1
|
Wise TJ, Ott ME, Joseph MS, Welsby IJ, Darrow CC, McMahon TJ. Modulation of the allosteric and vasoregulatory arms of erythrocytic oxygen transport. Front Physiol 2024; 15:1394650. [PMID: 38915775 PMCID: PMC11194670 DOI: 10.3389/fphys.2024.1394650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 06/26/2024] Open
Abstract
Efficient distribution of oxygen (O2) to the tissues in mammals depends on the evolved ability of red blood cell (RBC) hemoglobin (Hb) to sense not only O2 levels, but metabolic cues such as pH, PCO2, and organic phosphates, and then dispense or take up oxygen accordingly. O2 delivery is the product of not only oxygen release from RBCs, but also blood flow, which itself is also governed by vasoactive molecular mediators exported by RBCs. These vascular signals, including ATP and S-nitrosothiols (SNOs) are produced and exported as a function of the oxygen and metabolic milieu, and then fine-tune peripheral metabolism through context-sensitive vasoregulation. Emerging and repurposed RBC-oriented therapeutics can modulate either or both of these allosteric and vasoregulatory activities, with a single molecule or other intervention influencing both arms of O2 transport in some cases. For example, organic phosphate repletion of stored RBCs boosts the negative allosteric effector 2,3 biphosphoglycerate (BPG) as well as the anti-adhesive molecule ATP. In sickle cell disease, aromatic aldehydes such as voxelotor can disfavor sickling by increasing O2 affinity, and in newer generations, these molecules have been coupled to vasoactive nitric oxide (NO)-releasing adducts. Activation of RBC pyruvate kinase also promotes a left shift in oxygen binding by consuming and lowering BPG, while increasing the ATP available for cell health and export on demand. Further translational and clinical investigation of these novel allosteric and/or vasoregulatory approaches to modulating O2 transport are expected to yield new insights and improve the ability to correct or compensate for anemia and other O2 delivery deficits.
Collapse
Affiliation(s)
- Thomas J. Wise
- Duke University School of Medicine, Durham, NC, United States
| | - Maura E. Ott
- Duke University School of Medicine, Durham, NC, United States
| | - Mahalah S. Joseph
- Duke University School of Medicine, Durham, NC, United States
- Florida International University School of Medicine, Miami, FL, United States
| | - Ian J. Welsby
- Duke University School of Medicine, Durham, NC, United States
| | - Cole C. Darrow
- Duke University School of Medicine, Durham, NC, United States
| | - Tim J. McMahon
- Duke University School of Medicine, Durham, NC, United States
- Durham VA Health Care System, Durham, NC, United States
| |
Collapse
|
2
|
Limper U, Covrig D, Lange J, Annecke T. Perioperative management of oxygenation in hereditary methaemoglobinaemia. Br J Anaesth 2024; 132:793-795. [PMID: 38228419 DOI: 10.1016/j.bja.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Affiliation(s)
- Ulrich Limper
- Department of Anaesthesiology and Critical Care Medicine, Merheim Medical Center, Witten/Herdecke University, Cologne, Germany; German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.
| | - Dragos Covrig
- Department of Anaesthesiology and Critical Care Medicine, Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Jonas Lange
- Department of Abdominal, Tumor, Transplant and Vascular Surgery, Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Thorsten Annecke
- Department of Anaesthesiology and Critical Care Medicine, Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| |
Collapse
|
3
|
King DG, Hunt J. Response to "Comment on: A Double-Blind, Randomized, Placebo-Controlled Pilot Study Examining an Oxygen Nanobubble Beverage for 16.1-km Time Trial and Repeated Sprint Cycling Performance.". J Diet Suppl 2024; 21:558-561. [PMID: 38263764 DOI: 10.1080/19390211.2023.2296109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Affiliation(s)
- David G King
- Department of Biology, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, UK
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Julie Hunt
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
4
|
Webb KL, Gorman EK, Morkeberg OH, Klassen SA, Regimbal RJ, Wiggins CC, Joyner MJ, Hammer SM, Senefeld JW. The relationship between hemoglobin and
V
˙
O
2
m
a
x
: A systematic review and meta-analysis. PLoS One 2023; 18:e0292835. [PMID: 37824583 PMCID: PMC10569622 DOI: 10.1371/journal.pone.0292835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE There is widespread agreement about the key role of hemoglobin for oxygen transport. Both observational and interventional studies have examined the relationship between hemoglobin levels and maximal oxygen uptake (V ˙ O 2 m a x ) in humans. However, there exists considerable variability in the scientific literature regarding the potential relationship between hemoglobin andV ˙ O 2 m a x . Thus, we aimed to provide a comprehensive analysis of the diverse literature and examine the relationship between hemoglobin levels (hemoglobin concentration and mass) andV ˙ O 2 m a x (absolute and relativeV ˙ O 2 m a x ) among both observational and interventional studies. METHODS A systematic search was performed on December 6th, 2021. The study procedures and reporting of findings followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Article selection and data abstraction were performed in duplicate by two independent reviewers. Primary outcomes were hemoglobin levels andV ˙ O 2 m a x values (absolute and relative). For observational studies, meta-regression models were performed to examine the relationship between hemoglobin levels andV ˙ O 2 m a x values. For interventional studies, meta-analysis models were performed to determine the change inV ˙ O 2 m a x values (standard paired difference) associated with interventions designed to modify hemoglobin levels orV ˙ O 2 m a x . Meta-regression models were then performed to determine the relationship between a change in hemoglobin levels and the change inV ˙ O 2 m a x values. RESULTS Data from 384 studies (226 observational studies and 158 interventional studies) were examined. For observational data, there was a positive association between absoluteV ˙ O 2 m a x and hemoglobin levels (hemoglobin concentration, hemoglobin mass, and hematocrit (P<0.001 for all)). Prespecified subgroup analyses demonstrated no apparent sex-related differences among these relationships. For interventional data, there was a positive association between the change of absoluteV ˙ O 2 m a x (standard paired difference) and the change in hemoglobin levels (hemoglobin concentration (P<0.0001) and hemoglobin mass (P = 0.006)). CONCLUSION These findings suggest thatV ˙ O 2 m a x values are closely associated with hemoglobin levels among both observational and interventional studies. Although our findings suggest a lack of sex differences in these relationships, there were limited studies incorporating females or stratifying results by biological sex.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Olaf H. Morkeberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Riley J. Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shane M. Hammer
- Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
5
|
Webb KL, Joyner MJ, Wiggins CC, Secomb TW, Roy TK. The dependence of maximum oxygen uptake and utilization (V̇O 2 max) on hemoglobin-oxygen affinity and altitude. Physiol Rep 2023; 11:e15806. [PMID: 37653565 PMCID: PMC10471793 DOI: 10.14814/phy2.15806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Oxygen transport from the lungs to peripheral tissue is dependent on the affinity of hemoglobin for oxygen. Recent experimental data have suggested that the maximum human capacity for oxygen uptake and utilization (V̇O2 max) at sea level and altitude (~3000 m) is sensitive to alterations in hemoglobin-oxygen affinity. However, the effect of such alterations on V̇O2 max at extreme altitudes remains largely unknown due to the rarity of mutations affecting hemoglobin-oxygen affinity. This work uses a mathematical model that couples pulmonary oxygen uptake with systemic oxygen utilization under conditions of high metabolic demand to investigate the effect of hemoglobin-oxygen affinity on V̇O2 max as a function of altitude. The model includes the effects of both diffusive and convective limitations on oxygen transport. Pulmonary oxygen uptake is calculated using a spatially-distributed model that accounts for the effects of hematocrit and hemoglobin-oxygen affinity. Systemic oxygen utilization is calculated assuming Michaelis-Menten kinetics. The pulmonary and systemic model components are solved iteratively to compute predicted arterial and venous oxygen levels. Values of V̇O2 max are predicted for several values of hemoglobin-oxygen affinity and hemoglobin concentration based on data from humans with hemoglobin mutations. The model predicts that increased hemoglobin-oxygen affinity leads to increased V̇O2 max at altitudes above ~4500 m.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Tuhin K. Roy
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
6
|
Al-Qudsi O, Reynolds JM, Haney JC, Welsby IJ. Voxelotor as a Treatment of Persistent Hypoxia in the ICU. Chest 2023; 164:e1-e4. [PMID: 37423700 DOI: 10.1016/j.chest.2023.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 07/11/2023] Open
Abstract
Hypoxia is encountered frequently in the ICU as a result of a wide range of pathologic characteristics. The oxygen-hemoglobin dissociation curve describes hemoglobin's affinity for a given Po2 and factors affecting uptake and offload. Research in manipulating this relationship between hemoglobin and oxygen is sparing. Voxelotor is a hemoglobin oxygen-affinity modulator that is approved by the US Food and Drug Association for use in the management of sickle cell disease. We present two patients without sickle cell disease who underwent treatment with this novel agent to assist with chronic hypoxia and weaning of mechanical support.
Collapse
Affiliation(s)
- Omar Al-Qudsi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC.
| | - John M Reynolds
- Division of Transplant Pulmonology, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - John C Haney
- Division of Thoracic Transplant Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Ian J Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
7
|
Böning D, Kuebler WM, Vogel D, Bloch W. The oxygen dissociation curve of blood in COVID-19-An update. Front Med (Lausanne) 2023; 10:1098547. [PMID: 36923010 PMCID: PMC10008909 DOI: 10.3389/fmed.2023.1098547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
An impressive effect of the infection with SARS-Co-19 is the impairment of oxygen uptake due to lung injury. The reduced oxygen diffusion may potentially be counteracted by an increase in oxygen affinity of hemoglobin. However, hypoxia and anemia associated with COVID-19 usually decrease oxygen affinity due to a rise in [2,3-bisphosphoglycerate]. As such, COVID-19 related changes in the oxygen dissociation curve may be critical for oxygen uptake and supply, but are hard to predict. A Pubmed search lists 14 publications on oxygen affinity in COVID-19. While some investigations show no changes, three large studies found an increased affinity that was related to a good prognosis. Exact causes remain unknown. The cause of the associated anemia in COVID-19 is under discussion. Erythrocytes with structural alterations of membrane and cytoskeleton have been observed, and virus binding to Band 3 and also to ACE2 receptors in erythroblasts has been proposed. COVID-19 presentation is moderate in many subjects suffering from sickle cell disease. A possible explanation is that COVID-19 counteracts the unfavorable large right shift of the oxygen dissociation curve in these patients. Under discussion for therapy are mainly affinity-increasing drugs.
Collapse
Affiliation(s)
- Dieter Böning
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Dominik Vogel
- Klinik für Interdisziplinäre Intensivmedizin, Vivantes Humboldt-Klinikum, Berlin, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
8
|
Steinberg MH. Fetal hemoglobin in β hemoglobinopathies: Is enough too much? Am J Hematol 2022; 97:676-678. [PMID: 35253929 DOI: 10.1002/ajh.26518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Martin H Steinberg
- Department of Medicine, Division of Hematology and Medical Oncology Boston University School of Medicine Boston Massachusetts 02118 USA
| |
Collapse
|
9
|
Webb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC. Influence of High Hemoglobin-Oxygen Affinity on Humans During Hypoxia. Front Physiol 2022; 12:763933. [PMID: 35095551 PMCID: PMC8795792 DOI: 10.3389/fphys.2021.763933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen A. Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Chad C. Wiggins,
| |
Collapse
|
10
|
Böning D, Kuebler WM, Bloch W. The oxygen dissociation curve of blood in COVID-19. Am J Physiol Lung Cell Mol Physiol 2021; 321:L349-L357. [PMID: 33978488 PMCID: PMC8384474 DOI: 10.1152/ajplung.00079.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
COVID-19 hinders oxygen transport to the consuming tissues by at least two mechanisms: In the injured lung, saturation of hemoglobin is compromised, and in the tissues, an associated anemia reduces the volume of delivered oxygen. For the first problem, increased hemoglobin oxygen affinity [left shift of the oxygen dissociation curve (ODC)] is of advantage, for the second, however, the contrary is the case. Indeed a right shift of the ODC has been found in former studies for anemia caused by reduced cell production or hemolysis. This resulted from increased 2,3-bisphosphoglycerate (2,3-BPG) concentration. In three investigations in COVID-19, however, no change of hemoglobin affinity was detected in spite of probably high [2,3-BPG]. The most plausible cause for this finding is formation of methemoglobin (MetHb), which increases the oxygen affinity and thus apparently compensates for the 2,3-BPG effect. However, this "useful effect" is cancelled by the concomitant reduction of functional hemoglobin. In the largest study on COVID-19, even a clear left shift of the ODC was detected when calculated from measurements in fresh blood rather than after equilibration with gases outside the body. This additional "in vivo" left shift possibly results from various factors, e.g., concentration changes of Cl-, 2,3-BPG, ATP, lactate, nitrocompounds, glutathione, glutamate, because of time delay between blood sampling and end of equilibration, or enlarged distribution space including interstitial fluid and is useful for O2 uptake in the lungs. Under discussion for therapy are the affinity-increasing 5-hydroxymethyl-2-furfural (5-HMF), erythropoiesis-stimulating substances like erythropoietin, and methylene blue against MetHb formation.
Collapse
Affiliation(s)
- Dieter Böning
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
11
|
Stewart GM, Cross TJ, Joyner MJ, Chase SC, Curry T, Lehrer-Graiwer J, Dufu K, Vlahakis NE, Johnson BD. Impact of Pharmacologically Left Shifting the Oxygen-Hemoglobin Dissociation Curve on Arterial Blood Gases and Pulmonary Gas Exchange During Maximal Exercise in Hypoxia. High Alt Med Biol 2021; 22:249-262. [PMID: 34152867 DOI: 10.1089/ham.2020.0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stewart, Glenn M., Troy J. Cross, Michael J. Joyner, Steven C. Chase, Timothy Curry, Josh Lehrer-Graiwer, Kobina Dufu, Nicholas E. Vlahakis, and Bruce D. Johnson. Impact of pharmacologically left shifting the oxygen-hemoglobin dissociation curve on arterial blood gases and pulmonary gas exchange during maximal exercise in hypoxia. High Alt Med Biol. 22:249-262, 2021. Introduction: Physiological and pathological conditions, which reduce the loading of oxygen onto hemoglobin (Hb), can impair exercise capacity and cause debilitating symptoms. Accordingly, this study examined the impact of pharmacologically left shifting the oxygen-hemoglobin dissociation curve (ODC) on arterial oxygen saturation (SaO2) and exercise capacity. Methods: Eight healthy subjects completed a maximal incremental exercise test in hypoxia (FIO2: 0.125) and normoxia (FIO2: 0.21) before (Day 1) and after (Day 15) daily ingestion of 900 mg of voxelotor (an oxygen/Hb affinity modulator). Pulmonary gas exchange and arterial blood gases were assessed throughout exercise and at peak. Data for a 1,500 mg daily drug dose are reported in a limited cohort (n = 3). Results: Fourteen days of drug administration left shifted the ODC (p50 measured under standard conditions, Day 1: 28.0 ± 2.1 mmHg vs. Day 15: 26.1 ± 1.8 mmHg, p < 0.05). Throughout incremental exercise in hypoxia, SaO2 was systematically higher after drug (peak exercise SaO2 on Day 1: 71 ± 2 vs. Day 15: 81% ± 2%, p < 0.001), whereas oxygen extraction (Ca-vO2 diff) and consumption (VO2) were similar (peak exercise Ca-vO2 diff on Day 1: 11.5 ± 1.7 vs. Day 15: 11.0 ± 1.8 ml/100 ml blood, p = 0.417; peak VO2 on Day 1: 2.59 ± 0.39 vs. Day 15: 2.47 ± 0.43 l/min, p = 0.127). Throughout incremental exercise in normoxia, SaO2 was systematically higher after drug, whereas peak VO2 was reduced (peak exercise SaO2 on Day 1: 93.9 ± 1.8 vs. Day 15: 95.8% ± 1.0%, p = 0.008; peak VO2 on Day 1: 3.62 ± 0.55 vs. Day 15: 3.26 ± 52 l/min, p = 0.001). Conclusion: Pharmacologically increasing the affinity of Hb for oxygen improved SaO2 during hypoxia without impacting exercise capacity; however, left shifting the ODC in healthy individuals appears detrimental to exercise capacity in normoxia. Left shifting the ODC to different magnitudes and under more chronic forms of hypoxia warrants further study.
Collapse
Affiliation(s)
- Glenn M Stewart
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Troy J Cross
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michael J Joyner
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven C Chase
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy Curry
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kobina Dufu
- Global Blood Therapeutics, South San Francisco, California, USA
| | | | - Bruce D Johnson
- Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|