1
|
Xia YHW, Victor MH, Morais CCA, Costa ELV, Amato MBP. Esophageal balloon catheter system identification to improve respiratory effort time features and amplitude determination. Physiol Meas 2024; 45:015002. [PMID: 38086063 DOI: 10.1088/1361-6579/ad14aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Objective. Understanding a patient's respiratory effort and mechanics is essential for the provision of individualized care during mechanical ventilation. However, measurement of transpulmonary pressure (the difference between airway and pleural pressures) is not easily performed in practice. While airway pressures are available on most mechanical ventilators, pleural pressures are measured indirectly by an esophageal balloon catheter. In many cases, esophageal pressure readings take other phenomena into account and are not a reliable measure of pleural pressure.Approach.A system identification approach was applied to provide accurate pleural measures from esophageal pressure readings. First, we used a closed pressurized chamber to stimulate an esophageal balloon and model its dynamics. Second, we created a simplified version of an artificial lung and tried the model with different ventilation configurations. For validation, data from 11 patients (five male and six female) were used to estimate respiratory effort profile and patient mechanics.Main results.After correcting the dynamic response of the balloon catheter, the estimates of resistance and compliance and the corresponding respiratory effort waveform were improved when compared with the adjusted quantities in the test bench. The performance of the estimated model was evaluated using the respiratory pause/occlusion maneuver, demonstrating improved agreement between the airway and esophageal pressure waveforms when using the normalized mean squared error metric. Using the corrected muscle pressure waveform, we detected start and peak times 130 ± 50 ms earlier and a peak amplitude 2.04 ± 1.46 cmH2O higher than the corresponding estimates from esophageal catheter readings.Significance.Compensating the acquired measurements with system identification techniques makes the readings more accurate, possibly better portraying the patient's situation for individualization of ventilation therapy.
Collapse
Affiliation(s)
- Yu Hao Wang Xia
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Medical Electrical Devices Laboratory (LabMed), Electronics Engineering, Aeronautics Institute of Technology, Sao Jose dos Campos, SP, Brazil
| | - Marcus Henrique Victor
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Medical Electrical Devices Laboratory (LabMed), Electronics Engineering, Aeronautics Institute of Technology, Sao Jose dos Campos, SP, Brazil
| | - Caio César Araújo Morais
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo Leite Vieira Costa
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcelo Britto Passos Amato
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Cross TJ, Isautier JMJ, Kelley EF, Hubbard CD, Morris SJ, Smith JR, Duke JW. A Systematic Review of Methods Used to Determine the Work of Breathing during Exercise. Med Sci Sports Exerc 2023; 55:1672-1682. [PMID: 37126027 DOI: 10.1249/mss.0000000000003187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Measurement of the work of breathing (Wb) during exercise provides useful insights into the energetics and mechanics of the respiratory muscles across a wide range of minute ventilations. The methods and analytical procedures used to calculate the Wb during exercise have yet to be critically appraised in the literature. PURPOSE The aim of this systematic review was to evaluate the quality of methods used to measure the Wb during exercise in the available literature. METHODS We conducted an extensive search of three databases for studies that measured the Wb during exercise in adult humans. Data were extracted on participant characteristics, flow/volume and pressure devices, esophageal pressure (P oes ) catheters, and methods of Wb analysis. RESULTS A total of 120 articles were included. Flow/volume sensors used were primarily pneumotachographs ( n = 85, 70.8%), whereas the most common pressure transducer was of the variable reluctance type ( n = 63, 52.5%). Esophageal pressure was frequently obtained via balloon-tipped catheters ( n = 114, 95.0%). Few studies mentioned calibration, frequency responses, and dynamic compensation of their measurement devices. The most popular method of measuring the Wb was pressure-volume integration ( n = 51, 42.5%), followed by the modified Campbell ( n = 28, 23.3%) and Dean & Visscher diagrams ( n = 26, 21.7%). Over one-third of studies did not report the methods used to process their pressure-volume data, and the majority (60.8%) of studies used the incorrect Wb units and/or failed to discuss the limitations of their Wb measurements. CONCLUSIONS The findings of this systematic review highlight the need for the development of a standardized approach for measuring Wb, which is informative, practical, and accessible for future researchers.
Collapse
Affiliation(s)
- Troy J Cross
- Faculty of Medicine and Health, University of Sydney, NSW, AUSTRALIA
| | | | - Eli F Kelley
- Air Force Research Laboratory, 711HPW/RHBFP, Wright-Patterson Air Force Base, OH
| | - Colin D Hubbard
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| | - Sarah J Morris
- Faculty of Medicine and Health, University of Sydney, NSW, AUSTRALIA
| | - Joshua R Smith
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
3
|
Victor MH, Maximo MROA, Matsumoto MMS, Pereira SM, Tucci MR. Mixed-integer quadratic programming approach for noninvasive estimation of respiratory effort profile during pressure support ventilation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3668. [PMID: 36509708 DOI: 10.1002/cnm.3668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Information about respiratory mechanics such as resistance, elastance, and muscular pressure is important to mitigate ventilator-induced lung injury. Particularly during pressure support ventilation, the available options to quantify breathing effort and calculate respiratory system mechanics are often invasive or complex. We herein propose a robust and flexible estimation of respiratory effort better than current methods. We developed a method for non-invasively estimating breathing effort using only flow and pressure signals. Mixed-integer quadratic programming (MIQP) was employed, and the binary variables were the switching moments of the respiratory effort waveform. Mathematical constraints, based on ventilation physiology, were set for some variables to restrict feasible solutions. Simulated and patient data were used to verify our method, and the results were compared to an established estimation methodology. Our algorithm successfully estimated the respiratory effort, resistance, and elastance of the respiratory system, resulting in more robust performance and faster solver times than a previously proposed algorithm that used quadratic programming (QP) techniques. In a numerical simulation benchmark, the worst-case errors for resistance and elastance were 25% and 23% for QP versus <0.1% and <0.1% for MIQP, whose solver times were 4.7 s and 0.5 s, respectively. This approach can estimate several breathing effort profiles and identify the respiratory system's mechanical properties in invasively ventilated critically ill patients.
Collapse
Affiliation(s)
- Marcus H Victor
- Medical Electrical Devices Laboratory (LabMed), Electronics Engineering, Aeronautics Institute of Technology, São Paulo, Brazil
- Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos R O A Maximo
- Medical Electrical Devices Laboratory (LabMed), Electronics Engineering, Aeronautics Institute of Technology, São Paulo, Brazil
- Autonomous Computational Systems Lab (LAB-SCA), Computer Science Division, Aeronautics Institute of Technology, São Paulo, Brazil
| | - Monica M S Matsumoto
- Medical Electrical Devices Laboratory (LabMed), Electronics Engineering, Aeronautics Institute of Technology, São Paulo, Brazil
| | - Sérgio M Pereira
- Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Department of Anesthesia and Pain Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mauro R Tucci
- Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Cross TJ, Gideon EA, Morris SJ, Coriell CL, Hubbard CD, Duke JW. A comparison of methods used to quantify the work of breathing during exercise. J Appl Physiol (1985) 2021; 131:1123-1133. [PMID: 34410846 DOI: 10.1152/japplphysiol.00411.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanical work of breathing (Wb) is an insightful tool used to assess respiratory mechanics during exercise. There are several different methods used to calculate the Wb, however, each approach having its own distinct advantages/disadvantages. To date, a comprehensive assessment of the differences in the components of Wb between these methods is lacking. We therefore sought to compare the values of Wb during graded exercise as determined via the four most popular methods: 1) pressure-volume integration; 2) the Hedstrand diagram; 3) the Otis diagram; and the 4) modified Campbell diagram. Forty-two participants (30 ± 15 yr; 16 women) performed graded cycling to volitional exhaustion. Esophageal pressure-volume loops were obtained throughout exercise. These data were used to calculate the total Wb and, where possible, its subcomponents of inspiratory and expiratory, resistive and elastic Wb, using each of the four methods. Our results demonstrate that the components of Wb were indeed different between methods across the minute ventilations engendered by graded exercise. Importantly, however, no systematic pattern in these differences could be observed. Our findings indicate that the values of Wb obtained during exercise are uniquely determined by the specific method chosen to compute its value-no two methods yield identical results. Because there is currently no "gold-standard" for measuring the Wb, it is emphasized that future investigators be cognizant of the limitations incurred by their chosen method, such that observations made by others may be interpreted with greater context, and transparency.NEW & NOTEWORTHY The measurement of the work of breathing (Wb) during exercise provides us with deep insights into respiratory (patho)physiology, and sheds light on the putative factors which lead to respiratory muscle fatigue. There are 4 popular methods available to determine the Wb. Our study demonstrates that no two of these methods produce identical values of Wb during exercise. This paper also discusses the practical and theoretical limitations of each method.
Collapse
Affiliation(s)
- Troy J Cross
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth A Gideon
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Sarah J Morris
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Catherine L Coriell
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Colin D Hubbard
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
5
|
MacAskill W, Hoffman B, Johnson MA, Sharpe GR, Mills DE. Pressure measurement characteristics of a micro-transducer and balloon catheters. Physiol Rep 2021; 9:e14831. [PMID: 33938126 PMCID: PMC8090844 DOI: 10.14814/phy2.14831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022] Open
Abstract
Respiratory pressure responses to cervical magnetic stimulation are important measurements in monitoring the mechanical function of the respiratory muscles. Pressures can be measured using balloon catheters or a catheter containing integrated micro‐transducers. However, no research has provided a comprehensive analysis of their pressure measurement characteristics. Accordingly, the aim of this study was to provide a comparative analysis of these characteristics in two separate experiments: (1) in vitro with a reference pressure transducer following a controlled pressurization; and (2) in vivo following cervical magnetic stimulations. In vitro the micro‐transducer catheter recorded pressure amplitudes and areas which were in closer agreement to the reference pressure transducer than the balloon catheter. In vivo there was a main effect for stimulation power and catheter for esophageal (Pes), gastric (Pga), and transdiaphragmatic (Pdi) pressure amplitudes (p < 0.001) with the micro‐transducer catheter recording larger pressure amplitudes. There was a main effect of stimulation power (p < 0.001) and no main effect of catheter for esophageal (p = 0.481), gastric (p = 0.923), and transdiaphragmatic (p = 0.964) pressure areas. At 100% stimulator power agreement between catheters for Pdi amplitude (bias =6.9 cmH2O and LOA −0.61 to 14.27 cmH2O) and pressure areas (bias = −0.05 cmH2O·s and LOA −1.22 to 1.11 cmH2O·s) were assessed. At 100% stimulator power, and compared to the balloon catheters, the micro‐transducer catheter displayed a shorter 10–90% rise time, contraction time, latency, and half‐relaxation time, alongside greater maximal rates of change in pressure for esophageal, gastric, and transdiaphragmatic pressure amplitudes (p < 0.05). These results suggest that caution is warranted if comparing pressure amplitude results utilizing different catheter systems, or if micro‐transducers are used in clinical settings while applying balloon catheter‐derived normative values. However, pressure areas could be used as an alternative point of comparison between catheter systems.
Collapse
Affiliation(s)
- William MacAskill
- Respiratory and Exercise Physiology Research Group, School of Health and Wellbeing, University of Southern Queensland, Ipswich, Australia.,Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, Australia
| | - Ben Hoffman
- Respiratory and Exercise Physiology Research Group, School of Health and Wellbeing, University of Southern Queensland, Ipswich, Australia.,Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, Australia.,School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Michael A Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Graham R Sharpe
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Dean E Mills
- Respiratory and Exercise Physiology Research Group, School of Health and Wellbeing, University of Southern Queensland, Ipswich, Australia.,Centre for Health Research, Institute for Resilient Regions, University of Southern Queensland, Ipswich, Australia
| |
Collapse
|
6
|
Gideon EA, Cross TJ, Coriell CL, Duke JW. The effect of estimating chest wall compliance on the work of breathing during exercise as determined via the modified Campbell diagram. Am J Physiol Regul Integr Comp Physiol 2021; 320:R268-R275. [PMID: 33356877 DOI: 10.1152/ajpregu.00263.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The modified Campbell diagram provides one of the most comprehensive assessments of the work of breathing (Wb) during exercise, wherein the resistive and elastic work of inspiration and expiration are quantified. Importantly, a necessary step in constructing the modified Campbell diagram is to obtain a value for chest wall compliance (CCW). To date, it remains unknown whether estimating or directly measuring CCW impacts the Wb, as determined by the modified Campbell diagram. Therefore, the purpose of this study was to evaluate whether the components of the Wb differ when the modified Campbell diagram is constructed using an estimated versus measured value of CCW. Forty-two participants (n = 26 men, 16 women) performed graded exercise to volitional exhaustion on a cycle ergometer. CCW was measured directly at rest via quasistatic relaxation. Estimated values of CCW were taken from prior literature. The measured value of CCW was greater than that obtained via estimation (214 ± 52 mL/cmH2O vs. 189 ± 18 mL/cmH2O; P < 0.05). At modest-to-high minute ventilations (i.e., 50-200 L/min), the inspiratory elastic Wb was greater and expiratory resistive Wb was lower, when modified Campbell diagrams were constructed using estimated compared with measured values of CCW (P = 0.001). These differences were however small and never exceeded ±5%. Thus, although our findings demonstrate that estimating CCW has a measurable impact on the determination of the Wb, its effect appears relatively small within a cohort of healthy adults during graded exercise.
Collapse
Affiliation(s)
- Elizbeth A Gideon
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Troy J Cross
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Catherine L Coriell
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
7
|
Teichmann D, Lynch JC, Heldt T. Distortion of the Intracranial Pressure Waveform by Extraventricular Drainage System. IEEE Trans Biomed Eng 2020; 68:1646-1657. [PMID: 33156777 DOI: 10.1109/tbme.2020.3036283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate whether intracranial pressure (ICP) waveform measurements obtained from extraventricular drainage (EVD) systems are suitable for the calculation of intracranial elastance (ICE) or cerebrovascular pressure autoregulation (PAR) indices. METHODS The transfer characteristic of an EVD system is investigated by its step and frequency responses with focus on the low frequency (LF) range from 0.02 to 0.065 Hz (important in PAR) and the location of the system's first resonance frequency (important for ICE). The effects of opening the distal end of the EVD for drainage of cerebrospinal fluid and the presence of trapped air bubbles are also investigated. RESULTS The EVD system exhibits a first resonant frequency below 4 Hz, resulting in significant distortion of the measured ICP waveform. The frequency response in the LF range only remains flat when the EVD is closed. Opening the drain results in drops in magnitude and phase along the entire frequency range above DC. Air bubbles close to the EVD catheter tip affect the LF range while an air bubble close to the pressure transducer further decreases the first resonant frequency. Tests with actual ICP waveforms confirmed EVD-induced waveform distortions that can lead to erroneous ICE estimation. CONCLUSION EVD-based ICP measurements distort the waveform morphology. PAR indices based on LF information are only valid if the EVD is closed. EVD-based ICE estimation is to be avoided. SIGNIFICANCE ICP waveform analyses to derive information about ICE and PAR should be critically questioned if only EVD derived ICP signals are at hand.
Collapse
|
8
|
Gideon EA, Cross TJ, Cayo BE, Betts AW, Merrell DS, Coriell CL, Hays LE, Duke JW. Thoracic gas compression during forced expiration is greater in men than women. Physiol Rep 2020; 8:e14404. [PMID: 32207254 PMCID: PMC7090372 DOI: 10.14814/phy2.14404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 11/24/2022] Open
Abstract
Intrapleural pressure during a forced vital capacity (VC) maneuver is often in excess of that required to generate maximal expiratory airflow. This excess pressure compresses alveolar gas (i.e., thoracic gas compression [TGC]), resulting in underestimated forced expiratory flows (FEFs) at a given lung volume. It is unknown if TGC is influenced by sex; however, because men have larger lungs and stronger respiratory muscles, we hypothesized that men would have greater TGC. We examined TGC across the "effort-dependent" region of VC in healthy young men (n = 11) and women (n = 12). Subjects performed VC maneuvers at varying efforts while airflow, volume, and esophageal pressure (POES ) were measured. Quasistatic expiratory deflation curves were used to obtain lung recoil (PLUNG ) and alveolar pressures (i.e., PALV = POES -PLUNG ). The raw maximal expiratory flow-volume (MEFVraw ) curve was obtained from the "maximum effort" VC maneuver. The TGC-corrected curve was obtained by constructing a "maximal perimeter" curve from all VC efforts (MEFVcorr ). TGC was examined via differences between curves in FEFs (∆FEF), area under the expiratory curves (∆AEX ), and estimated compressed gas volume (∆VGC) across the VC range. Men displayed greater total ∆AEX (5.4 ± 2.0 vs. 2.0 ± 1.5 L2 ·s-1 ; p < .001). ∆FEF was greater in men at 25% of exhaled volume only (p < .05), whereas ∆VGC was systematically greater in men across the entire VC (main effect; p < .05). PALV was also greater in men throughout forced expiration (p < .01). Taken together, these findings demonstrate that men display more TGC, occurring early in forced expiration, likely due to greater expiratory pressures throughout the forced VC maneuver.
Collapse
Affiliation(s)
- Elizabeth A Gideon
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Troy J Cross
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
- Griffith University, Menzies Health Institute Queensland, Brisbane, QLD, Australia
| | - Brooke E Cayo
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Aaron W Betts
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Dallin S Merrell
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine L Coriell
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Lauren E Hays
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|