exploratory, case-control study trial. Front Med (Lausanne) 2023; 10:1165786. [PMID: 37138748 PMCID: PMC10149687 DOI: 10.3389/fmed.2023.1165786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Heatstroke is a life-threatening illness involving extreme hyperthermia and multi-organ failure, and it is associated with high mortality. The immune profiles of heatstroke have not been fully elucidated, and diagnostic and prognostic biomarkers of heatstroke are lacking. This study will analyze immune profiles in heatstroke patients as they differ from profiles in patients with sepsis or aseptic inflammation patients in order to identify diagnostic and prognostic biomarkers. Methods This exploratory, case-control study will recruit patients with heatstroke, patients with sepsis, patients undergoing cardiopulmonary bypass as well as healthy controls at West China Hospital of Sichuan University from 1 January 2023 to 31 October 2023. The four cohorts will be profiled at one time point in terms of lymphocytes, monocytes, natural killer cells, and granulocytes using flow cytometry, and cell populations will be visualized in two dimensions using t-SNE and UMAP, then clustered using PhenoGraph and FlowSOM. Gene expression in the specific immune cell populations will also be compared across the four cohorts, as will levels of plasma cytokines using enzyme-linked immunosorbent assays. Outcomes in the cohorts will be monitored during 30-day follow-up. Discussion This trial is, to our knowledge, the first attempt to improve the diagnosis of heatstroke and prediction of prognosis based on immune cell profiles. The study is also likely to generate new insights into immune responses during heatstroke, which may help clarify the disease process and lay the foundation for immunotherapies.
Collapse
Affiliation(s)
- Juan Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Yang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Wang
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinjuan Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Yao
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ji J, Su P, Lin W, Ouyang L, Wang C, Jia J, Liu Z, Liu Z. Immune Cells Characteristics and Their Prognostic Effects in Exertional Heatstroke Patients: A Retrospective Cohort Study. Front Med (Lausanne) 2022; 9:867774. [PMID: 35433749 PMCID: PMC9011182 DOI: 10.3389/fmed.2022.867774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Exertional heatstroke (EHS) remains a major problem for those who take strenuous physical activity. Inflammation and immune dysfunction were thought to be crucial to the pathophysiological process of heatstroke. The present study was aimed to investigate the dynamic changes of the immune cells in patients with EHS and determine their prognostic effects to provide the clinical evidence of the above process. Methods This single-center retrospective cohort study collected all patients with EHS admitted to the intensive care unit (ICU) of the General Hospital of Southern Theater Command of PLA from October 2008 to May 2019. The dynamic changes of the main immune cell count and ratio were collected, including white blood cell (WBC), neutrophil, monocyte, and lymphocyte. The neutrophil-to-lymphocyte ratios (NLR) were calculated by the neutrophil count/lymphocyte count × 100%. The main outcome was 90-day mortality. Results A total of 189 patients were enrolled. For survivors, after 24 h, the WBC and neutrophil counts began to decrease, and they were back to normal in 72 h. In addition, the lymphocyte counts were within normal limits all the time. For non-survivors, the WBC and neutrophil counts were continuous over the normal range, while the lymphocyte count and the ratio began to decrease after 24 h and were continuously low in the following days. Receiver operating characteristic (ROC) curves analysis showed that increased neutrophils and decreased lymphocytes were associated with the poor prognosis of the patients. A prediction model based on immune cell counts and ratios was constructed, and the lymphocyte count was accounted for the maximum weight. Conclusions In patients with EHS, increased neutrophils and decreased lymphocytes were associated with the poor prognosis. The lymphocyte count at 72 h after admission was the most important prognostic factor.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Peng Su
- Department of Medical Administration, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Wenyi Lin
- Department of Obstetrics and Gynecology, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Leifang Ouyang
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Conglin Wang
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Jinxin Jia
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Zheying Liu
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
- *Correspondence: Zhifeng Liu
| |
Collapse
|
4
|
Caldwell AR, Oki K, Ward SM, Ward JA, Mayer TA, Plamper ML, King MA, Leon LR. Impact of successive exertional heat injuries on thermoregulatory and systemic inflammatory responses in mice. J Appl Physiol (1985) 2021; 131:1469-1485. [PMID: 34528459 DOI: 10.1152/japplphysiol.00160.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of the study was to determine if repeated exertional heat injuries (EHIs) worsen the inflammatory response. We assessed the impact of a single EHI bout (EHI0) or two separate EHI episodes separated by 1 (EHI1), 3 (EHI3), and 7 (EHI7) days in male C57BL/6J mice (n = 236). To induce EHI, mice underwent a forced running protocol until loss of consciousness or core temperature reached ≥ 42.7°C. Blood and tissue samples were obtained 30 min, 3 h, 1 day, or 7 days after the EHI. We observed that mice undergoing repeated EHI (EHI1, EHI3, and EHI7) had longer running distances before collapse (∼528 m), tolerated higher core temperatures (∼0.18°C higher) before collapse, and had higher minimum core temperature (indicative of injury severity) during recovery relative to EHI0 group (∼2.18°C higher; all P < 0.05). Heat resilience was most pronounced when latency was shortest between EHI episodes (i.e., thermal load and running duration highest in EHI1), suggesting the response diminishes with longer recoveries between EHI events. Furthermore, mice experiencing a second EHI exhibited increased serum and liver HSP70, and lower corticosterone, FABP2, MIP-1β, MIP-2, and IP-10 relative to mice experiencing a single EHI typically at 30 min to 3 h after EHI. Our findings indicate that an EHI event may initiate some adaptive processes that provide acute heat resilience to subsequent EHI conditions. NEW & NOTEWORTHY Mice undergoing repeated exertional heat injuries, within 1 wk of an initial heat injury, appear to have some protective adaptations. During the second exertional heat injury, mice were able to run longer and sustain higher body temperatures before collapse. Despite this, the mice undergoing a second exertional heat injury were more resilient to the heat as evidenced by attenuated minimum body temperature, higher HPS70 (serum and liver), lower corticosterone, and lower FABP2.
Collapse
Affiliation(s)
- Aaron R Caldwell
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Shauna M Ward
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Jermaine A Ward
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Thomas A Mayer
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Mark L Plamper
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Michelle A King
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
5
|
Haematological, Biochemical and Hormonal Biomarkers of Heat Intolerance in Military Personnel. BIOLOGY 2021; 10:biology10101068. [PMID: 34681165 PMCID: PMC8533107 DOI: 10.3390/biology10101068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 01/31/2023]
Abstract
Simple Summary This study focuses on the biomarkers that are predictive of heat intolerance in military populations. Military personnel are at risk of exertional heat stroke when the body’s temperature increases during intense physical activity in hot weather. Exertional heat stroke (EHS) may accompany or precede heat intolerance, an unusual sensitivity to heat. However, it is unknown if blood biomarkers (haematological, biochemical and hormonal) are predictive of heat intolerance. We subjected a sample of Australian Defence Force personnel and civilian volunteers to a heat tolerance test (HTT), and blood samples were obtained pre-and post–HTT. The results showed that a history of EHS was associated with changes in creatinine and urea. The biochemical and hormonal biomarkers associated with heat intolerance were alanine amino transaminase, creatine kinase, cortisol and creatinine. Furthermore, creatinine and cortisol were identified as predictors and useful biomarkers of heat intolerance. This study also highlights the need for further exploration of genetic biomarkers to aid early identification and the return to duty process for military personnel who may be at risk of heat intolerance. Abstract Heat intolerance is the inability to withstand heat stress and this may occur due to exertional heat stroke (EHS). However, it is unknown if heat intolerance is associated with immune and hormonal disturbances. This study investigates haematological, biochemical and hormonal biomarkers related to heat intolerance and EHS in military and civilian volunteers. A quasi-experimental pre-and post-test design was used, with participants drawn from the Australian Defence Force (ADF) and the general populace. Blood samples were collected and analysed for biomarkers. Inferential statistics compared the biomarkers between the groups. Changes in alanine amino transaminase (p = 0.034), creatine kinase (0.044), cortisol (p = 0.041) and creatinine (p < 0.001) differed between the heat-intolerant and heat-tolerant groups. Participants with a history of EHS showed significant changes in creatinine (p = 0.022) and urea (p = 0.0031) compared to those without EHS history. Predictors of heat intolerance were increasing post-HTT creatinine and cortisol (OR = 1.177, p = 0.011 and OR = 1.015, p = 0.003 respectively). Conclusively, EHS history is associated with changes in creatinine and urea concentrations, while the predictors of heat intolerance are creatinine and cortisol. However, further exploration of other biomarkers, such as genetic polymorphism, is needed.
Collapse
|
6
|
Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated Physiological Mechanisms of Exercise Performance, Adaptation, and Maladaptation to Heat Stress. Compr Physiol 2011; 1:1883-928. [DOI: 10.1002/cphy.c100082] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Impacts of heat stress on baseline immune measures and a subset of T cells in Bama miniature pigs. Livest Sci 2011. [DOI: 10.1016/j.livsci.2010.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Abstract
During exercise, body temperature rises as a result of increased energy metabolism and heat absorbed from the environment. In response to this rise in body temperature, blood flow increases and stress hormones are released. Together, blood flow and stress hormones stimulate increases in the number of circulating leukocytes and alterations in various aspects of immune function, including cytokine production. The extent of changes in leukocyte numbers, cytokine concentrations, and immune cell function depends on how high body temperature rises and the intensity and duration of exercise. In general, increases in body temperature of ≤ 1.8° F (1° C) induce mild changes in immune function, and such changes are unlikely to increase the risk of illness in athletes, firefighters, and military personnel who regularly exercise in hot conditions. More severe immune disturbances during exercise in extreme heat (≥ 106° F or 41° C) may contribute to classical symptoms of heatstroke.
Collapse
Affiliation(s)
- Jonathan Peake
- University of Queensland, School of Human Movement Studies, Brisbane, Australia, Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Australia,
| |
Collapse
|
9
|
Abstract
Heat stroke is a life-threatening illness that affects all segments of society, including the young, aged, sick, and healthy. The recent high death toll in France (Dorozynski, 2003) and the death of high-profile athletes has increased public awareness of the adverse effects of heat injury. However, the etiology of the long-term consequences of this syndrome remains poorly understood such that preventive/treatment strategies are needed to mitigate its debilitating effects. Cytokines are important modulators of the acute phase response (APR) to stress, infection, and inflammation. Current data implicating cytokines in heat stroke responses are mainly from correlation studies showing elevated plasma levels in heat stroke patients and experimental animal models. Correlation data fall far short of revealing the mechanisms of cytokine actions such that additional research to determine the role of these endogenous substances in the heat stroke syndrome is required. Furthermore, cytokine determinations have occurred mainly at end-stage heat stroke, such that the role of these substances in progression and long-term recovery is poorly understood. Despite several studies implicating cytokines in heat stroke pathophysiology, few studies have examined the protective effect(s) of cytokine antagonism on the morbidity and mortality of heat stroke. This is particularly surprising since heat stroke responses resemble those observed in the endotoxemic syndrome, for which a role for endogenous cytokines has been strongly implicated. The implication of cytokines as mediators of endotoxemia and the presence of circulating endotoxin in heat stroke patients suggests that much knowledge can be gained from applying our current understanding of endotoxemic pathophysiology to the study of heat stroke. Heat shock proteins (HSPs) are highly conserved proteins that function as molecular chaperones for denatured proteins and reciprocally modulate cytokine production in response to stressful stimuli. HSPs have been shown repeatedly to confer protection in heat stroke and injury models. Interactions between HSPs and cytokines have received considerable attention in the literature within the last decade such that a complex pathway of interactions between cytokines, HSPs, and endotoxin is thought to be occurring in vivo in the orchestration of the APR to heat injury. These data suggest that much of the pathophysiologic changes observed with heat stroke are not a consequence of heat exposure, per se, but are representative of interactions among these three (and presumably additional) components of the innate immune response. This chapter will provide an overview of current knowledge regarding cytokine, HSP, and endotoxin interactions in heat stroke pathophysiology. Insight is provided into the potential therapeutic benefit of cytokine neutralization for mitigation of heat stroke morbidity and mortality based on our current understanding of their role in this syndrome.
Collapse
Affiliation(s)
- Lisa R Leon
- US Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, MA 01760-5007, USA.
| |
Collapse
|
10
|
Lim CL, Mackinnon LT. The roles of exercise-induced immune system disturbances in the pathology of heat stroke : the dual pathway model of heat stroke. Sports Med 2006; 36:39-64. [PMID: 16445310 DOI: 10.2165/00007256-200636010-00004] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (>42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.
Collapse
Affiliation(s)
- Chin Leong Lim
- School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
11
|
Abstract
Athletes, military personnel, fire fighters, mountaineers and astronauts may be required to perform in environmental extremes (e.g. heat, cold, high altitude and microgravity). Exercising in hot versus thermoneutral conditions (where core temperature is > or = 1 degrees C higher in hot conditions) augments circulating stress hormones, catecholamines and cytokines with associated increases in circulating leukocytes. Studies that have clamped the rise in core temperature during exercise (by exercising in cool water) demonstrate a large contribution of the rise in core temperature in the leukocytosis and cytokinaemia of exercise. However, with the exception of lowered stimulated lymphocyte responses after exercise in the heat, and in exertional heat illness patients (core temperature > 40 degrees C), recent laboratory studies show a limited effect of exercise in the heat on neutrophil function, monocyte function, natural killer cell activity and mucosal immunity. Therefore, most of the available evidence does not support the contention that exercising in the heat poses a greater threat to immune function (vs thermoneutral conditions). From a critical standpoint, due to ethical committee restrictions, most laboratory studies have evoked modest core temperature responses (< 39 degrees C). Given that core temperature during exercise in the field often exceeds levels associated with fever and hyperthermia (approximately 39.5 degrees C) field studies may provide an opportunity to determine the effects of severe heat stress on immunity. Field studies may also provide insight into the possible involvement of immune modulation in the aetiology of exertional heat stroke (core temperature > 40.6 degrees C) and identify the effects of acclimatisation on neuroendocrine and immune responses to exercise-heat stress. Laboratory studies can provide useful information by, for example, applying the thermal clamp model to examine the involvement of the rise in core temperature in the functional immune modifications associated with prolonged exercise. Studies investigating the effects of cold, high altitude and microgravity on immunity and infection incidence are often hindered by extraneous stressors (e.g. isolation). Nevertheless, the available evidence does not support the popular belief that short- or long-term cold exposure, with or without exercise, suppresses immunity and increases infection incidence. In fact, controlled laboratory studies indicate immuno-stimulatory effects of cold exposure. Although some evidence shows that ascent to high altitude increases infection incidence, clear conclusions are difficult to make because of some overlap with the symptoms of acute mountain sickness. Studies have reported suppressed cell-mediated immunity in mountaineers at high altitude and in astronauts after re-entering the normal gravity environment; however, the impact of this finding on resistance to infection remains unclear.
Collapse
Affiliation(s)
- Neil P Walsh
- School of Sport, Health and Exercise Sciences, University of Wales, Bangor, UK.
| | | |
Collapse
|
12
|
Friedl KE. Biomedical Research on Health and Performance of Military Women: Accomplishments of the Defense Women's Health Research Program (DWHRP). J Womens Health (Larchmt) 2005; 14:764-802. [PMID: 16313206 DOI: 10.1089/jwh.2005.14.764] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In 1994, Congress provided dollar 40 M for biomedical research on issues of importance for military women. This supported 104 intramural and 30 extramural studies and launched an era of research to narrow the knowledge gap on protection and enhancement of health and performance of military women. Projects addressed issues specific to female physiology (e.g., gynecological health in the field, maternal malaria), problems with higher prevalence for women (e.g., marginal iron deficiency, stress fracture), and issues of drug and materiel safety that had only been extrapolated from studies of men (e.g., chemical agent prophylaxis, fatigue countermeasures). Several important assumptions about female physiology and occupational risks were found to be astoundingly wrong. Hormonal changes through the menstrual cycle were less important to acute health risks and performance than predicted, exercise did not increase risk for amenorrhea and consequent bone mineral loss, and women tolerated G-forces and could be as safe as men in the cockpit if their equipment was designed for normal size and strength ranges. Data on personal readiness issues, such as body fat, physical fitness, nutrition, and postpartum return to duty, allowed reconsideration of standards that were gender appropriate and not simply disconnected adjustments to existing male standards. Other discoveries directly benefited men as well as women, including development of medical surveillance databases, identification of task strength demands jeopardizing safety and performance, and greater understanding of the effects of psychosocial stress on health and performance. This surge of research has translated into advances for the welfare of service women and the readiness of the entire force; relevant gender issues are now routine considerations for researchers and equipment developers, and some key remaining research gaps of special importance to military women continue to be investigated.
Collapse
Affiliation(s)
- Karl E Friedl
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760-5007, USA.
| |
Collapse
|
13
|
Bishop NC, Fitzgerald C, Porter PJ, Scanlon GA, Smith AC. Effect of caffeine ingestion on lymphocyte counts and subset activation in vivo following strenuous cycling. Eur J Appl Physiol 2004; 93:606-13. [PMID: 15578203 DOI: 10.1007/s00421-004-1271-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2004] [Indexed: 12/31/2022]
Abstract
Caffeine ingestion is associated with increases in the concentration of plasma epinephrine and epinephrine is associated with alterations in immune cell trafficking and function following intensive exercise. Therefore, the purpose of this study was to investigate the effect of caffeine ingestion on plasma epinephrine concentration, lymphocyte counts and subset activation in vivo, as measured by the expression the CD69 surface antigen, before and after intensive cycling. On two occasions, following an overnight fast and 60 h abstention from caffeine containing foods and drinks, eight endurance trained males cycled for 90 min at 70% <Vdot>O(2 max) 60 min after ingesting caffeine (6 mg kg(-1 )body mass; CAF) or placebo (PLA). Venous blood samples were collected at pre-treatment, pre-exercise, post-exercise and 1 h post-exercise. Plasma epinephrine concentrations were significantly higher in CAF compared with PLA at pre-exercise [0.28 (0.05) nmol l(-1) versus 0.08 (0.03) nmol l(-1), P<0.01; mean (SE)] and immediately post-exercise [1.02 (0.16) nmol l(-1) versuss 0.60 (0.13) nmol l(-1), P<0.01]. Compared with pre-treatment, numbers of CD4(+) and CD8(+) cells decreased by 54% and 55%, respectively, in CAF at 1 h post-exercise (both P<0.01) but did not significantly differ in PLA. Compared with PLA, in CAF the percentage of CD4(+)CD69(+) cells was 5-fold higher at post-exercise (P<0.05) and 5.5-fold higher at 1 h post-exercise (P=0.01). Compared with PLA, in CAF the percentage of CD8(+)CD69(+) cells was 2-fold higher at pre-exercise (P<0.05) and 1.7-fold higher at post-exercise (P<0.05). These findings suggest that caffeine ingestion is associated with alterations in lymphocyte subset trafficking and expression of CD69 in vivo following prolonged, intensive exercise.
Collapse
Affiliation(s)
- Nicolette C Bishop
- School of Sport and Exercise Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| | | | | | | | | |
Collapse
|