1
|
Urban T, Gassert FT, Frank M, Schick R, Bast H, Bodden J, Marka AW, Steinhelfer L, Steinhardt M, Sauter A, Fingerle A, Zimmermann GS, Koehler T, Makowski MR, Pfeiffer D, Pfeiffer F. Dark-field chest radiography signal characteristics in inspiration and expiration in healthy and emphysematous subjects. Eur Radiol Exp 2025; 9:40. [PMID: 40146395 PMCID: PMC11950489 DOI: 10.1186/s41747-025-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Dark-field chest radiography is sensitive to the lung alveolar structure. We evaluated the change of dark-field signal between inspiration and expiration. METHODS From 2018 to 2020, patients who underwent chest computed tomography (CT) were prospectively enrolled, excluding those with any lung condition besides emphysema visible on CT. Participants were imaged in both inspiration and expiration with a prototype dark-field chest radiography system. We calculated the total dark-field signal ∑DF and the dark-field coefficient ϵ, assumed to be proportional to the total number of alveoli and the alveolar density, respectively. RESULTS Eighty-eight subjects, aged 64 years ± 11 (mean ± standard deviation), 55 males, were enrolled. Dark-field signal in the lung projection appeared higher in expiration compared to inspiration. Over all participants, ∑DF was higher in inspiration (1.6 × 10-2 ± 0.4 × 10-2 m2) compared to expiration (1.5 × 10-2 ± 0.4 m2) (p < 0.001), with its expiration-to-inspiration not ratio being different for any emphysema subgroup. The dark-field coefficient ϵ was lower in inspiration (2.3 ± 0.6 m-1) compared to expiration (3.1 ± 1.1 m-1) (p < 0.001) over all participants. The dark-field coefficient in inspiration and expiration, as well as their ratio, was lower for at least moderate emphysema when compared to the control group (e.g., ϵ = 2.5 ± 1.0 m-1 for moderate emphysema in expiration versus ϵ = 3.6 ± 0.7 m-1 for participants without emphysema (p = 0.003). CONCLUSION The dark-field signal depends on the breathing state. Differences between breathing states are influenced by emphysema severity. RELEVANCE STATEMENT The patient's breathing state influences the dark-field chest radiograph, potentially impacting its diagnostic value. KEY POINTS Signal characteristics in dark-field chest radiography change between inspiration and expiration. The total dark-field signal decreases slightly from inspiration to expiration, while the dark-field coefficient increases substantially. The ratio of the total dark-field signal between expiration and inspiration is independent of emphysema severity, whereas the ratio of the dark-field coefficient depends on emphysema severity.
Collapse
Affiliation(s)
- Theresa Urban
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany.
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany.
| | - Florian T Gassert
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Manuela Frank
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Rafael Schick
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Henriette Bast
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Jannis Bodden
- Department of Neuroradiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Alexander W Marka
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Lisa Steinhelfer
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Manuel Steinhardt
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Andreas Sauter
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Alexander Fingerle
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Gregor S Zimmermann
- Division of Respiratory Medicine, Department of Internal Medicine I, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Thomas Koehler
- Philips Innovative Technologies, 22335, Hamburg, Germany
- Munich Institute for Advanced Study, Technical University of Munich, 85748, Garching, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Institute for Advanced Study, Technical University of Munich, 85748, Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Institute for Advanced Study, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
2
|
Kingsley J, Kandil O, Satalin J, Bary AA, Coyle S, Nawar MS, Groom R, Farrag A, Shah J, Robedee BR, Darling E, Shawkat A, Chaudhuri D, Nieman GF, Aiash H. The use of protective mechanical ventilation during extracorporeal membrane oxygenation for the treatment of acute respiratory failure. Perfusion 2025; 40:69-82. [PMID: 38240747 DOI: 10.1177/02676591241227167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Acute respiratory failure (ARF) strikes an estimated two million people in the United States each year, with care exceeding US$50 billion. The hallmark of ARF is a heterogeneous injury, with normal tissue intermingled with a large volume of low compliance and collapsed tissue. Mechanical ventilation is necessary to oxygenate and ventilate patients with ARF, but if set inappropriately, it can cause an unintended ventilator-induced lung injury (VILI). The mechanism of VILI is believed to be overdistension of the remaining normal tissue known as the 'baby' lung, causing volutrauma, repetitive collapse and reopening of lung tissue with each breath, causing atelectrauma, and inflammation secondary to this mechanical damage, causing biotrauma. To avoid VILI, extracorporeal membrane oxygenation (ECMO) can temporally replace the pulmonary function of gas exchange without requiring high tidal volumes (VT) or airway pressures. In theory, the lower VT and airway pressure will minimize all three VILI mechanisms, allowing the lung to 'rest' and heal in the collapsed state. The optimal method of mechanical ventilation for the patient on ECMO is unknown. The ARDSNetwork Acute Respiratory Management Approach (ARMA) is a Rest Lung Approach (RLA) that attempts to reduce the excessive stress and strain on the remaining normal lung tissue and buys time for the lung to heal in the collapsed state. Theoretically, excessive tissue stress and strain can also be avoided if the lung is fully open, as long as the alveolar re-collapse is prevented during expiration, an approach known as the Open Lung Approach (OLA). A third lung-protective strategy is the Stabilize Lung Approach (SLA), in which the lung is initially stabilized and gradually reopened over time. This review will analyze the physiologic efficacy and pathophysiologic potential of the above lung-protective approaches.
Collapse
Affiliation(s)
| | | | | | - Akram Abdel Bary
- Critical Care Department, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Sierra Coyle
- SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mahmoud Saad Nawar
- Critical Care Department, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Robert Groom
- SUNY Upstate Medical University, Syracuse, NY, USA
| | - Amr Farrag
- Aswan Heart Centre, Magdi Yacoub Foundation, Aswan, Egypt
| | | | | | | | | | | | | | - Hani Aiash
- SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
3
|
Lhermitte A, Pugliesi E, Cerasuolo D, Delcampe A, Cabart A, Du Cheyron D, Hanouz JL, Daubin C. Respiratory Effects of Maximal Lung Recruitment Maneuvers Using Single-Breath Estimation in ARDS. Respir Care 2024; 69:1499-1507. [PMID: 39438062 PMCID: PMC11572990 DOI: 10.4187/respcare.11948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Determining which patients with ARDS are most likely to benefit from lung recruitment maneuvers is challenging for physicians. The aim of this study was to assess whether the single-breath simplified decremental PEEP maneuver, which evaluates potential lung recruitment, may predict a subject's response to lung recruitment maneuvers, followed by PEEP titration. METHODS We conducted a pilot prospective single-center cohort study with a 3-step protocol that defined sequential measurements. First, potential lung recruitment was assessed by the single-breath maneuver in the volume controlled mode. Second, the lung recruitment maneuver was performed in the pressure controlled mode, with a fixed driving pressure of 15 cm H2O and a maximum PEEP of 30 cm H2O. Third, the lung recruitment maneuver was followed by decremental PEEP titration to determine the optimal PEEP, defined as the lowest driving pressure. Responders to the lung recruitment maneuver were defined by an improvement in [Formula: see text]/[Formula: see text] > 20% between the baseline state and the end of the PEEP titration phase. RESULTS Forty-two subjects with moderate-to-severe ARDS were included. The mean ± SD lung recruitment was 149 ± 104 mL. A threshold lung recruitment of 195 mL (area under the receiver operator characteristic curve 0.62, 95% CI 0.43-0.80) predicted a positive response to the maximal lung recruitment maneuver. The lung recruitment maneuver, followed by PEEP titration, resulted in a modification of PEEP in 74% of the subjects. PEEP was increased in more than two thirds of the responders and decreased in almost half of the non-responders to the lung recruitment maneuver. In addition, a decrease in driving pressure and an increase in respiratory system compliance were reported in 62% and 67% of the subjects, respectively. CONCLUSIONS The single-breath maneuver for evaluating lung recruitability predicted, with poor accuracy, the subjects who responded to the lung recruitment maneuver based on [Formula: see text]/[Formula: see text] improvement. Nevertheless, the lung recruitment maneuver, followed by PEEP titration, improved ventilator settings and respiratory mechanics in a majority of subjects.
Collapse
Affiliation(s)
- Amaury Lhermitte
- Departement d'Anesthesie Reanimation Chirurgicale, Centre Hospitalo-Universitaire de Caen Normandie, Caen, France
| | - Emilien Pugliesi
- Departement d'Anesthesie Reanimation Chirurgicale, Centre Hospitalo-Universitaire de Caen Normandie, Caen, France
| | - Damiano Cerasuolo
- Unite de sante publique, Centre Hospitalo-Universitaire de Caen Normandie, Caen, France
| | - Augustin Delcampe
- Medecine Intensive et Reanimation Medicale, Centre Hospitalo-Universitaire de Caen Normandie, Caen, France
| | - Antoine Cabart
- Medecine Intensive et Reanimation Medicale, Centre Hospitalo-Universitaire de Caen Normandie, Caen, France
| | - Damien Du Cheyron
- Medecine Intensive et Reanimation Medicale, Centre Hospitalo-Universitaire de Caen Normandie, Caen, France
| | - Jean-Luc Hanouz
- Departement d'Anesthesie Reanimation Chirurgicale, Centre Hospitalo-Universitaire de Caen Normandie, Caen, France
- Unite de Recherche Medicale 1237 Physiologie et Imagerie des troubles Neurologique, Institut National de la Sante et de la Recherche Medicale and Caen Normandy University, Caen, France
| | - Cédric Daubin
- Departement d'Anesthesie Reanimation Chirurgicale, Centre Hospitalo-Universitaire de Caen Normandie, Caen, France.
| |
Collapse
|
4
|
Camporesi A, Roveri G, Vetrugno L, Buonsenso D, De Giorgis V, Costanzo S, Pierucci UM, Pelizzo G. Lung ultrasound assessment of atelectasis following different anesthesia induction techniques in pediatric patients: a propensity score-matched, observational study. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:69. [PMID: 39369249 PMCID: PMC11452973 DOI: 10.1186/s44158-024-00206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION Atelectasis is a well-documented complication in pediatric patients undergoing general anesthesia. Its incidence varies significantly based on surgical procedures and anesthesia techniques. Inhalation induction, commonly used to avoid the discomfort of venipuncture, is suspected to cause higher rates of respiratory complications, including atelectasis, compared to intravenous induction. This study aimed to evaluate the impact of inhalation versus intravenous anesthesia induction on atelectasis formation in pediatric patients, as assessed by lung ultrasound (LUS). METHODS This propensity score-matched observational study was conducted at a tertiary pediatric hospital in Milan, Italy. Inclusion criteria were children ≤ 18 years undergoing elective surgery with general anesthesia. Patients were divided into inhalation and intravenous induction groups. LUS was performed before and after anesthesia induction to assess lung aeration. The primary endpoint was the global LUS score post-induction, with secondary endpoints including the incidence and distribution of atelectasis. RESULTS Of the 326 patients included, 65% underwent inhalation induction and 35% intravenous induction. The global LUS score was significantly higher in the inhalation group (12.0 vs. 4.0, p < 0.001). After propensity score matching (for age, presence of upper respiratory tract infection, duration of induction, and PEEP levels at induction), average treatment effect (ATE) of mask induction was 5.89 (95% CI, 3.21-8.58; p < 0.001) point on LUS global score and a coefficient of 0.35 (OR 1.41) for atelectasis. DISCUSSION Inhalation induction is associated with a higher incidence of atelectasis in pediatric patients also when we adjusted for clinically relevant covariates. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT06069414.
Collapse
Affiliation(s)
- Anna Camporesi
- Department of Pediatric Anesthesia and Intensive Care, Buzzi Children's Hospital, Via Castelvetro 32, 20154, Milan, Italy.
| | - Giulia Roveri
- Department of Anesthesia and Intensive Care Medicine "F. Tappeiner" Hospital, Merano, Italy
- Eurac Research, Institute of Mountain Emergency Medicine, 39100, Bolzano, Italy
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
- Centro Di Salute Globale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina De Giorgis
- Department of Pediatric Anesthesia and Intensive Care, Buzzi Children's Hospital, Via Castelvetro 32, 20154, Milan, Italy
| | - Sara Costanzo
- Pediatric Surgery Department, Buzzi Children's Hospital, Milan, Italy
| | | | - Gloria Pelizzo
- Pediatric Surgery Department, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, Luigi Sacco University Hospital, Milan, Italy
| |
Collapse
|
5
|
Zimmermann R, Roeder F, Ruppert C, Smith BJ, Knudsen L. Low-volume ventilation of preinjured lungs degrades lung function via stress concentration and progressive alveolar collapse. Am J Physiol Lung Cell Mol Physiol 2024; 327:L19-L39. [PMID: 38712429 DOI: 10.1152/ajplung.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.
Collapse
Affiliation(s)
- Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Zhou Y, Cheng J, Zhu S, Dong M, Lv Y, Jing X, Kang Y. Early pathophysiology-driven airway pressure release ventilation versus low tidal volume ventilation strategy for patients with moderate-severe ARDS: study protocol for a randomized, multicenter, controlled trial. BMC Pulm Med 2024; 24:252. [PMID: 38783268 PMCID: PMC11112826 DOI: 10.1186/s12890-024-03065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Conventional Mechanical ventilation modes used for individuals suffering from acute respiratory distress syndrome have the potential to exacerbate lung injury through regional alveolar overinflation and/or repetitive alveolar collapse with shearing, known as atelectrauma. Animal studies have demonstrated that airway pressure release ventilation (APRV) offers distinct advantages over conventional mechanical ventilation modes. However, the methodologies for implementing APRV vary widely, and the findings from clinical studies remain controversial. This study (APRVplus trial), aims to assess the impact of an early pathophysiology-driven APRV ventilation approach compared to a low tidal volume ventilation (LTV) strategy on the prognosis of patients with moderate to severe ARDS. METHODS The APRVplus trial is a prospective, multicenter, randomized clinical trial, building upon our prior single-center study, to enroll 840 patients from at least 35 hospitals in China. This investigation plans to compare the early pathophysiology-driven APRV ventilation approach with the control intervention of LTV lung-protective ventilation. The primary outcome measure will be all-cause mortality at 28 days after randomization in the intensive care units (ICU). Secondary outcome measures will include assessments of oxygenation, and physiology parameters at baseline, as well as on days 1, 2, and 3. Additionally, clinical outcomes such as ventilator-free days at 28 days, duration of ICU and hospital stay, ICU and hospital mortality, and the occurrence of adverse events will be evaluated. TRIAL ETHICS AND DISSEMINATION The research project has obtained approval from the Ethics Committee of West China Hospital of Sichuan University (2019-337). Informed consent is required. The results will be submitted for publication in a peer-reviewed journal and presented at one or more scientific conferences. TRIAL REGISTRATION The study was registered at Clinical Trials.gov (NCT03549910) on June 8, 2018.
Collapse
Affiliation(s)
- Yongfang Zhou
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China.
| | - Jiangli Cheng
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Shuo Zhu
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Meiling Dong
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Yinxia Lv
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Xiaorong Jing
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Al-Khalisy H, Nieman GF, Kollisch-Singule M, Andrews P, Camporota L, Shiber J, Manougian T, Satalin J, Blair S, Ghosh A, Herrmann J, Kaczka DW, Gaver DP, Bates JHT, Habashi NM. Time-Controlled Adaptive Ventilation (TCAV): a personalized strategy for lung protection. Respir Res 2024; 25:37. [PMID: 38238778 PMCID: PMC10797864 DOI: 10.1186/s12931-023-02615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/25/2023] [Indexed: 01/22/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Gary F Nieman
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | - Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, USA
| | | | - Joshua Satalin
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Sarah Blair
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Auyon Ghosh
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | | | | | | | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
8
|
Nieman GF, Herrmann J, Satalin J, Kollisch-Singule M, Andrews PL, Habashi NM, Tingay DG, Gaver DP, Bates JHT, Kaczka DW. Ratchet recruitment in the acute respiratory distress syndrome: lessons from the newborn cry. Front Physiol 2023; 14:1287416. [PMID: 38028774 PMCID: PMC10646689 DOI: 10.3389/fphys.2023.1287416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn's cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales.
Collapse
Affiliation(s)
- Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY, United States
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY, United States
| | | | - Penny L. Andrews
- Department of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nader M. Habashi
- Department of Medicine, University of Maryland, Baltimore, MD, United States
| | - David G. Tingay
- Neonatal Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Donald P. Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Jason H. T. Bates
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - David W. Kaczka
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Departments of Anesthesia and Radiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
9
|
Nieman GF, Kaczka DW, Andrews PL, Ghosh A, Al-Khalisy H, Camporota L, Satalin J, Herrmann J, Habashi NM. First Stabilize and then Gradually Recruit: A Paradigm Shift in Protective Mechanical Ventilation for Acute Lung Injury. J Clin Med 2023; 12:4633. [PMID: 37510748 PMCID: PMC10380509 DOI: 10.3390/jcm12144633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI). Previous concepts of ARDS pathophysiology envisioned a two-compartment system: a small amount of normally aerated lung tissue in the non-dependent regions (termed "baby lung"); and a collapsed and edematous tissue in dependent regions. Based on such compartmentalization, two protective ventilation strategies have been developed: (1) a "protective lung approach" (PLA), designed to reduce overdistension in the remaining aerated compartment using a low tidal volume; and (2) an "open lung approach" (OLA), which first attempts to open the collapsed lung tissue over a short time frame (seconds or minutes) with an initial recruitment maneuver, and then stabilize newly recruited tissue using titrated positive end-expiratory pressure (PEEP). A more recent understanding of ARDS pathophysiology identifies regional alveolar instability and collapse (i.e., hidden micro-atelectasis) in both lung compartments as a primary VILI mechanism. Based on this understanding, we propose an alternative strategy to ventilating the injured lung, which we term a "stabilize lung approach" (SLA). The SLA is designed to immediately stabilize the lung and reduce RACE while gradually reopening collapsed tissue over hours or days. At the core of SLA is time-controlled adaptive ventilation (TCAV), a method to adjust the parameters of the airway pressure release ventilation (APRV) modality. Since the acutely injured lung at any given airway pressure requires more time for alveolar recruitment and less time for alveolar collapse, SLA adjusts inspiratory and expiratory durations and inflation pressure levels. The TCAV method SLA reverses the open first and stabilize second OLA method by: (i) immediately stabilizing lung tissue using a very brief exhalation time (≤0.5 s), so that alveoli simply do not have sufficient time to collapse. The exhalation duration is personalized and adaptive to individual respiratory mechanical properties (i.e., elastic recoil); and (ii) gradually recruiting collapsed lung tissue using an inflate and brake ratchet combined with an extended inspiratory duration (4-6 s) method. Translational animal studies, clinical statistical analysis, and case reports support the use of TCAV as an efficacious lung protective strategy.
Collapse
Affiliation(s)
- Gary F. Nieman
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA;
| | - David W. Kaczka
- Departments of Anesthesia, Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Penny L. Andrews
- Department of Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Auyon Ghosh
- Department of Medicine, Upstate Medical University, Syracuse, NY 13210, USA
| | - Hassan Al-Khalisy
- Brody School of Medicine, Department of Internal Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Partners, St Thomas’ Hospital, London SE1 7EH, UK
| | - Joshua Satalin
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA;
| | - Jacob Herrmann
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Nader M. Habashi
- Department of Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Taje R, Fabbi E, Sorge R, Elia S, Dauri M, Pompeo E. Adjuvant Transthoracic Negative-Pressure Ventilation in Nonintubated Thoracoscopic Surgery. J Clin Med 2023; 12:4234. [PMID: 37445268 DOI: 10.3390/jcm12134234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND To minimize the risks of barotrauma during nonintubated thoracoscopic-surgery under spontaneous ventilation, we investigated an adjuvant transthoracic negative-pressure ventilation (NPV) method in patients operated on due to severe emphysema or interstitial lung disease. METHODS In this retrospective study, NPV was employed for temporary low oxygen saturation and to achieve end-operative lung re-expansion during nonintubated lung volume reduction surgery (LVRS) for severe emphysema (30 patients, LVRS group) and in the nonintubated wedge resection of undetermined interstitial lung disease (30 patients, wedge-group). The results were compared following 1:1 propensity score matching with equivalent control groups undergoing the same procedures under spontaneous ventilation, with adjuvant positive-pressure ventilation (PPV) performed on-demand through the laryngeal mask. The primary outcomes were changes (preoperative-postoperative value) in the arterial oxygen tension/fraction of the inspired oxygen ratio (ΔPO2/FiO2;) and ΔPaCO2, and lung expansion completeness on a 24 h postoperative chest radiograph (CXR-score, 2: full or 1: incomplete). RESULTS Intergroup comparisons (NPV vs. PPV) showed no differences in demographic and pulmonary function. NPV could be accomplished in all instances with no conversion to general anesthesia with intubation. In the LVRS group, NPV improved ΔPO2/FiO2 (9.3 ± 16 vs. 25.3 ± 30.5, p = 0.027) and ΔPaCO2 (-2.2 ± 3.15 mmHg vs. 0.03 ± 0.18 mmHg, p = 0.008) with no difference in the CXR score, whereas in the wedge group, both ΔPO2/FiO2 (3.1 ± 8.2 vs. 9.9 ± 13.8, p = 0.035) and the CXR score (1.9 ± 0.3 vs. 1.6 ± 0.5, p = 0.04) were better in the NPV subgroup. There was no mortality and no intergroup difference in morbidity. CONCLUSIONS In this retrospective study, NITS with adjuvant transthoracic NPV resulted in better 24 h oxygenation measures than PPV in both the LVRS and wedge groups, and in better lung expansion according to the CXR score in the wedge group.
Collapse
Affiliation(s)
- Riccardo Taje
- Department of Thoracic Surgery, Policlinico Tor Vergata University, V.le Oxford 81, 00133 Rome, Italy
| | - Eleonora Fabbi
- Department of Anesthesia and Intensive Care, Policlinico Tor Vergata University, V.le Oxford 81, 00133 Rome, Italy
| | - Roberto Sorge
- Department of Biostatistics, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Stefano Elia
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy
| | - Mario Dauri
- Department of Anesthesia and Intensive Care, Policlinico Tor Vergata University, V.le Oxford 81, 00133 Rome, Italy
| | - Eugenio Pompeo
- Department of Thoracic Surgery, Policlinico Tor Vergata University, V.le Oxford 81, 00133 Rome, Italy
| |
Collapse
|
11
|
Nieman G, Kollisch-Singule M, Ramcharran H, Satalin J, Blair S, Gatto LA, Andrews P, Ghosh A, Kaczka DW, Gaver D, Bates J, Habashi NM. Unshrinking the baby lung to calm the VILI vortex. Crit Care 2022; 26:242. [PMID: 35934707 PMCID: PMC9357329 DOI: 10.1186/s13054-022-04105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
A hallmark of ARDS is progressive shrinking of the ‘baby lung,’ now referred to as the ventilator-induced lung injury (VILI) ‘vortex.’ Reducing the risk of the VILI vortex is the goal of current ventilation strategies; unfortunately, this goal has not been achieved nor has mortality been reduced. However, the temporal aspects of a mechanical breath have not been considered. A brief expiration prevents alveolar collapse, and an extended inspiration can recruit the atelectatic lung over hours. Time-controlled adaptive ventilation (TCAV) is a novel ventilator approach to achieve these goals, since it considers many of the temporal aspects of dynamic lung mechanics.
Collapse
Affiliation(s)
- Gary Nieman
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Michaela Kollisch-Singule
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Harry Ramcharran
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA.
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Penny Andrews
- Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Auyon Ghosh
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - David W Kaczka
- Departments of Anesthesia, Biomedical Engineering, and Radiology, University of Iowa, Iowa City, IA, USA
| | - Donald Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Jason Bates
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Nader M Habashi
- Department of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
12
|
Andrews P, Shiber J, Madden M, Nieman GF, Camporota L, Habashi NM. Myths and Misconceptions of Airway Pressure Release Ventilation: Getting Past the Noise and on to the Signal. Front Physiol 2022; 13:928562. [PMID: 35957991 PMCID: PMC9358044 DOI: 10.3389/fphys.2022.928562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.
Collapse
Affiliation(s)
- Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, United States
| | - Maria Madden
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, United Kingdom
| | - Nader M. Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Miniaturization of Respiratory Measurement System in Artificial Ventilator for Small Animal Experiments to Reduce Dead Space and Its Application to Lung Elasticity Evaluation. SENSORS 2021; 21:s21155123. [PMID: 34372359 PMCID: PMC8347339 DOI: 10.3390/s21155123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
A respiratory measurement system composed of pressure and airflow sensors was introduced to precisely control the respiratory condition during animal experiments. The flow sensor was a hot-wire thermal airflow meter with a directional detection and airflow temperature change compensation function based on MEMS technology, and the pressure sensor was a commercially available one also produced by MEMS. The artificial dead space in the system was minimized to the value of 0.11 mL by integrating the two sensors on the same plate (26.0 mm × 15.0 mm). A balloon made of a silicone resin with a hardness of A30 was utilized as the simulated lung system and applied to the elasticity evaluation of the respiratory system in a living rat. The inside of the respiratory system was normally pressurized without damage, and we confirmed that the developed system was able to evaluate the elasticity of the lung tissue in the rat by using the pressure value obtained at the quasi-static conditions in the case of the ventilation in the animal experiments.
Collapse
|
14
|
Guérin C, Bayat S, Noury N, Cour M, Argaud L, Louis B, Terzi N. Regional lung viscoelastic properties in supine and prone position in a porcine model of acute respiratory distress syndrome. J Appl Physiol (1985) 2021; 131:15-25. [PMID: 33982595 DOI: 10.1152/japplphysiol.00104.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regional viscoelastic properties of thoracic tissues in acute respiratory distress syndrome (ARDS) and their change with position and positive end-expiratory pressure (PEEP) are unknown. In an experimental porcine ARDS, dorsal and ventral lung (R2,L and E2,L) and chest wall (R2,cw and E2,cw) viscoelastic resistive (R) and elastic (E) parameters were measured at 20, 15, 10, and 5 cmH2O PEEP in supine and prone position. E2 and R2 were obtained by fitting the decay of pressure after end-inspiratory occlusion to the equation: Pviscmax (t) =R2 e-t/τ2, where t is the length of occlusion and τ2 time constant. E2 was equal to R2/τ2. R2,cw and E2,cw were measured from esophageal, dorsal, and ventral pleural pressures. Global R2,L and E2,L were obtained from the global transpulmonary pressure (airway pressure-esophageal pressure), and regional R2,L and E2,L from the dorsal and ventral airway pressure-pleural pressure difference. Lung ventilation was measured by electrical impedance tomography (EIT). Global R2,cw and E2,cw did not change with PEEP or position. Global R2,L [median(Q1-Q3)] was 37.1 (11.0-65.1), 5.1 (4.3-5.5), 12.1 (8.4-19.5), and 41.0 (26.6-53.5) cmH2O/L/s in supine, and 15.3 (9.1-41.9), 7.9 (5.7-11.0), 8.0 (5.1-12.1), and 12.9 (6.4-19.4) cmH2O/L in prone from 20 to 5 cmH2O PEEP (P = 0.06 for PEEP and P = 0.06 for position). Dorsal R2,L significantly and positively correlated with the amount of collapse measured with EIT. Global and regional lung and chest wall viscoelastic parameters can be described by a simple rheological model. Regional E2 and R2 were uninfluenced by PEEP and position except for PEEP on dorsal E2,L and position on dorsal E2,cw.NEW & NOTEWORTHY In a porcine model of acute respiratory distress syndrome, data were successfully fitted to a rheological model of the nonlinear behavior of viscoelastic properties of lung and chest wall at different positive end-expiratory pressure (PEEP) in the supine and prone position. Prone position tended to decrease lung viscoelastic resistive component. PEEP had a significant effect on dorsal lung viscoelastic elastance. Finally, lung viscoelastic resistance correlated with the amount of lung collapse assessed by electrical impedance tomography.
Collapse
Affiliation(s)
- Claude Guérin
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Lyon, France.,Université de Lyon, Lyon, France.,Laboratoire d'explorations fonctionnelles respiratoires, CHU Grenoble-Alpes, Grenoble, France
| | - Sam Bayat
- Laboratoire d'explorations fonctionnelles respiratoires, CHU Grenoble-Alpes, Grenoble, France.,INSERM UA7 STROBE, Grenoble, France.,Université de Grenoble, Grenoble, France
| | | | - Martin Cour
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Lyon, France.,Université de Lyon, Lyon, France
| | - Laurent Argaud
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Lyon, France.,Université de Lyon, Lyon, France
| | - Bruno Louis
- Laboratoire d'explorations fonctionnelles respiratoires, CHU Grenoble-Alpes, Grenoble, France
| | - Nicolas Terzi
- Université de Grenoble, Grenoble, France.,Médecine intensive-Réanimation, CHU Grenoble-Alpes, Grenoble, France.,INSERM U1042, Grenoble, France
| |
Collapse
|
15
|
Transcriptome-Wide Gene Expression in a Murine Model of Ventilator-Induced Lung Injury. DISEASE MARKERS 2021; 2021:5535890. [PMID: 33927789 PMCID: PMC8049808 DOI: 10.1155/2021/5535890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022]
Abstract
Background Mechanical ventilation could lead to ventilator-induced lung injury (VILI), but its underlying pathogenesis remains largely unknown. In this study, we aimed to determine the genes which were highly correlated with VILI as well as their expressions and interactions by analyzing the differentially expressed genes (DEGs) between the VILI samples and controls. Methods GSE11434 was downloaded from the gene expression omnibus (GEO) database, and DEGs were identified with GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using DAVID. Next, we used the STRING tool to construct protein-protein interaction (PPI) network of the DEGs. Then, the hub genes and related modules were identified with the Cytoscape plugins: cytoHubba and MCODE. qRT-PCR was further used to validate the results in the GSE11434 dataset. We also applied gene set enrichment analysis (GSEA) to discern the gene sets that had a significant difference between the VILI group and the control. Hub genes were also subjected to analyses by CyTargetLinker and NetworkAnalyst to predict associated miRNAs and transcription factors (TFs). Besides, we used CIBERSORT to detect the contributions of different types of immune cells in lung tissues of mice in the VILI group. By using DrugBank, small molecular compounds that could potentially interact with hub genes were identified. Results A total of 141 DEGs between the VILI group and the control were identified in GSE11434. Then, seven hub genes were identified and were validated by using qRT-PCR. Those seven hub genes were largely enriched in TLR and JAK-STAT signaling pathways. GSEA showed that VILI-associated genes were also enriched in NOD, antigen presentation, and chemokine pathways. We predicted the miRNAs and TFs associated with hub genes and constructed miRNA-TF-gene regulatory network. An analysis with CIBERSORT showed that the proportion of M0 macrophages and activated mast cells was higher in the VILI group than in the control. Small molecules, like nadroparin and siltuximab, could act as potential drugs for VILI. Conclusion In sum, a number of hub genes associated with VILI were identified and could provide novel insights into the pathogenesis of VILI and potential targets for its treatment.
Collapse
|
16
|
Fardin L, Broche L, Lovric G, Mittone A, Stephanov O, Larsson A, Bravin A, Bayat S. Imaging atelectrauma in Ventilator-Induced Lung Injury using 4D X-ray microscopy. Sci Rep 2021; 11:4236. [PMID: 33608569 PMCID: PMC7895928 DOI: 10.1038/s41598-020-77300-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanical ventilation can damage the lungs, a condition called Ventilator-Induced Lung Injury (VILI). However, the mechanisms leading to VILI at the microscopic scale remain poorly understood. Here we investigated the within-tidal dynamics of cyclic recruitment/derecruitment (R/D) using synchrotron radiation phase-contrast imaging (PCI), and the relation between R/D and cell infiltration, in a model of Acute Respiratory Distress Syndrome in 6 anaesthetized and mechanically ventilated New-Zealand White rabbits. Dynamic PCI was performed at 22.6 µm voxel size, under protective mechanical ventilation [tidal volume: 6 ml/kg; positive end-expiratory pressure (PEEP): 5 cmH2O]. Videos and quantitative maps of within-tidal R/D showed that injury propagated outwards from non-aerated regions towards adjacent regions where cyclic R/D was present. R/D of peripheral airspaces was both pressure and time-dependent, occurring throughout the respiratory cycle with significant scatter of opening/closing pressures. There was a significant association between R/D and regional lung cellular infiltration (p = 0.04) suggesting that tidal R/D of the lung parenchyma may contribute to regional lung inflammation or capillary-alveolar barrier dysfunction and to the progression of lung injury. PEEP may not fully mitigate this phenomenon even at high levels. Ventilation strategies utilizing the time-dependence of R/D may be helpful in reducing R/D and associated injury.
Collapse
Affiliation(s)
- Luca Fardin
- European Synchrotron Radiation Facility, Grenoble, France.,Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Synchrotron Radiation for Biomedicine Laboratory (STROBE, INSERM UA7), Grenoble, France
| | - Ludovic Broche
- European Synchrotron Radiation Facility, Grenoble, France
| | - Goran Lovric
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland.,Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Olivier Stephanov
- Department of Pathology, Grenoble University Hospital, Grenoble, France
| | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, France.,Synchrotron Radiation for Biomedicine Laboratory (STROBE, INSERM UA7), Grenoble, France
| | - Sam Bayat
- Synchrotron Radiation for Biomedicine Laboratory (STROBE, INSERM UA7), Grenoble, France. .,Department of Pulmonology and Physiology, Grenoble University Hospital, Bd. Du Maquis du Grésivaudan, 38700, La Tronche, France.
| |
Collapse
|
17
|
Nieman GF, Al-Khalisy H, Kollisch-Singule M, Satalin J, Blair S, Trikha G, Andrews P, Madden M, Gatto LA, Habashi NM. A Physiologically Informed Strategy to Effectively Open, Stabilize, and Protect the Acutely Injured Lung. Front Physiol 2020; 11:227. [PMID: 32265734 PMCID: PMC7096584 DOI: 10.3389/fphys.2020.00227] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) causes a heterogeneous lung injury and remains a serious medical problem, with one of the only treatments being supportive care in the form of mechanical ventilation. It is very difficult, however, to mechanically ventilate the heterogeneously damaged lung without causing secondary ventilator-induced lung injury (VILI). The acutely injured lung becomes time and pressure dependent, meaning that it takes more time and pressure to open the lung, and it recollapses more quickly and at higher pressure. Current protective ventilation strategies, ARDSnet low tidal volume (LVt) and the open lung approach (OLA), have been unsuccessful at further reducing ARDS mortality. We postulate that this is because the LVt strategy is constrained to ventilating a lung with a heterogeneous mix of normal and focalized injured tissue, and the OLA, although designed to fully open and stabilize the lung, is often unsuccessful at doing so. In this review we analyzed the pathophysiology of ARDS that renders the lung susceptible to VILI. We also analyzed the alterations in alveolar and alveolar duct mechanics that occur in the acutely injured lung and discussed how these alterations are a key mechanism driving VILI. Our analysis suggests that the time component of each mechanical breath, at both inspiration and expiration, is critical to normalize alveolar mechanics and protect the lung from VILI. Animal studies and a meta-analysis have suggested that the time-controlled adaptive ventilation (TCAV) method, using the airway pressure release ventilation mode, eliminates the constraints of ventilating a lung with heterogeneous injury, since it is highly effective at opening and stabilizing the time- and pressure-dependent lung. In animal studies it has been shown that by “casting open” the acutely injured lung with TCAV we can (1) reestablish normal expiratory lung volume as assessed by direct observation of subpleural alveoli; (2) return normal parenchymal microanatomical structural support, known as alveolar interdependence and parenchymal tethering, as assessed by morphometric analysis of lung histology; (3) facilitate regeneration of normal surfactant function measured as increases in surfactant proteins A and B; and (4) significantly increase lung compliance, which reduces the pathologic impact of driving pressure and mechanical power at any given tidal volume.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hassan Al-Khalisy
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | | | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Girish Trikha
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Penny Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria Madden
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Biological Sciences, SUNY Cortland, Cortland, NY, United States
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Nieman GF, Gatto LA, Andrews P, Satalin J, Camporota L, Daxon B, Blair SJ, Al-Khalisy H, Madden M, Kollisch-Singule M, Aiash H, Habashi NM. Prevention and treatment of acute lung injury with time-controlled adaptive ventilation: physiologically informed modification of airway pressure release ventilation. Ann Intensive Care 2020; 10:3. [PMID: 31907704 PMCID: PMC6944723 DOI: 10.1186/s13613-019-0619-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Mortality in acute respiratory distress syndrome (ARDS) remains unacceptably high at approximately 39%. One of the only treatments is supportive: mechanical ventilation. However, improperly set mechanical ventilation can further increase the risk of death in patients with ARDS. Recent studies suggest that ventilation-induced lung injury (VILI) is caused by exaggerated regional lung strain, particularly in areas of alveolar instability subject to tidal recruitment/derecruitment and stress-multiplication. Thus, it is reasonable to expect that if a ventilation strategy can maintain stable lung inflation and homogeneity, regional dynamic strain would be reduced and VILI attenuated. A time-controlled adaptive ventilation (TCAV) method was developed to minimize dynamic alveolar strain by adjusting the delivered breath according to the mechanical characteristics of the lung. The goal of this review is to describe how the TCAV method impacts pathophysiology and protects lungs with, or at high risk of, acute lung injury. We present work from our group and others that identifies novel mechanisms of VILI in the alveolar microenvironment and demonstrates that the TCAV method can reduce VILI in translational animal ARDS models and mortality in surgical/trauma patients. Our TCAV method utilizes the airway pressure release ventilation (APRV) mode and is based on opening and collapsing time constants, which reflect the viscoelastic properties of the terminal airspaces. Time-controlled adaptive ventilation uses inspiratory and expiratory time to (1) gradually “nudge” alveoli and alveolar ducts open with an extended inspiratory duration and (2) prevent alveolar collapse using a brief (sub-second) expiratory duration that does not allow time for alveolar collapse. The new paradigm in TCAV is configuring each breath guided by the previous one, which achieves real-time titration of ventilator settings and minimizes instability induced tissue damage. This novel methodology changes the current approach to mechanical ventilation, from arbitrary to personalized and adaptive. The outcome of this approach is an open and stable lung with reduced regional strain and greater lung protection.
Collapse
Affiliation(s)
- Gary F Nieman
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Louis A Gatto
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Penny Andrews
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| | - Joshua Satalin
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.
| | - Luigi Camporota
- Department of Critical Care, Guy's and St, Thomas' NHS Foundation Trust, Westminster Bridge Rd, London, SE1 7EH, UK
| | - Benjamin Daxon
- Dept of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Sarah J Blair
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Hassan Al-Khalisy
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Maria Madden
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| | | | - Hani Aiash
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.,Department of Clinical Perfusion, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Nader M Habashi
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| |
Collapse
|
19
|
Hindman BJ, Dexter F. Anesthetic Management of Emergency Endovascular Thrombectomy for Acute Ischemic Stroke, Part 2: Integrating and Applying Observational Reports and Randomized Clinical Trials. Anesth Analg 2019; 128:706-717. [PMID: 30883416 DOI: 10.1213/ane.0000000000004045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The 2018 American Heart Association stroke care guidelines consider endovascular thrombectomy to be the standard of care for patients who have acute ischemic stroke in the anterior circulation when arterial puncture can be made: (1) within 6 h of symptom onset; or (2) within 6-24 h of symptom onset when specific eligibility criteria are satisfied. The aim of this 2-part review is to provide practical perspective on the clinical literature regarding anesthesia care of endovascular thrombectomy patients. In the preceding companion article (part 1), the rationale for rapid workflow and maintenance of blood pressure before reperfusion were reviewed. Also in part 1, the key patient and procedural factors determining endovascular thrombectomy effectiveness were identified. In this article (part 2), the observational literature regarding anesthesia for endovascular thrombectomy is summarized briefly, largely to identify its numerous biases, but also to develop hypotheses regarding sedation versus general anesthesia pertaining to workflow, hemodynamic management, and intra- and post-endovascular thrombectomy adverse events. These hypotheses underlie the conduct and outcome measures of 3 recent randomized clinical trials of sedation versus general anesthesia for endovascular thrombectomy. A meta-analysis of functional outcomes from these 3 trials show, when managed according to trial protocols, sedation and general anesthesia result in outcomes that are not significantly different. Details regarding anesthesia and hemodynamic management from these 3 trials are provided. This article concludes with a pragmatic approach to real-time anesthesia decision-making (sedation versus general anesthesia) and the goals and methods of acute phase anesthesia management of endovascular thrombectomy patients.
Collapse
Affiliation(s)
- Bradley J Hindman
- From the Department of Anesthesia, The University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
20
|
Morton SE, Knopp JL, Chase JG, Docherty P, Howe SL, Möller K, Shaw GM, Tawhai M. Optimising mechanical ventilation through model-based methods and automation. ANNUAL REVIEWS IN CONTROL 2019; 48:369-382. [PMID: 36911536 PMCID: PMC9985488 DOI: 10.1016/j.arcontrol.2019.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/09/2019] [Accepted: 05/01/2019] [Indexed: 06/11/2023]
Abstract
Mechanical ventilation (MV) is a core life-support therapy for patients suffering from respiratory failure or acute respiratory distress syndrome (ARDS). Respiratory failure is a secondary outcome of a range of injuries and diseases, and results in almost half of all intensive care unit (ICU) patients receiving some form of MV. Funding the increasing demand for ICU is a major issue and MV, in particular, can double the cost per day due to significant patient variability, over-sedation, and the large amount of clinician time required for patient management. Reducing cost in this area requires both a decrease in the average duration of MV by improving care, and a reduction in clinical workload. Both could be achieved by safely automating all or part of MV care via model-based dynamic systems modelling and control methods are ideally suited to address these problems. This paper presents common lung models, and provides a vision for a more automated future and explores predictive capacity of some current models. This vision includes the use of model-based methods to gain real-time insight to patient condition, improve safety through the forward prediction of outcomes to changes in MV, and develop virtual patients for in-silico design and testing of clinical protocols. Finally, the use of dynamic systems models and system identification to guide therapy for improved personalised control of oxygenation and MV therapy in the ICU will be considered. Such methods are a major part of the future of medicine, which includes greater personalisation and predictive capacity to both optimise care and reduce costs. This review thus presents the state of the art in how dynamic systems and control methods can be applied to transform this core area of ICU medicine.
Collapse
Affiliation(s)
- Sophie E Morton
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Jennifer L Knopp
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Paul Docherty
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Sarah L Howe
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Knut Möller
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Knudsen L, Lopez-Rodriguez E, Berndt L, Steffen L, Ruppert C, Bates JHT, Ochs M, Smith BJ. Alveolar Micromechanics in Bleomycin-induced Lung Injury. Am J Respir Cell Mol Biol 2018; 59:757-769. [PMID: 30095988 PMCID: PMC6293074 DOI: 10.1165/rcmb.2018-0044oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Lung injury results in intratidal alveolar recruitment and derecruitment and alveolar collapse, creating stress concentrators that increase strain and aggravate injury. In this work, we sought to describe alveolar micromechanics during mechanical ventilation in bleomycin-induced lung injury and surfactant replacement therapy. Structure and function were assessed in rats 1 day and 3 days after intratracheal bleomycin instillation and after surfactant replacement therapy. Pulmonary system mechanics were measured during ventilation with positive end-expiratory pressures (PEEPs) between 1 and 10 cm H2O, followed by perfusion fixation at end-expiratory pressure at airway opening (Pao) values of 1, 5, 10, and 20 cm H2O for quantitative analyses of lung structure. Lung structure and function were used to parameterize a physiologically based, multicompartment computational model of alveolar micromechanics. In healthy controls, the numbers of open alveoli remained stable in a range of Pao = 1-20 cm H2O, whereas bleomycin-challenged lungs demonstrated progressive alveolar derecruitment with Pao < 10 cm H2O. At Day 3, ∼40% of the alveoli remained closed at high Pao, and alveolar size heterogeneity increased. Simulations of injured lungs predicted that alveolar recruitment pressures were much greater than the derecruitment pressures, so that minimal intratidal recruitment and derecruitment occurred during mechanical ventilation with a tidal volume of 10 ml/kg body weight over a range of PEEPs. However, the simulations also predicted a dramatic increase in alveolar strain with injury that we attribute to alveolar interdependence. These findings suggest that in progressive lung injury, alveolar collapse with increased distension of patent (open) alveoli dominates alveolar micromechanics. PEEP and surfactant substitution reduce alveolar collapse and dynamic strain but increase static strain.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, and
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL) Hannover Medical School, Hannover, Germany
- REBIRTH, Cluster of Excellence, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, and
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL) Hannover Medical School, Hannover, Germany
- REBIRTH, Cluster of Excellence, Hannover, Germany
| | | | | | - Clemens Ruppert
- Department of Internal Medicine, and
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, Giessen, Germany
| | | | - Matthias Ochs
- Institute of Functional and Applied Anatomy, and
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL) Hannover Medical School, Hannover, Germany
- REBIRTH, Cluster of Excellence, Hannover, Germany
| | - Bradford J. Smith
- Department of Bioengineering, University of Colorado Denver, Denver, Colorado
| |
Collapse
|
22
|
Satalin J, Habashi NM, Nieman GF. Never give the lung the opportunity to collapse. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2018. [DOI: 10.1016/j.tacc.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Preemptive Mechanical Ventilation Based on Dynamic Physiology in the Alveolar Microenvironment: Novel Considerations of Time-Dependent Properties of the Respiratory System. J Trauma Acute Care Surg 2018; 85:1081-1091. [PMID: 30124627 DOI: 10.1097/ta.0000000000002050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the current treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword; if set properly, it can significantly reduce ARDS associated mortality but if set improperly it can have unintended consequences causing a secondary ventilator induced lung injury (VILI). The hallmark of ARDS pathology is a heterogeneous lung injury, which predisposes the lung to a secondary VILI. The current standard of care approach is to wait until ARDS is well established and then apply a low tidal volume (LVt) strategy to avoid over-distending the remaining normal lung. However, even with the use of LVt strategy, the mortality of ARDS remains unacceptably high at ~40%. In this review, we analyze the lung pathophysiology associated with ARDS that renders the lung highly vulnerable to a secondary VILI. The current standard of care LVt strategy is critiqued as well as new strategies used in combination with LVt to protect the lung. Using the current understanding of alveolar mechanics (i.e. the dynamic change in alveolar size and shape with tidal ventilation) we provide a rationale for why the current protective ventilation strategies have not further reduced ARDS mortality. New strategies of protective ventilation based on dynamic physiology in the micro-environment (i.e. alveoli and alveolar ducts) are discussed. Current evidence suggests that alveolar inflation and deflation is viscoelastic in nature, with a fast and slow phase in both alveolar recruitment and collapse. Using this knowledge, a ventilation strategy with a prolonged time at inspiration would recruit alveoli and a brief release time at expiration would prevent alveolar collapse, converting heterogeneous to homogeneous lung inflation significantly reducing ARDS incidence and mortality.
Collapse
|
24
|
Dorado JH, Accoce M, Plotnikow G. Chest wall effect on the monitoring of respiratory mechanics in acute respiratory distress syndrome. Rev Bras Ter Intensiva 2018; 30:208-218. [PMID: 29995087 PMCID: PMC6031425 DOI: 10.5935/0103-507x.20180038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/14/2017] [Indexed: 11/23/2022] Open
Abstract
The respiratory system mechanics depend on the characteristics of the lung and
chest wall and their interaction. In patients with acute respiratory distress
syndrome under mechanical ventilation, the monitoring of airway plateau pressure
is fundamental given its prognostic value and its capacity to assess pulmonary
stress. However, its validity can be affected by changes in mechanical
characteristics of the chest wall, and it provides no data to correctly titrate
positive end-expiratory pressure by restoring lung volume. The chest wall effect
on respiratory mechanics in acute respiratory distress syndrome has not been
completely described, and it has likely been overestimated, which may lead to
erroneous decision making. The load imposed by the chest wall is negligible when
the respiratory system is insufflated with positive end-expiratory pressure.
Under dynamic conditions, moving this structure demands a pressure change whose
magnitude is related to its mechanical characteristics, and this load remains
constant regardless of the volume from which it is insufflated. Thus, changes in
airway pressure reflect changes in the lung mechanical conditions. Advanced
monitoring could be reserved for patients with increased intra-abdominal
pressure in whom a protective mechanical ventilation strategy cannot be
implemented. The estimates of alveolar recruitment based on respiratory system
mechanics could reflect differences in chest wall response to insufflation and
not actual alveolar recruitment.
Collapse
Affiliation(s)
- Javier Hernán Dorado
- Capítulo de Kinesiología Intensivista, Sociedad Argentina de Terapia Intensiva - Buenos Aires, Argentina.,Sanatorio Anchorena - Buenos Aires, Argentina.,Hospital General de Agudos Carlos G. Durand - Buenos Aires, Argentina
| | - Matías Accoce
- Capítulo de Kinesiología Intensivista, Sociedad Argentina de Terapia Intensiva - Buenos Aires, Argentina.,Hospital de Quemados - Buenos Aires, Argentina.,Sanatorio Anchorena San Martín - Buenos Aires, Argentina
| | - Gustavo Plotnikow
- Capítulo de Kinesiología Intensivista, Sociedad Argentina de Terapia Intensiva - Buenos Aires, Argentina.,Sanatorio Anchorena - Buenos Aires, Argentina
| |
Collapse
|
25
|
Nieman GF, Andrews P, Satalin J, Wilcox K, Kollisch-Singule M, Madden M, Aiash H, Blair SJ, Gatto LA, Habashi NM. Acute lung injury: how to stabilize a broken lung. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:136. [PMID: 29793554 PMCID: PMC5968707 DOI: 10.1186/s13054-018-2051-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathophysiology of acute respiratory distress syndrome (ARDS) results in heterogeneous lung collapse, edema-flooded airways and unstable alveoli. These pathologic alterations in alveolar mechanics (i.e. dynamic change in alveolar size and shape with each breath) predispose the lung to secondary ventilator-induced lung injury (VILI). It is our viewpoint that the acutely injured lung can be recruited and stabilized with a mechanical breath until it heals, much like casting a broken bone until it mends. If the lung can be "casted" with a mechanical breath, VILI could be prevented and ARDS incidence significantly reduced.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Penny Andrews
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Kailyn Wilcox
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Michaela Kollisch-Singule
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Maria Madden
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Hani Aiash
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Sarah J Blair
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.,Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nader M Habashi
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| |
Collapse
|
26
|
Nieman GF, Satalin J, Kollisch-Singule M, Andrews P, Aiash H, Habashi NM, Gatto LA. Reply to Drs. Monjezi and Jamaati: Dynamic alveolar mechanics are more than a soap bubble on a capillary tube. J Appl Physiol (1985) 2018; 124:525. [DOI: 10.1152/japplphysiol.00845.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Penny Andrews
- R Adams Shock Cowley Trauma Center, Baltimore, Maryland
| | - Hani Aiash
- SUNY Upstate Medical University, Syracuse, New York
- Suez Canal University, Egypt
| | | | - Louis A. Gatto
- SUNY Upstate Medical University, Syracuse, New York
- SUNY Cortland, Cortland, New York
| |
Collapse
|
27
|
Affiliation(s)
- Mojdeh Monjezi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
28
|
Moore S, Weiss B, Pascual JL, Kaplan LJ. Management of Acute Respiratory Failure in the Patient with Sepsis or Septic Shock. Surg Infect (Larchmt) 2018; 19:191-201. [PMID: 29360422 DOI: 10.1089/sur.2017.297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sepsis and septic shock are each commonly accompanied by acute respiratory failure and the need for invasive as well as non-invasive ventilation throughout a patient's intensive care unit course. We explore the underpinnings of acute respiratory failure of pulmonary as well as non-pulmonary origin in the context of invasive and non-invasive management approaches. Both pharmacologic and non-pharmacologic adjuncts to ventilatory and oxygenation support are highlighted as well. Finally, rescue modalities are positioned within the intensivist's armamentarium for global care of support of the critically ill or injured patient with sepsis or septic shock.
Collapse
Affiliation(s)
- Sarah Moore
- 1 Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Brian Weiss
- 2 Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Jose L Pascual
- 1 Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Lewis J Kaplan
- 1 Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.,3 Corporal Michael J Crescenz VA Medical Center , Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Bauer K, Nof E, Sznitman J. Revisiting high-frequency oscillatory ventilation in vitro and in silico in neonatal conductive airways. Clin Biomech (Bristol, Avon) 2017; 66:50-59. [PMID: 29217332 PMCID: PMC5860751 DOI: 10.1016/j.clinbiomech.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND High frequency oscillatory ventilation is often used for lung support in premature neonates suffering from respiratory distress syndrome. Despite its broad use in neonatal intensive care units, there are to date no accepted protocols for the choice of appropriate ventilation parameter settings. In this context, the underlying mass transport mechanisms are still not fully understood. METHODS We revisit the question of flow phenomena under conventional mechanical ventilation and high frequency oscillatory ventilation in an anatomically-inspired model of neonatal conductive airways spanning the first few airway generations. We first perform at true scale in vitro particle image velocimetry measurements of respiratory flow patterns. Next, we explore in silico convective mass transport in computational fluid dynamics simulations by implementing Lagrangian tracking of tracer boli, where the ventilatory flow rate is fixed. FINDINGS Particle image velocimetry measurements at eight representative phase angles of a breathing cycle reveal similar flow patterns at peak velocity and during deceleration phases for conventional mechanical ventilation and high frequency oscillatory ventilation. Characteristic differences occur during the acceleration and flow reversal phases. Net displacements of the tracer particles rapidly reach asymptotic behaviour over cumulative breathing cycles and suggest a linear relation between tidal volume and convective mass transport. INTERPRETATION The linear relation observed suggests that differences in flow characteristics between conventional mechanical ventilation and high frequency oscillatory ventilation conditions do not substantially influence convective mass transport mechanisms. Lower tidal volumes thus cannot be compensated straightforwardly by selecting higher frequencies to maintain similar ventilation efficiencies.
Collapse
Affiliation(s)
- Katrin Bauer
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, 09599 Freiberg, Germany,
| | - Eliram Nof
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel, ,
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel, ,
| |
Collapse
|
30
|
Kollisch-Singule MC, Jain SV, Andrews PL, Satalin J, Gatto LA, Villar J, De Backer D, Gattinoni L, Nieman GF, Habashi NM. Looking beyond macroventilatory parameters and rethinking ventilator-induced lung injury. J Appl Physiol (1985) 2017; 124:1214-1218. [PMID: 29146685 DOI: 10.1152/japplphysiol.00412.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Sumeet V Jain
- Department of Surgery, SUNY Upstate Medical University , Syracuse, New York
| | - Penny L Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine , Baltimore, Maryland
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University , Syracuse, New York
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University , Syracuse, New York.,Department of Biological Sciences, SUNY Cortland, Cortland, New York
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain.,Research Unit, Hospital Universitario Dr. Negrin , Las Palmas de Gran Canaria , Spain
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles , Brussels , Belgium
| | - Luciano Gattinoni
- Department of Anesthesia and Intensive Care, Georg-August-Universität, Göttingen , Germany
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University , Syracuse, New York
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|