1
|
Huang Y, Mao J, Li Z, Wang W, Ni Z, Cai F, Tang J, Wang W, Zhang L, Zhou L, Jiang X, Wu J, Guo Q, Rui M, Huang Z, Jiang H, Wang L, Xi K, Gu Y, Chen L. Signal Converter-Based Therapy Platform Promoting Aging Bone Healing by Improving Permeability of the Mitochondrial Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500156. [PMID: 40289881 DOI: 10.1002/adma.202500156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/19/2025] [Indexed: 04/30/2025]
Abstract
The aging microenvironment promotes persistent inflammation and loss of intrinsic regenerative capacity. These are major obstacles to effective bone tissue repair in older adults. This study aims to explore how physical thermal stimulation can effectively delay the bone marrow mesenchymal stem cells (BMSCs) aging process. Based on this, an implantable physical signal-converter platform is designed as a therapeutic system that enables stable heat signals at the bone injury site under ultrasound stimulation (US). It is found that the therapeutic platform controllably reduces the mitochondrial outer membrane permeabilization of aging BMSCs, bidirectionally inhibiting mitochondrial reactive oxygen species and mitochondrial DNA (mtDNA) leakage. The leakage ratio of mtDNA decreases by 22.7%. This effectively mitigates the activation of the cGAS-STING pathway and its downstream NF-κB signaling induced by oxidative stress in aging BMSCs, thereby attenuating the pathological advancement of chronic inflammation. Thus, it effectively restores the metabolism and osteogenic differentiation of aging BMSCs in vitro, which is further confirmed in a rat model. In the GMPG/US group, the bone mineral density increases 2-3 times at 4 weeks in the rats femoral defect model. Therefore, this ultrasound-based signal-conversion platform provides a promising strategy for aging bone defect repair.
Collapse
Affiliation(s)
- Yiyang Huang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jiannan Mao
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiang Yin, 214400, P. R. China
| | - Ziang Li
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wenbo Wang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Zhengxia Ni
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Feng Cai
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jincheng Tang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Wang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Lichen Zhang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Xinzhao Jiang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jie Wu
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Qiangqiang Guo
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Min Rui
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopedics, Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiang Yin, 214400, P. R. China
| | - Ziyan Huang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Haochen Jiang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Lingjun Wang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Kun Xi
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yong Gu
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Chen
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|
2
|
Blankenship AE, Kemna R, Kueck PJ, John C, Vitztum M, Yoksh L, Mahnken JD, Vidoni ED, Morris JK, Geiger PC. Improving glycemic control via heat therapy in older adults at risk for Alzheimer's disease (FIGHT-AD): a pilot study. J Appl Physiol (1985) 2025; 138:720-730. [PMID: 39829076 DOI: 10.1152/japplphysiol.00396.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Impaired glycemic control increases the risk of type 2 diabetes (T2D) and Alzheimer's disease (AD). Heat therapy (HT), via hot water immersion (HWI), has shown promise in improving shared mechanisms implicated in both T2D and AD, like blood glucose regulation, insulin sensitivity, and inflammation. The potential for HT to improve brain health in individuals at risk for AD has not been examined. This pilot study aimed to assess the feasibility and adherence of using HT in cognitively healthy older individuals at risk for AD due to existing metabolic risk factors. Participants underwent 4 wk of HT (three sessions/week) via HWI, alongside cognitive screening, self-reported sleep characterization, glucose tolerance tests, and MRI scans pre- and postintervention. A total of 18 participants (9 males, 9 females; mean age: 71.1 ± 3.9 yr), demonstrating metabolic risk, completed the intervention. Participant adherence for the study was 96% (8 missed sessions out of 216 total sessions), with one study-related mild adverse event (mild dizziness/nausea). Overall, the research participants responded to a postintervention survey saying they enjoyed participating in the study and it was not a burden on their schedules. Secondary outcomes of the HT intervention demonstrated significant changes in mean arterial pressure, diastolic blood pressure, and cerebral blood flow (P < 0.05), with a trend toward improved body mass index (P = 0.06). Future studies, including longer durations and a thermoneutral control group, are needed to fully understand heat therapy's impact on glucose homeostasis and the potential to improve brain health.NEW & NOTEWORTHY Our pilot study demonstrated promising results for heat therapy (HT) via hot water immersion in older adults at risk for Alzheimer's disease due to metabolic factors. Despite a relatively short intervention, significant improvements in mean arterial pressure, diastolic blood pressure, and cerebral blood flow postintervention were observed. High participant adherence, overall satisfaction, and minimal adverse events suggest HT's feasibility. These findings highlight HT's potential as an effective alternative intervention for cardiometabolic dysfunction in at-risk populations.
Collapse
Affiliation(s)
- Anneka E Blankenship
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Riley Kemna
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Paul J Kueck
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Casey John
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michelle Vitztum
- KU Diabetes Institute, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Lauren Yoksh
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
- Frontiers Clinical and Translational Science Institute, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Jill K Morris
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Paige C Geiger
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway, Kansas, United States
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
3
|
Hohenauer E, Rogan S, Clijsen R. Editorial: Cold, heat and hypoxia as a medical tool: the use in a healthy and diseased population. Front Physiol 2024; 15:1380395. [PMID: 38420622 PMCID: PMC10901168 DOI: 10.3389/fphys.2024.1380395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Erich Hohenauer
- Department of Business Economics, Health, and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- Department of Physiotherapy, International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Slavko Rogan
- Department of Health, Bern University of Applied Sciences, Bern, Switzerland
| | - Ron Clijsen
- Department of Business Economics, Health, and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- Department of Physiotherapy, International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Health, Bern University of Applied Sciences, Bern, Switzerland
| |
Collapse
|
4
|
Wang T, Wang X, Fu T, Ma Y, Wang Q, Zhang S, Zhang X, Zhou H, Chang X, Tong Y. Roles of mitochondrial dynamics and mitophagy in diabetic myocardial microvascular injury. Cell Stress Chaperones 2023; 28:675-688. [PMID: 37755621 PMCID: PMC10746668 DOI: 10.1007/s12192-023-01384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Myocardial microvessels are composed of a monolayer of endothelial cells, which play a crucial role in maintaining vascular barrier function, luminal latency, vascular tone, and myocardial perfusion. Endothelial dysfunction is a key factor in the development of cardiac microvascular injury and diabetic cardiomyopathy. In addition to their role in glucose oxidation and energy metabolism, mitochondria also participate in non-metabolic processes such as apoptosis, intracellular ion handling, and redox balancing. Mitochondrial dynamics and mitophagy are responsible for regulating the quality and quantity of mitochondria in response to hyperglycemia. However, these endogenous homeostatic mechanisms can both preserve and/or disrupt non-metabolic mitochondrial functions during diabetic endothelial damage and cardiac microvascular injury. This review provides an overview of the molecular features and regulatory mechanisms of mitochondrial dynamics and mitophagy. Furthermore, we summarize findings from various investigations that suggest abnormal mitochondrial dynamics and defective mitophagy contribute to the development of diabetic endothelial dysfunction and myocardial microvascular injury. Finally, we discuss different therapeutic strategies aimed at improving endothelial homeostasis and cardiac microvascular function through the enhancement of mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Tong Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xinwei Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Tong Fu
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuxiang Zhang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xiao Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Xing Chang
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
5
|
Clark CE, Rigby BR. Can exposure to heat attenuate neurodegeneration in older adults with Parkinson's disease? Front Aging Neurosci 2023; 15:1239656. [PMID: 37744389 PMCID: PMC10513428 DOI: 10.3389/fnagi.2023.1239656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
| | - Brandon Rhett Rigby
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, United States
| |
Collapse
|
6
|
Maurer GS, Clayton ZS. Anthracycline chemotherapy, vascular dysfunction and cognitive impairment: burgeoning topics and future directions. Future Cardiol 2023; 19:547-566. [PMID: 36354315 PMCID: PMC10599408 DOI: 10.2217/fca-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Anthracyclines, chemotherapeutic agents used to treat common forms of cancer, increase cardiovascular (CV) complications, thereby necessitating research regarding interventions to improve the health of cancer survivors. Vascular dysfunction, which is induced by anthracycline chemotherapy, is an established antecedent to overt CV diseases. Potential treatment options for ameliorating vascular dysfunction have largely been understudied. Furthermore, patients treated with anthracyclines have impaired cognitive function and vascular dysfunction is an independent risk factor for the development of mild cognitive impairment. Here, we will focus on: anthracycline chemotherapy associated CV diseases risk; how targeting mechanisms underlying vascular dysfunction may be a means to improve both CV and cognitive health; and research gaps and potential future directions for the field of cardio-oncology.
Collapse
Affiliation(s)
- Grace S Maurer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Barnes JN, Burns JM, Bamman MM, Billinger SA, Bodine SC, Booth FW, Brassard P, Clemons TA, Fadel PJ, Geiger PC, Gujral S, Haus JM, Kanoski SE, Miller BF, Morris JK, O’Connell KM, Poole DC, Sandoval DA, Smith JC, Swerdlow RH, Whitehead SN, Vidoni ED, van Praag H. Proceedings from the Albert Charitable Trust Inaugural Workshop on 'Understanding the Acute Effects of Exercise on the Brain'. Brain Plast 2022; 8:153-168. [PMID: 36721393 PMCID: PMC9837736 DOI: 10.3233/bpl-220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
An inaugural workshop supported by "The Leo and Anne Albert Charitable Trust," was held October 4-7, 2019 in Scottsdale, Arizona, to focus on the effects of exercise on the brain and to discuss how physical activity may prevent or delay the onset of aging-related neurodegenerative conditions. The Scientific Program Committee (led by Dr. Jeff Burns) assembled translational, clinical, and basic scientists who research various aspects of the effects of exercise on the body and brain, with the overall goal of gaining a better understanding as to how to delay or prevent neurodegenerative diseases. In particular, research topics included the links between cardiorespiratory fitness, the cerebrovasculature, energy metabolism, peripheral organs, and cognitive function, which are all highly relevant to understanding the effects of acute and chronic exercise on the brain. The Albert Trust workshop participants addressed these and related topics, as well as how other lifestyle interventions, such as diet, affect age-related cognitive decline associated with Alzheimer's and other neurodegenerative diseases. This report provides a synopsis of the presentations and discussions by the participants, and a delineation of the next steps towards advancing our understanding of the effects of exercise on the aging brain.
Collapse
Affiliation(s)
- Jill N. Barnes
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Marcas M. Bamman
- UAB Center for Exercise Medicine, University of Alabama, Birmingham, AL, USA
| | | | - Sue C. Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, and Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec city, QC, Canada
| | - Tameka A. Clemons
- Department of Professional and Medical Education, Meharry Medical College, Nashville, TN, USA
| | - Paul J. Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| | - Paige C. Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Swathi Gujral
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsrife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jill K. Morris
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | | | - David C. Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | | | - J. Carson Smith
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | | | - Shawn N. Whitehead
- Vulnerable Brain Laboratory, Department Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada
| | - Eric D. Vidoni
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter FL, USA
| |
Collapse
|
8
|
Abstract
In this review, we highlight recent studies from our group and others that have characterized the cardiovascular adjustments that occur after acute heat exposure. Special emphasis will be placed on underlying mechanisms and clinical implications. Finally, we postulate that these acute cardiovascular adjustments may predict the long-term adaptive response to chronic heat therapy.
Collapse
Affiliation(s)
- Steven A. Romero
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center
| | - Rauchelle E. Richey
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center
| | - Holden W. Hemingway
- Human Vascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center
| |
Collapse
|
9
|
Amin SB, Hansen AB, Mugele H, Simpson LL, Marume K, Moore JP, Cornwell WK, Lawley JS. High intensity exercise and passive hot water immersion cause similar post intervention changes in peripheral and cerebral shear. J Appl Physiol (1985) 2022; 133:390-402. [PMID: 35708700 DOI: 10.1152/japplphysiol.00780.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Passive hot water immersion (PHWI) provides a peripheral vasculature shear stimulus comparable to low intensity exercise within the active skeletal muscle, whereas moderate and high intensity exercise elicit substantially greater shear rates in the peripheral vasculature, likely conferring greater vascular benefits. Few studies have compared post intervention shear rates in the peripheral and cerebral vasculature following high intensity exercise and PHWI, especially considering that the post intervention recovery period represents a key window in which adaptation occurs. Therefore, we aimed to compare shear rates in the internal carotid artery (ICA), vertebral artery (VA) and common femoral artery (CFA) between high intensity exercise and PHWI for up to 80 minutes post intervention. Fifteen healthy (27 ± 4 years), moderately trained individuals underwent three-time matched interventions in a randomised order which included 30 minutes of whole-body immersion in a 42°C hot bath, 30 minutes of treadmill running and 5x4 minute high intensity intervals (HIIE). There were no differences in ICA (P= 0.4643) and VA (P=0.1940) shear rates between PHWI and exercise (both continuous and HIIE) post intervention. All three interventions elicited comparable increases in CFA shear rate post intervention (P=0.0671), however, CFA shear rate was slightly higher 40 minutes post threshold running (P=0.0464) and, slightly higher, although not statically for HIIE (P=0.0565) compared with PHWI. Our results suggest that time and core temperature matched high intensity exercise and PHWI elicit limited changes in cerebral shear and comparable increases in peripheral vasculature shear rates when measured for up to 80 minutes post intervention.
Collapse
Affiliation(s)
- Sachin B Amin
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | | | - Hendrik Mugele
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Lydia L Simpson
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Kyohei Marume
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - William K Cornwell
- Department of Medicine - Cardiology, University of Colorado Anschutz Medical Campus, Aurora CO, United States.,Clinical and Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora CO, United States
| | - Justin S Lawley
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| |
Collapse
|
10
|
Pizzey FK, Smith EC, Ruediger SL, Keating SE, Askew CD, Coombes JS, Bailey TG. The effect of heat therapy on blood pressure and peripheral vascular function: A systematic review and meta-analysis. Exp Physiol 2021; 106:1317-1334. [PMID: 33866630 DOI: 10.1113/ep089424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
NEW FINDINGS What is the topic of this review? We have conducted a systematic review and meta-analysis on the current evidence for the effect of heat therapy on blood pressure and vascular function. What advances does it highlight? We found that heat therapy reduced mean arterial, systolic and diastolic blood pressure. We also observed that heat therapy improved vascular function, as assessed via brachial artery flow-mediated dilatation. Our results suggest that heat therapy is a promising therapeutic tool that should be optimized further, via mode and dose, for the prevention and treatment of cardiovascular disease risk factors. ABSTRACT Lifelong sauna exposure is associated with reduced cardiovascular disease risk. Recent studies have investigated the effect of heat therapy on markers of cardiovascular health. We aimed to conduct a systematic review with meta-analysis to determine the effects of heat therapy on blood pressure and indices of vascular function in healthy and clinical populations. Four databases were searched up to September 2020 for studies investigating heat therapy on outcomes including blood pressure and vascular function. Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was used to assess the certainty of evidence. A total of 4522 titles were screened, and 15 studies were included. Healthy and clinical populations were included. Heat exposure was for 30-90 min, over 10-36 sessions. Compared with control conditions, heat therapy reduced mean arterial pressure [n = 4 studies; mean difference (MD): -5.86 mmHg, 95% confidence interval (CI): -8.63, -3.10; P < 0.0001], systolic blood pressure (n = 10; MD: -3.94 mmHg, 95% CI: -7.22, -0.67; P = 0.02) and diastolic blood pressure (n = 9; MD: -3.88 mmHg, 95% CI: -6.13, -1.63; P = 0.0007) and improved flow-mediated dilatation (n = 5; MD: 1.95%, 95% CI: 0.14, 3.76; P = 0.03). Resting heart rate was unchanged (n = 10; MD: -1.25 beats/min; 95% CI: -3.20, 0.70; P = 0.21). Early evidence also suggests benefits for arterial stiffness and cutaneous microvascular function. The certainty of evidence was moderate for the effect of heat therapy on systolic and diastolic blood pressure and heart rate and low for the effect of heat therapy on mean arterial pressure and flow-mediated dilatation. Heat therapy is an effective therapeutic tool to reduce blood pressure and improve macrovascular function. Future research should aim to optimize heat therapy, including the mode and dose, for the prevention and management of cardiovascular disease.
Collapse
Affiliation(s)
- Faith K Pizzey
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Emily C Smith
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Stefanie L Ruediger
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Shelley E Keating
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, Queensland, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise (PULSE), Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia.,School of Nursing Midwifery and Social Work, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
11
|
Worley ML, Reed EL, Freemas JA, Chapman CL. Mode of passive heating differentially modifies cerebral hemodynamics: Potential implications on heat therapy. J Physiol 2021; 599:2789-2790. [PMID: 33760233 DOI: 10.1113/jp281536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Morgan L Worley
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA.,H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Emma L Reed
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Jessica A Freemas
- H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|