1
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
2
|
Wyszogrodzka-Gaweł G, Dorożyński P, Giovagnoli S, Strzempek W, Pesta E, Węglarz WP, Gil B, Menaszek E, Kulinowski P. An Inhalable Theranostic System for Local Tuberculosis Treatment Containing an Isoniazid Loaded Metal Organic Framework Fe-MIL-101-NH2-From Raw MOF to Drug Delivery System. Pharmaceutics 2019; 11:pharmaceutics11120687. [PMID: 31861138 PMCID: PMC6969914 DOI: 10.3390/pharmaceutics11120687] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
The theranostic approach to local tuberculosis treatment allows drug delivery and imaging of the lungs for a better control and personalization of antibiotic therapy. Metal-organic framework (MOF) Fe-MIL-101-NH2 nanoparticles were loaded with isoniazid. To optimize their functionality a 23 factorial design of spray-drying with poly(lactide-co-glycolide) and leucine was employed. Powder aerodynamic properties were assessed using a twin stage impinger based on the dose emitted and the fine particle fraction. Magnetic resonance imaging (MRI) contrast capabilities were tested on porous lung tissue phantom and ex vivo rat lungs. Cell viability and uptake studies were conducted on murine macrophages RAW 246.9. The final product showed good aerodynamic properties, modified drug release, easier uptake by macrophages in relation to raw isoniazid-MOF, and MRI contrast capabilities. Starting from raw MOF, a fully functional inhalable theranostic system with a potential application in personalized tuberculosis pulmonary therapy was developed.
Collapse
Affiliation(s)
- Gabriela Wyszogrodzka-Gaweł
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland
- Correspondence:
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy;
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Edyta Pesta
- Department of Pharmaceutical Analysis, Research Network Łukasiewicz—Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland;
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Elżbieta Menaszek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Piotr Kulinowski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland;
| |
Collapse
|
3
|
Abstract
The pulmonary circulation carries deoxygenated blood from the systemic veins through the pulmonary arteries to be oxygenated in the capillaries that line the walls of the pulmonary alveoli. The pulmonary circulation carries the cardiac output with a relatively low driving pressure, and so differs considerably in structure and function from the systemic circulation to maintain a low-resistance vascular system. The pulmonary circulation is often considered to be a quasi-static system in both experimental and computational studies of pulmonary perfusion and its matching to ventilation (air flow) for exchange. However, the system is highly dynamic, with cardiac output and regional perfusion changing with posture, exercise, and over time. Here we review this dynamic system, with a focus on understanding the physiology of pulmonary vascular dynamics across spatial and temporal scales, and the changes to these dynamics that are reflective of disease. © 2019 American Physiological Society. Compr Physiol 9:1081-1100, 2019.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Rankine LJ, Wang Z, Driehuys B, Marks LB, Kelsey CR, Das SK. Correlation of Regional Lung Ventilation and Gas Transfer to Red Blood Cells: Implications for Functional-Avoidance Radiation Therapy Planning. Int J Radiat Oncol Biol Phys 2018; 101:1113-1122. [PMID: 29907488 PMCID: PMC6689416 DOI: 10.1016/j.ijrobp.2018.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/02/2018] [Accepted: 04/05/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the degree to which lung ventilation and gas exchange are regionally correlated, using the emerging technology of hyperpolarized (HP)-129Xe magnetic resonance imaging (MRI). METHODS AND MATERIALS Hyperpolarized-129Xe MRI studies were performed on 17 institutional review board-approved human subjects, including 13 healthy volunteers, 1 emphysema patient, and 3 non-small cell lung cancer patients imaged before and approximately 11 weeks after radiation therapy (RT). Subjects inhaled 1 L of HP-129Xe mixture, followed by the acquisition of interleaved ventilation and gas exchange images, from which maps were obtained of the relative HP-129Xe distribution in three states: (1) gaseous, in lung airspaces; (2) dissolved interstitially, in alveolar barrier tissue; and (3) transferred to red blood cells (RBCs), in the capillary vasculature. The relative spatial distributions of HP-129Xe in airspaces (regional ventilation) and RBCs (regional gas transfer) were compared. Further, we investigated the degree to which ventilation and RBC transfer images identified similar functional regions of interest (ROIs) suitable for functionally guided RT. For the RT patients, both ventilation and RBC functional images were used to calculate differences in the lung dose-function histogram and functional effective uniform dose. RESULTS The correlation of ventilation and RBC transfer was ρ = 0.39 ± 0.15 in healthy volunteers. For the RT patients, this correlation was ρ = 0.53 ± 0.02 before treatment and ρ = 0.39 ± 0.07 after treatment; for the emphysema patient it was ρ = 0.24. Comparing functional ROIs, ventilation and RBC transfer demonstrated poor spatial agreement: Dice similarity coefficient = 0.50 ± 0.07 and 0.26 ± 0.12 for the highest-33%- and highest-10%-function ROIs in healthy volunteers, and in RT patients (before treatment) these were 0.58 ± 0.04 and 0.40 ± 0.04. The average magnitude of the differences between RBC- and ventilation-derived functional effective uniform dose, fV20Gy, fV10Gy, and fV5Gy were 1.5 ± 1.4 Gy, 4.1% ± 3.8%, 5.0% ± 3.8%, and 5.3% ± 3.9%, respectively. CONCLUSION Ventilation may not be an effective surrogate for true regional lung function for all patients.
Collapse
Affiliation(s)
- Leith J Rankine
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina; Medical Physics Graduate Program, Duke University, Durham, North Carolina.
| | - Ziyi Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Bastiaan Driehuys
- Medical Physics Graduate Program, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina; Radiology, Duke University, Durham, North Carolina
| | - Lawrence B Marks
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Chris R Kelsey
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Shiva K Das
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Felloni P, Duhamel A, Faivre JB, Giordano J, Khung S, Deken V, Remy J, Remy-Jardin M. Regional Distribution of Pulmonary Blood Volume with Dual-Energy Computed Tomography: Results in 42 Subjects. Acad Radiol 2017; 24:1412-1421. [PMID: 28711443 DOI: 10.1016/j.acra.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
RATIONALE AND OBJECTIVES The noninvasive approach of lung perfusion generated from dual-energy computed tomography acquisitions has entered clinical practice. The purpose of this study was to analyze the regional distribution of iodine within distal portions of the pulmonary arterial bed on dual-source, dual-energy computed tomography examinations in a cohort of subjects without cardiopulmonary pathologies. MATERIALS AND METHODS The study population included 42 patients without cardiorespiratory disease, enabling quantitative and qualitative analysis of pulmonary blood volume after administration of a 40% contrast agent. Qualitative analysis was based on visual assessment. Quantitative analysis was obtained after semiautomatic division of each lung into 18 areas. RESULTS The iodine concentration did not significantly differ between the right (R) and left (L) lungs (P = .49), with a mean attenuation of 41.35 Hounsfield units (HU) and 41.14 HU, respectively. Three regional gradients of attenuation were observed between: (a) lung bases and apices (P < .001), linked to the conditions of examination (mean Δ: 6.23 in the R lung; 5.96 in the L lung); (b) posterior and anterior parts of the lung (P < .001) due to gravity (mean Δ: 11.92 in the R lung ; 15.93 in the L lung); and (c) medullary and cortical lung zones (P < .001) (mean Δ: 9.35 in the R lung ; 8.37 in the L lung). The intensity of dependent-nondependent (r = 0.42; P < .001) and corticomedullary (r = 0.58; P < .0001) gradients was correlated to the overall iodine concentration. CONCLUSION Distribution of pulmonary blood volume is influenced by physiological gradients and scanning conditions.
Collapse
|
6
|
Pusterla O, Bauman G, Bieri O. Three-dimensional oxygen-enhanced MRI of the human lung at 1.5T with ultra-fast balanced steady-state free precession. Magn Reson Med 2017; 79:246-255. [PMID: 28337782 DOI: 10.1002/mrm.26665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 11/12/2022]
Abstract
PURPOSE To assess the feasibility of 3D oxygen-enhanced (OE) MRI of the lung at 1.5T using multi-volumetric ultra-fast balanced steady-state free precession (ufSSFP) acquisitions. METHODS Isotropic imaging of the lung for OE-MRI was performed with an adapted 3D ufSSFP sequence using five breath-hold acquisitions ranging from functional residual capacity to tidal inspiration under both normoxic (room air) and hyperoxic (100% O2 ) gas conditions. For each O2 concentration, a sponge model (which captures the parenchymal signal intensity variation as a function of the lung volume) was fitted to the acquired multi-volumetric datasets after semiautomatic lung segmentation and deformable image registration. From the retrieved model parameters, 3D oxygen-enhancement maps were calculated. RESULTS For OE ufSSFP imaging, the maximum parenchymal signal is observed for flip angles around 23° under both normoxic and hyperoxic conditions. It is found that the sponge model accurately describes parenchymal signal at different breathing positions, thereby mitigating the confounding bias in the estimated oxygen enhancement from residual density modulations. From the model, an average lung oxygen enhancement of 7.0% ± 0.3% was found in the healthy volunteers, and the oxygen-enhancement maps indicate a ventral to dorsal gravitation-related gradient. CONCLUSION The study demonstrates the feasibility of whole-lung OE-MRI from multi-volumetric ufSSFP in healthy volunteers. Magn Reson Med 79:246-255, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Orso Pusterla
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Marinelli JP, Levin DL, Vassallo R, Carter RE, Hubmayr RD, Ehman RL, McGee KP. Quantitative assessment of lung stiffness in patients with interstitial lung disease using MR elastography. J Magn Reson Imaging 2017; 46:365-374. [PMID: 28117930 DOI: 10.1002/jmri.25579] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/21/2016] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To investigate the use of magnetic resonance elastography (MRE) in the quantitative assessment of pulmonary fibrosis by comparing quantitative shear stiffness measurements of lung parenchyma in patients diagnosed with fibrotic interstitial lung disease (ILD) and healthy controls. MATERIALS AND METHODS A 1.5T spin-echo, echo planar imaging MRE (SE-EPI MRE) pulse sequence was utilized to assess absolute lung shear stiffness in 15 patients with diagnosed ILD and in 11 healthy controls. Data were collected at residual volume (RV) and total lung capacity (TLC). Spirometry data were obtained immediately prior to scanning. To test for statistical significance between RV and TLC shear stiffness estimates a two-sample t-test was performed. To assess variability within individual subject shear stiffness estimates, the intraclass correlation coefficient (ICC) and Krippendorff's alpha were calculated. RESULTS Patients with ILD exhibited an average (±1 standard deviation) shear stiffness of 2.74 (±0.896) kPa at TLC and 1.32 (±0.300) kPa at RV. The corresponding values for healthy individuals were 1.33 (±0.195) kPa and 0.849 (±0.250) kPa, respectively. The difference in shear stiffness between RV and TLC was statistically significant (P < 0.001). At TLC, the ICC and alpha values were 0.909 and 0.887, respectively. At RV, the ICC and alpha values were 0.852 and 0.862, respectively. CONCLUSION In subjects with known fibrotic interstitial lung disease, parenchymal shear stiffness is increased when compared to normal controls at both RV and TLC, with TLC demonstrating the most significant difference. MRE-derived parenchymal shear stiffness is a promising new noninvasive imaging-based biomarker of interstitial lung disease. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:365-374.
Collapse
Affiliation(s)
| | - David L Levin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert Vassallo
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Rolf D Hubmayr
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kiaran P McGee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Le Roux PY, Siva S, Steinfort DP, Callahan J, Eu P, Irving LB, Hicks RJ, Hofman MS. Correlation of 68Ga Ventilation-Perfusion PET/CT with Pulmonary Function Test Indices for Assessing Lung Function. J Nucl Med 2015; 56:1718-23. [PMID: 26338892 DOI: 10.2967/jnumed.115.162586] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/13/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Pulmonary function tests (PFTs) are routinely used to assess lung function, but they do not provide information about regional pulmonary dysfunction. We aimed to assess correlation of quantitative ventilation-perfusion (V/Q) PET/CT with PFT indices. METHODS Thirty patients underwent V/Q PET/CT and PFT. Respiration-gated images were acquired after inhalation of (68)Ga-carbon nanoparticles and administration of (68)Ga-macroaggregated albumin. Functional volumes were calculated by dividing the volume of normal ventilated and perfused (%NVQ), unmatched and matched defects by the total lung volume. These functional volumes were correlated with forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and diffusing capacity for carbon monoxide (DLCO). RESULTS All functional volumes were significantly different in patients with chronic obstructive pulmonary disease (P < 0.05). FEV1/FVC and %NVQ had the highest correlation (r = 0.82). FEV1 was also best correlated with %NVQ (r = 0.64). DLCO was best correlated with the volume of unmatched defects (r = -0.55). Considering %NVQ only, a cutoff value of 90% correctly categorized 28 of 30 patients with or without significant pulmonary function impairment. CONCLUSION Our study demonstrates strong correlations between V/Q PET/CT functional volumes and PFT parameters. Because V/Q PET/CT is able to assess regional lung function, these data support the feasibility of its use in radiation therapy and preoperative planning and assessing pulmonary dysfunction in a variety of respiratory diseases.
Collapse
Affiliation(s)
- Pierre-Yves Le Roux
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia Department of Nuclear Medicine, Brest University Hospital, EA3878 (GETBO) IFR 148, Brest, France
| | - Shankar Siva
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia The University of Melbourne, Parkville, Australia; and
| | - Daniel P Steinfort
- The University of Melbourne, Parkville, Australia; and Respiratory Medicine, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Jason Callahan
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Peter Eu
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Lou B Irving
- The University of Melbourne, Parkville, Australia; and Respiratory Medicine, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Rodney J Hicks
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia The University of Melbourne, Parkville, Australia; and
| | - Michael S Hofman
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia The University of Melbourne, Parkville, Australia; and
| |
Collapse
|
9
|
Dubsky S, Fouras A. Imaging regional lung function: a critical tool for developing inhaled antimicrobial therapies. Adv Drug Deliv Rev 2015; 85:100-9. [PMID: 25819486 DOI: 10.1016/j.addr.2015.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022]
Abstract
Alterations in regional lung function due to respiratory infection have a significant effect on the deposition of inhaled treatments. This has consequences for treatment effectiveness and hence recovery of lung function. In order to advance our understanding of respiratory infection and inhaled treatment delivery, we must develop imaging techniques that can provide regional functional measurements of the lung. In this review, we explore the role of functional imaging for the assessment of respiratory infection and development of inhaled treatments. We describe established and emerging functional lung imaging methods. The effect of infection on lung function is described, and the link between regional disease, function, and inhaled treatments is discussed. The potential for lung function imaging to provide unique insights into the functional consequences of infection, and its treatment, is also discussed.
Collapse
Affiliation(s)
- Stephen Dubsky
- Department of Mechanical & Aerospace Engineering, Monash University, Victoria 3800, Australia.
| | - Andreas Fouras
- Department of Mechanical & Aerospace Engineering, Monash University, Victoria 3800, Australia.
| |
Collapse
|
10
|
Cleveland ZI, Virgincar RS, Qi Y, Robertson SH, Degan S, Driehuys B. 3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis. NMR IN BIOMEDICINE 2014; 27:1502-14. [PMID: 24816478 PMCID: PMC4229493 DOI: 10.1002/nbm.3127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 03/31/2014] [Indexed: 05/24/2023]
Abstract
A variety of pulmonary pathologies, in particular interstitial lung diseases, are characterized by thickening of the pulmonary blood-gas barrier, and this thickening results in reduced gas exchange. Such diffusive impairment is challenging to quantify spatially, because the distributions of the metabolically relevant gases (CO2 and O2) cannot be detected directly within the lungs. Hyperpolarized (HP) (129)Xe is a promising surrogate for these metabolic gases, because MR spectroscopy and imaging allow gaseous alveolar (129)Xe to be detected separately from (129)Xe dissolved in the red blood cells (RBCs) and the adjacent tissues, which comprise blood plasma and lung interstitium. Because (129)Xe reaches the RBCs by diffusing across the same barrier tissues (blood plasma and interstitium) as O2, barrier thickening will delay (129)Xe transit and, thus, reduce RBC-specific (129)Xe MR signal. Here we have exploited these properties to generate 3D, MR images of (129)Xe uptake by the RBCs in two groups of rats. In the experimental group, unilateral fibrotic injury was generated prior to imaging by instilling bleomycin into one lung. In the control group, a unilateral sham instillation of saline was performed. Uptake of (129)Xe by the RBCs, quantified as the fraction of RBC signal relative to total dissolved (129)Xe signal, was significantly reduced (P = 0.03) in the injured lungs of bleomycin-treated animals. In contrast, no significant difference (P = 0.56) was observed between the saline-treated and untreated lungs of control animals. Together, these results indicate that 3D MRI of HP (129)Xe dissolved in the pulmonary tissues can provide useful biomarkers of impaired diffusive gas exchange resulting from fibrotic thickening.
Collapse
Affiliation(s)
- Zackary I. Cleveland
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
| | - Rohan, S. Virgincar
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
| | - Scott H. Robertson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
- Graduate Program in Medical Physics; Duke University Medical Center, Durham, NC
| | - Simone Degan
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
- Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC
| | - Bastiaan Driehuys
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC
- Department of Biomedical Engineering, Duke University, Durham, NC
- Graduate Program in Medical Physics; Duke University Medical Center, Durham, NC
| |
Collapse
|
11
|
Jacob RE, Carson JP. Automated measurement of heterogeneity in CT images of healthy and diseased rat lungs using variogram analysis of an octree decomposition. BMC Med Imaging 2014; 14:1. [PMID: 24393332 PMCID: PMC3922839 DOI: 10.1186/1471-2342-14-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 12/18/2013] [Indexed: 12/23/2022] Open
Abstract
Background Assessing heterogeneity in lung images can be an important diagnosis tool. We present a novel and objective method for assessing lung damage in a rat model of emphysema. We combined a three-dimensional (3D) computer graphics method–octree decomposition–with a geostatistics-based approach for assessing spatial relationships–the variogram–to evaluate disease in 3D computed tomography (CT) image volumes. Methods Male, Sprague-Dawley rats were dosed intratracheally with saline (control), or with elastase dissolved in saline to either the whole lung (for mild, global disease) or a single lobe (for severe, local disease). Gated 3D micro-CT images were acquired on the lungs of all rats at end expiration. Images were masked, and octree decomposition was performed on the images to reduce the lungs to homogeneous blocks of 2 × 2 × 2, 4 × 4 × 4, and 8 × 8 × 8 voxels. To focus on lung parenchyma, small blocks were ignored because they primarily defined boundaries and vascular features, and the spatial variance between all pairs of the 8 × 8 × 8 blocks was calculated as the square of the difference of signal intensity. Variograms–graphs of distance vs. variance–were constructed, and results of a least-squares-fit were compared. The robustness of the approach was tested on images prepared with various filtering protocols. Statistical assessment of the similarity of the three control rats was made with a Kruskal-Wallis rank sum test. A Mann-Whitney-Wilcoxon rank sum test was used to measure statistical distinction between individuals. For comparison with the variogram results, the coefficient of variation and the emphysema index were also calculated for all rats. Results Variogram analysis showed that the control rats were statistically indistinct (p = 0.12), but there were significant differences between control, mild global disease, and severe local disease groups (p < 0.0001). A heterogeneity index was calculated to describe the difference of an individual variogram from the control average. This metric also showed clear separation between dose groups. The coefficient of variation and the emphysema index, on the other hand, did not separate groups. Conclusion These results suggest the octree decomposition and variogram analysis approach may be a rapid, non-subjective, and sensitive imaging-based biomarker for characterizing lung disease.
Collapse
Affiliation(s)
- Richard E Jacob
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd,, Richland, WA 99352, USA.
| | | |
Collapse
|
12
|
Mariappan YK, Glaser KJ, Levin DL, Vassallo R, Hubmayr RD, Mottram C, Ehman RL, McGee KP. Estimation of the absolute shear stiffness of human lung parenchyma using (1) H spin echo, echo planar MR elastography. J Magn Reson Imaging 2013; 40:1230-7. [PMID: 24390975 DOI: 10.1002/jmri.24479] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/17/2013] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To develop a rapid proton MR elastography (MRE) technique that can quantify the absolute shear stiffness of lung parenchyma, to investigate the ability to differentiate respiration-dependent stiffness variations of the lung, and to demonstrate clinical feasibility. MATERIALS AND METHODS A spin-echo echo planar imaging MRE sequence (SE-EPI MRE) with a very short echo time was developed and tested in a series of five healthy volunteers at three different lung volumes: (i) residual volume (RV), (ii) total lung capacity (TLC), (iii) and midway between RV and TLC (MID). At each volume, lung density was quantified using a MR-based density mapping sequence. For reference, data were acquired using the previously described spin-echo lung MRE sequence (SE-MRE). MRE data were also acquired in a patient with proven Idiopathic Pulmonary Fibrosis (IPF) to test clinical feasibility. RESULTS The SE-EPIMRE sequence reduced total acquisition time by a factor of 2 compared with the SE-MRE sequence. Lung parenchyma median shear stiffness for the 5 volunteers quantified with the SE-EPI MRE sequence was 0.9 kPa, 1.1 kPa, and 1.6 kPa at RV, MID, and TLC, respectively. The corresponding values obtained with the SE-MRE sequence were 0.9 kPa, 1.1 kPa, and 1.5 kPa. Absolute shear stiffness was also successfully measured in the IPF patient. CONCLUSION The results indicate that stiffness variations due to respiration could be measured with the SE-EPIMRE technique and were equivalent to values generated by the previously described SE-MRE approach. Preliminary data obtained from the patient demonstrate clinical feasibility.
Collapse
|
13
|
|