1
|
Weng J, Molshatzki N, Marjoram P, Gauderman WJ, Gilliland FD, Eckel SP. Hierarchical Bayesian estimation of covariate effects on airway and alveolar nitric oxide. Sci Rep 2021; 11:17180. [PMID: 34433846 PMCID: PMC8387480 DOI: 10.1038/s41598-021-96176-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Exhaled breath biomarkers are an important emerging field. The fractional concentration of exhaled nitric oxide (FeNO) is a marker of airway inflammation with clinical and epidemiological applications (e.g., air pollution health effects studies). Systems of differential equations describe FeNO—measured non-invasively at the mouth—as a function of exhalation flow rate and parameters representing airway and alveolar sources of NO in the airway. Traditionally, NO parameters have been estimated separately for each study participant (Stage I) and then related to covariates (Stage II). Statistical properties of these two-step approaches have not been investigated. In simulation studies, we evaluated finite sample properties of existing two-step methods as well as a novel Unified Hierarchical Bayesian (U-HB) model. The U-HB is a one-step estimation method developed with the goal of properly propagating uncertainty as well as increasing power and reducing type I error for estimating associations of covariates with NO parameters. We demonstrated the U-HB method in an analysis of data from the southern California Children’s Health Study relating traffic-related air pollution exposure to airway and alveolar airway inflammation.
Collapse
Affiliation(s)
- Jingying Weng
- Department of Population and Public Health Sciences, University of Southern California, 2001 N. Soto Street, SSB 202B, MC-9234, Los Angeles, CA, 90089, USA
| | - Noa Molshatzki
- Department of Population and Public Health Sciences, University of Southern California, 2001 N. Soto Street, SSB 202B, MC-9234, Los Angeles, CA, 90089, USA
| | - Paul Marjoram
- Department of Population and Public Health Sciences, University of Southern California, 2001 N. Soto Street, SSB 202B, MC-9234, Los Angeles, CA, 90089, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, 2001 N. Soto Street, SSB 202B, MC-9234, Los Angeles, CA, 90089, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, 2001 N. Soto Street, SSB 202B, MC-9234, Los Angeles, CA, 90089, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, University of Southern California, 2001 N. Soto Street, SSB 202B, MC-9234, Los Angeles, CA, 90089, USA.
| |
Collapse
|
2
|
Buess A, Van Muylem A, Nonclercq A, Haut B. Modeling of the Transport and Exchange of a Gas Species in Lungs With an Asymmetric Branching Pattern. Application to Nitric Oxide. Front Physiol 2020; 11:570015. [PMID: 33362572 PMCID: PMC7758446 DOI: 10.3389/fphys.2020.570015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 01/25/2023] Open
Abstract
Over the years, various studies have been dedicated to the mathematical modeling of gas transport and exchange in the lungs. Indeed, the access to the distal region of the lungs with direct measurements is limited and, therefore, models are valuable tools to interpret clinical data and to give more insights into the phenomena taking place in the deepest part of the lungs. In this work, a new computational model of the transport and exchange of a gas species in the human lungs is proposed. It includes (i) a method to generate a lung geometry characterized by an asymmetric branching pattern, based on the values of several parameters that have to be given by the model user, and a method to possibly alter this geometry to mimic lung diseases, (ii) the calculation of the gas flow distribution in this geometry during inspiration or expiration (taking into account the increased resistance to the flow in airways where the flow is non-established), (iii) the evaluation of the exchange fluxes of the gaseous species of interest between the tissues composing the lungs and the lumen, and (iv) the computation of the concentration profile of the exchanged species in the lumen of the tracheobronchial tree. Even if the model is developed in a general framework, a particular attention is given to nitric oxide, as it is not only a gas species of clinical interest, but also a gas species that is both produced in the walls of the airways and consumed within the alveolar region of the lungs. First, the model is presented. Then, several features of the model, applied to lung geometry, gas flow and NO exchange and transport, are discussed, compared to existing works and notably used to give new insights into experimental data available in the literature, regarding diseases, such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Alexandra Buess
- Transfers, Interfaces and Processes, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Nonclercq
- Bio-, Electro-, and Mechanical Systems (BEAMS), Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Benoit Haut
- Transfers, Interfaces and Processes, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Muchmore P, Xu S, Marjoram P, Rappaport EB, Weng J, Molshatzki N, Eckel SP. Impact of different fixed flow sampling protocols on flow-independent exhaled nitric oxide parameter estimates using the Bayesian dynamic two-compartment model. Physiol Rep 2020; 8:e14336. [PMID: 31960619 PMCID: PMC6971414 DOI: 10.14814/phy2.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exhaled nitric oxide (FeNO) is an established respiratory biomarker with clinical applications in the diagnosis and management of asthma. Because FeNO depends strongly on the flow (exhalation) rate, early protocols specified that measurements should be taken when subjects exhaled at a fixed rate of 50 ml/s. Subsequently, multiple flow (or "extended") protocols were introduced which measure FeNO across a range of fixed flow rates, allowing estimation of parameters including Caw NO and CA NO which partition the physiological sources of NO into proximal airway wall tissue and distal alveolar regions (respectively). A recently developed dynamic model of FeNO uses flow-concentration data from the entire exhalation maneuver rather than plateau means, permitting estimation of Caw NO and CA NO from a wide variety of protocols. In this paper, we use a simulation study to compare Caw NO and CA NO estimation from a variety of fixed flow protocols, including: single maneuvers (30, 50,100, or 300 ml/s) and three established multiple maneuver protocols. We quantify the improved precision with multiple maneuvers and the importance of low flow maneuvers in estimating Caw NO. We conclude by applying the dynamic model to FeNO data from 100 participants of the Southern California Children's Health Study, establishing the feasibility of using the dynamic method to reanalyze archived online FeNO data and extract new information on Caw NO and CA NO in situations where these estimates would have been impossible to obtain using traditional steady-state two compartment model estimation methods.
Collapse
Affiliation(s)
- Patrick Muchmore
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Shujing Xu
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Paul Marjoram
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Edward B. Rappaport
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jingying Weng
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Noa Molshatzki
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Sandrah P. Eckel
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
4
|
Muchmore P, Rappaport EB, Eckel SP. Bayesian estimation of physiological parameters governing a dynamic two-compartment model of exhaled nitric oxide. Physiol Rep 2018; 5:5/15/e13276. [PMID: 28774947 PMCID: PMC5555880 DOI: 10.14814/phy2.13276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 01/17/2023] Open
Abstract
The fractional concentration of nitric oxide in exhaled breath (feNO) is a biomarker of airway inflammation with applications in clinical asthma management and environmental epidemiology. feNO concentration depends on the expiratory flow rate. Standard feNO is assessed at 50 mL/sec, but “extended NO analysis” uses feNO measured at multiple different flow rates to estimate parameters quantifying proximal and distal sources of NO in the lower respiratory tract. Most approaches to modeling multiple flow feNO assume the concentration of NO throughout the airway has achieved a “steady‐state.” In practice, this assumption demands that subjects maintain sustained flow rate exhalations, during which both feNO and expiratory flow rate must remain constant, and the feNO maneuver is summarized by the average feNO concentration and average flow during a small interval. In this work, we drop the steady‐state assumption in the classic two‐compartment model. Instead, we have developed a new parameter estimation approach based on measuring and adjusting for a continuously varying flow rate over the entire feNO maneuver. We have developed a Bayesian inference framework for the parameters of the partial differential equation underlying this model. Based on multiple flow feNO data from the Southern California Children's Health Study, we use observed and simulated NO concentrations to demonstrate that our approach has reasonable computation time and is consistent with existing steady‐state approaches, while our inferences consistently offer greater precision than current methods.
Collapse
Affiliation(s)
- Patrick Muchmore
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Edward B Rappaport
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Sandrah P Eckel
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
5
|
Molshatski N, Eckel SP. Optimal flow rate sampling designs for studies with extended exhaled nitric oxide analysis. J Breath Res 2017; 11:016012. [PMID: 28104897 DOI: 10.1088/1752-7163/aa5ad0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The fractional concentration of exhaled nitric oxide (FeNO) is a biomarker of airway inflammation. Repeat FeNO maneuvers at multiple fixed exhalation flow rates (extended NO analysis) can be used to estimate parameters quantifying proximal and distal sources of NO in mathematical models of lower respiratory tract NO. A growing number of studies use extended NO analysis, but there is no official standard flow rate sampling protocol. In this paper, we provide information for study planning by deriving theoretically optimal flow rate sampling designs. METHODS First, we reviewed previously published designs. Then, under a nonlinear regression framework for estimating NO parameters in the steady-state two compartment model of NO, we identified unbiased optimal four flow rate designs (within the range of 10-400 ml s-1) using theoretical derivations and simulation studies. Optimality criteria included NO parameter standard errors (SEs). A simulation study was used to estimate sample sizes required to detect associations with NO parameters estimated from studies with different designs. RESULTS Most designs (77%) were unbiased. NO parameter SEs were smaller for designs with: more target flows, more replicate maneuvers per target flow, and a larger range of target flows. High flows were most important for estimating alveolar NO concentration, while low flows were most important for the proximal NO parameters. The Southern California Children's Health Study design (30, 50, 100 and 300 ml s-1) had ≥1.8 fold larger SEs and required 1.1-3.2 fold more subjects to detect the association of a determinant with each NO parameter as compared to an optimal design of 10, 50, 100 and 400 ml s-1. CONCLUSIONS There is a class of reasonable flow rate sampling designs with good theoretical performance. In practice, designs should be selected to balance the tradeoffs between optimality and feasibility of the flow range and total number of maneuvers.
Collapse
Affiliation(s)
- Noa Molshatski
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States of America
| | | |
Collapse
|
6
|
Afshar M, Poole JA, Cao G, Durazo R, Cooper RC, Kovacs EJ, Sisson JH. Exhaled Nitric Oxide Levels Among Adults With Excessive Alcohol Consumption. Chest 2016; 150:196-209. [PMID: 26905362 DOI: 10.1016/j.chest.2016.02.642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND More than one-quarter of the US population qualify as excessive alcohol consumers. Alcohol use impacts several lung diseases, and heavy consumption has been associated with poor clinical outcomes. The fractional excretion of exhaled nitric oxide (Feno) has clinical implications in multiple airways diseases. We hypothesized that excessive alcohol intake is associated with lower Feno levels. METHODS To test this hypothesis, we examined a sample consisting of 12,059 participants, aged 21 to 79 years, interviewed between 2007 and 2012 from the National Health and Examination Survey. Two valid Feno measurements that were reproducible were recorded. Alcohol questionnaire data were used to define the following alcohol groups: never drinkers, nonexcessive drinkers, excessive drinkers, and former excessive drinkers. The natural logarithm of Feno values [ln(Feno)] as well as blood eosinophil count and C-reactive protein were used as dependent variables to test the association with alcohol groups including multivariable linear regression models with adjustment for predictors of Feno. RESULTS Excessive alcohol consumption comprised 3,693 (26.9%) of the US sample population. Controlling for all other factors, excessive alcohol consumption had a negative association and was an independent predictor for ln(Feno) levels in comparison with the never-drinker group (-0.11; 95% CI, -0.17 to -0.06; P < .001). ln(Feno) levels decreased across categories of increasing alcohol use (P < .001). CONCLUSIONS Accounting for alcohol use in the interpretation of Feno levels should be an additional consideration, and further investigations are warranted to explore the complex interaction between alcohol and nitric oxide in the airways.
Collapse
Affiliation(s)
- Majid Afshar
- Division of Pulmonary and Critical Care Medicine, Loyola University Chicago Health Sciences Campus, Maywood, IL; Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago Health Sciences, Maywood, IL; Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences, Maywood, IL.
| | - Jill A Poole
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Guichan Cao
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago Health Sciences, Maywood, IL
| | - Ramon Durazo
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago Health Sciences, Maywood, IL
| | - Richard C Cooper
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago Health Sciences, Maywood, IL
| | - Elizabeth J Kovacs
- Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL; Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences, Maywood, IL; Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences, Maywood, IL
| | - Joseph H Sisson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
7
|
Eckel SP, Linn WS, Berhane K, Rappaport EB, Salam MT, Zhang Y, Gilliland FD. Estimation of parameters in the two-compartment model for exhaled nitric oxide. PLoS One 2014; 9:e85471. [PMID: 24465571 PMCID: PMC3894971 DOI: 10.1371/journal.pone.0085471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/27/2013] [Indexed: 01/13/2023] Open
Abstract
The fractional concentration of exhaled nitric oxide (FeNO) is a biomarker of airway inflammation that is being increasingly considered in clinical, occupational, and epidemiological applications ranging from asthma management to the detection of air pollution health effects. FeNO depends strongly on exhalation flow rate. This dependency has allowed for the development of mathematical models whose parameters quantify airway and alveolar compartment contributions to FeNO. Numerous methods have been proposed to estimate these parameters using FeNO measured at multiple flow rates. These methods—which allow for non-invasive assessment of localized airway inflammation—have the potential to provide important insights on inflammatory mechanisms. However, different estimation methods produce different results and a serious barrier to progress in this field is the lack of a single recommended method. With the goal of resolving this methodological problem, we have developed a unifying framework in which to present a comprehensive set of existing and novel statistical methods for estimating parameters in the simple two-compartment model. We compared statistical properties of the estimators in simulation studies and investigated model fit and parameter estimate sensitivity across methods using data from 1507 schoolchildren from the Southern California Children's Health Study, one of the largest multiple flow FeNO studies to date. We recommend a novel nonlinear least squares model with natural log transformation on both sides that produced estimators with good properties, satisfied model assumptions, and fit the Children's Health Study data well.
Collapse
Affiliation(s)
- Sandrah P. Eckel
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - William S. Linn
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kiros Berhane
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Edward B. Rappaport
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Muhammad T. Salam
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yue Zhang
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Frank D. Gilliland
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Gelb AF, Flynn Taylor C, Krishnan A, Fraser C, Shinar CM, Schein MJ, Osann K. Central and Peripheral Airway Sites of Nitric Oxide Gas Exchange in COPD. Chest 2010; 137:575-84. [DOI: 10.1378/chest.09-1522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
Malinovschi A, Janson C, Holm L, Nordvall L, Alving K. Basal and induced NO formation in the pharyngo-oral tract influences estimates of alveolar NO levels. J Appl Physiol (1985) 2009; 106:513-9. [DOI: 10.1152/japplphysiol.91148.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study analyzed how models currently used to distinguish alveolar from bronchial contribution to exhaled nitric oxide (NO) are affected by manipulation of NO formation in the pharyngo-oral tract. Exhaled NO was measured at multiple flow rates in 15 healthy subjects in two experiments: 1) measurements at baseline and 5 min after chlorhexidine (CHX) mouthwash and 2) measurements at baseline, 60 min after ingestion of 10 mg NaNO3/kg body wt, and 5 min after CHX mouthwash. Alveolar NO concentration (CalvNO) and bronchial flux (J′awNO) were calculated by using the slope-intercept model with or without adjustment for trumpet shape of airways and axial diffusion (TMAD). Salivary nitrate and nitrite were measured in the second experiment. CalvNO [median (range)] was reduced from 1.16 ppb (0.77, 1.96) at baseline to 0.84 ppb (0.57, 1.48) 5 min after CHX mouthwash ( P < 0.001). The TMAD-adjusted CalvNO value after CHX mouthwash was 0.50 ppb (0, 0.85). The nitrate load increased J′awNO from 32.2 nl/min (12.2, 60.3) to 57.1 nl/min (22.0, 119) in all subjects and CalvNO from 1.47 ppb (0.73, 1.95) to 1.87 ppb (10.85, 7.20) in subjects with high nitrate turnover (>10-fold increase of salivary nitrite after nitrate load). CHX mouthwash reduced CalvNO levels to 1.15 ppb (0.72, 2.07) in these subjects with high nitrate turnover. All these results remained consistent after TMAD adjustment. We conclude that estimated alveolar NO concentration is affected by pharyngo-oral tract production of NO in healthy subjects, with a decrease after CHX mouthwash. Moreover, unknown ingestion of dietary nitrate could significantly increase estimated alveolar NO in subjects with high nitrate turnover, and this might be falsely interpreted as a sign of peripheral inflammation. These findings were robust for TMAD.
Collapse
|