1
|
Grams KJ, Neumueller SE, Mouradian GC, Burgraff NJ, Hodges MR, Pan L, Forster HV. Mild and moderate chronic hypercapnia elicit distinct transcriptomic responses of immune function in cardiorespiratory nuclei. Physiol Genomics 2023; 55:487-503. [PMID: 37602394 PMCID: PMC11178267 DOI: 10.1152/physiolgenomics.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Chronic hypercapnia (CH) is a hallmark of respiratory-related diseases, and the level of hypercapnia can acutely or progressively become more severe. Previously, we have shown time-dependent adaptations in steady-state physiology during mild (arterial Pco2 ∼55 mmHg) and moderate (∼60 mmHg) CH in adult goats, including transient (mild CH) or sustained (moderate CH) suppression of acute chemosensitivity suggesting limitations in adaptive respiratory control mechanisms as the level of CH increases. Changes in specific markers of glutamate receptor plasticity, interleukin-1ß, and serotonergic modulation within key nodes of cardiorespiratory control do not fully account for the physiological adaptations to CH. Here, we used an unbiased approach (bulk tissue RNA sequencing) to test the hypothesis that mild or moderate CH elicits distinct gene expression profiles in important brain stem regions of cardiorespiratory control, which may explain the contrasting responses to CH. Gene expression profiles from the brain regions validated the accuracy of tissue biopsy methodology. Differential gene expression analyses revealed greater effects of CH on brain stem sites compared with the medial prefrontal cortex. Mild CH elicited an upregulation of predominantly immune-related genes and predicted activation of immune-related pathways and functions. In contrast, moderate CH broadly led to downregulation of genes and predicted inactivation of cellular pathways related to the immune response and vascular function. These data suggest that mild CH leads to a steady-state activation of neuroinflammatory pathways within the brain stem, whereas moderate CH drives the opposite response. Transcriptional shifts in immune-related functions may underlie the cardiorespiratory network's capability to respond to acute, more severe hypercapnia when in a state of progressively increased CH.NEW & NOTEWORTHY Mild chronic hypercapnia (CH) broadly upregulated immune-related genes and a predicted activation of biological pathways related to immune cell activity and the overall immune response. In contrast, moderate CH primarily downregulated genes related to major histocompatibility complex signaling and vasculature function that led to a predicted inactivation of pathways involving the immune response and vascular endothelial function. The severity-dependent effect on immune responses suggests that neuroinflammation has an important role in CH and may be important in the maintenance of proper ventilatory responses to acute and chronic hypercapnia.
Collapse
Affiliation(s)
- Kirstyn J Grams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Nicholas J Burgraff
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Getsy PM, Sundararajan S, Lewis SJ. Carotid sinus nerve transection abolishes the facilitation of breathing that occurs upon cessation of a hypercapnic gas challenge in male mice. J Appl Physiol (1985) 2021; 131:821-835. [PMID: 34236243 DOI: 10.1152/japplphysiol.01031.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arterial pCO2 elevations increase minute ventilation via activation of chemosensors within the carotid body (CB) and brainstem. Although the roles of CB chemoafferents in the hypercapnic (HC) ventilatory response have been investigated, there are no studies reporting the role of these chemoafferents in the ventilatory responses to a HC challenge or the responses that occur upon return to room air, in freely moving mice. This study found that an HC challenge (5% CO2, 21% O2, 74% N2 for 15 min) elicited an array of responses, including increases in frequency of breathing (accompanied by decreases in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives in sham-operated (SHAM) adult male C57BL6 mice, and that return to room air elicited a brief excitatory phase followed by gradual recovery of all parameters toward baseline values over a 15-min period. The array of ventilatory responses to the HC challenge in mice with bilateral carotid sinus nerve transection (CSNX) performed 7 days previously occurred more slowly but reached similar maxima as SHAM mice. A major finding was responses upon return to room air were dramatically lower in CSNX mice than SHAM mice, and the parameters returned to baseline values within 1-2 min in CSNX mice, whereas it took much longer in SHAM mice. These findings are the first evidence that CB chemoafferents play a key role in initiating the ventilatory responses to HC challenge in C57BL6 mice and are essential for the expression of post-HC ventilatory responses.NEW & NOTEWORTHY This study presents the first evidence that carotid body chemoafferents play a key role in initiating the ventilatory responses, such as increases in frequency of breathing, tidal volume, and minute ventilation that occur in response to a hypercapnic gas challenge in freely moving C57BL6 mice. Our study also demonstrates for the first time that these chemoafferents are essential for the expression of the ventilatory responses that occur upon return to room air in these mice.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western University, Cleveland, Ohio
| | - Sripriya Sundararajan
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stephen J Lewis
- Department of Pediatrics, Case Western University, Cleveland, Ohio.,Department of Pharmacology, Case Western University, Cleveland, Ohio
| |
Collapse
|
3
|
Dereli AS, Yaseen Z, Carrive P, Kumar NN. Adaptation of Respiratory-Related Brain Regions to Long-Term Hypercapnia: Focus on Neuropeptides in the RTN. Front Neurosci 2019; 13:1343. [PMID: 31920508 PMCID: PMC6923677 DOI: 10.3389/fnins.2019.01343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
Long-term hypercapnia is associated with respiratory conditions including obstructive sleep apnea, chronic obstructive pulmonary disease and obesity hypoventilation syndrome. Animal studies have demonstrated an initial (within hours) increase in ventilatory drive followed by a decrease in this response over the long-term (days–weeks) in response hypercapnia. Little is known about whether changes in the central respiratory chemoreflex are involved. Here we investigated whether central respiratory chemoreceptor neurons of the retrotrapezoid nucleus (RTN), which project to the respiratory pattern generator within the ventral respiratory column (VRC) have a role in the mechanism of neuroplasticity associated with long-term hypercapnia. Adult male C57BL/6 mice (n = 5/group) were used. Our aims were (1) to determine if galanin, neuromedin B and gastrin-releasing peptide gene expression is altered in the RTN after long-term hypercapnia. This was achieved using qPCR to measure mRNA expression changes of neuropeptides in the RTN after short-term hypercapnia (6 or 8 h, 5 or 8% CO2) or long-term hypercapnia exposure (10 day, 5 or 8% CO2), (2) in the mouse brainstem, to determine the distribution of preprogalanin in chemoreceptors, and the co-occurrence of the galanin receptor 1 (GalR1:Gi-coupled receptor) with inhibitory GlyT2 ventral respiratory column neurons using in situ hybridization (ISH) to better characterize galaninergic RTN-VRC circuitry, (3) to investigate whether long-term hypercapnia causes changes to recruitment (detected by cFos immunohistochemistry) of respiratory related neural populations including the RTN neurons and their galaninergic subset, in vivo. Collectively, we found that hypercapnia decreases neuropeptide expression in the RTN in the short-term and has the opposite effect over the long-term. Following long term hypercapnia, the number of RTN galanin neurons remains unchanged, and their responsiveness to acute chemoreflex is sustained; in contrast, we identified multiple respiratory related sites that exhibit blunted chemoreflex activation. GalR1 was distributed in 11% of preBötC and 30% of BötC glycinergic neurons. Our working hypothesis is that during long-term hypercapnia, galanin co-release from RTN neurons may counterbalance glutamatergic inputs to respiratory centers to downscale energetically wasteful hyperventilation, thereby having a role in neuroplasticity by contributing to a decrease in ventilation, through the inhibitory effects of galanin.
Collapse
Affiliation(s)
- Ayse Sumeyra Dereli
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Zarwa Yaseen
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Pascal Carrive
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Natasha N Kumar
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Burgraff NJ, Neumueller SE, Buchholz KJ, LeClaire J, Hodges MR, Pan L, Forster HV. Brainstem serotonergic, catecholaminergic, and inflammatory adaptations during chronic hypercapnia in goats. FASEB J 2019; 33:14491-14505. [PMID: 31670983 DOI: 10.1096/fj.201901288rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the prevalence of CO2 retention in human disease, little is known about the adaptive neurobiological effects of chronic hypercapnia. We have recently shown 30-d exposure to increased inspired CO2 (InCO2) leads to a steady-state ventilation that exceeds the level predicted by the sustained acidosis and the acute CO2/H+ chemoreflex, suggesting plasticity within respiratory control centers. Based on data showing brainstem changes in aminergic and inflammatory signaling during carotid body denervation-induced hypercapnia, we hypothesized chronic hypercapnia per se will lead to similar changes. We found that: 1) increased InCO2 increased IL-1β in the medullary raphe (MR), ventral respiratory column, and cuneate nucleus after 24 h, but not after 30 d of hypercapnia; 2) the number of serotonergic and total neurons were reduced within the MR and ventrolateral medulla following 30 d of increased InCO2; 3) markers of tryptophan metabolism were altered following 24 h, but not 30 d of InCO2; and 4) there were few changes in brainstem amine levels following 24 h or 30 d of increased InCO2. We conclude that these changes may contribute to initiating or maintaining respiratory neuroplasticity during chronic hypercapnia but alone do not account for ventilatory acclimatization to chronic increased InCO2.-Burgraff, N. J., Neumueller, S. E., Buchholz, K. J., LeClaire, J., Hodges, M. R., Pan, L., Forster, H. V. Brainstem serotonergic, catecholaminergic, and inflammatory adaptations during chronic hypercapnia in goats.
Collapse
Affiliation(s)
- Nicholas J Burgraff
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Suzanne E Neumueller
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Kirstyn J Buchholz
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - John LeClaire
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.,Neuroscience Research Center Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, USA
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.,Neuroscience Research Center Medical College of Wisconsin, Wauwatosa, Wisconsin, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Burgraff NJ, Neumueller SE, Buchholz KJ, Hodges MR, Pan L, Forster HV. Glutamate receptor plasticity in brainstem respiratory nuclei following chronic hypercapnia in goats. Physiol Rep 2019; 7:e14035. [PMID: 30993898 PMCID: PMC6467842 DOI: 10.14814/phy2.14035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Patients that retain CO2 in respiratory diseases such as chronic obstructive pulmonary disease (COPD) have worse prognoses and higher mortality rates than those with equal impairment of lung function without hypercapnia. We recently characterized the time-dependent physiologic effects of chronic hypercapnia in goats, which suggested potential neuroplastic shifts in ventilatory control mechanisms. However, little is known about how chronic hypercapnia affects brainstem respiratory nuclei (BRN) that control multiple physiologic functions including breathing. Since many CNS neuroplastic mechanisms include changes in glutamate (AMPA (GluR) and NMDA (GluN)) receptor expression and/or phosphorylation state to modulate synaptic strength and network excitability, herein we tested the hypothesis that changes occur in glutamatergic signaling within BRN during chronically elevated inspired CO2 (InCO2 )-hypercapnia. Healthy goats were euthanized after either 24 h or 30 days of chronic exposure to 6% InCO2 or room air, and brainstems were rapidly extracted for western blot analyses to assess GluR and GluN receptor expression within BRN. Following 24-hr exposure to 6% InCO2 , GluR or GluN receptor expression were changed from control (P < 0.05) in the solitary complex (NTS & DMV),ventrolateral medulla (VLM), medullary raphe (MR), ventral respiratory column (VRC), hypoglossal motor nucleus (HMN), and retrotrapezoid nucleus (RTN). These neuroplastic changes were not found following 30 days of chronic hypercapnia. However, at 30 days of chronic hypercapnia, there was overall increased (P < 0.05) expression of glutamate receptors in the VRC and RTN. We conclude that time- and site-specific glutamate receptor neuroplasticity may contribute to the concomitant physiologic changes that occur during chronic hypercapnia.
Collapse
Affiliation(s)
| | | | | | - Matthew R. Hodges
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsin
| | - Lawrence Pan
- Department of Physical TherapyMarquette UniversityMilwaukeeWisconsin
| | - Hubert V. Forster
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsin
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsin
- Zablocki Veterans Affairs Medical CenterMilwaukeeWisconsin
| |
Collapse
|
6
|
Burgraff NJ, Neumueller SE, Buchholz K, Langer TM, Hodges MR, Pan L, Forster HV. Ventilatory and integrated physiological responses to chronic hypercapnia in goats. J Physiol 2018; 596:5343-5363. [PMID: 30211447 DOI: 10.1113/jp276666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Chronic hypercapnia per se has distinct effects on the mechanisms regulating steady-state ventilation and the CO2 /H+ chemoreflex. Chronic hypercapnia leads to sustained hyperpnoea that exceeds predicted ventilation based upon the CO2 /H+ chemoreflex. There is an integrative ventilatory, cardiovascular and metabolic physiological response to chronic hypercapnia. Chronic hypercapnia leads to deterioration of cognitive function. ABSTRACT Respiratory diseases such as chronic obstructive pulmonary disease (COPD) often lead to chronic hypercapnia which may exacerbate progression of the disease, increase risk of mortality and contribute to comorbidities such as cognitive dysfunction. Determining the contribution of hypercapnia per se to adaptations in ventilation and cognitive dysfunction within this patient population is complicated by the presence of multiple comorbidities. Herein, we sought to determine the role of chronic hypercapnia per se on the temporal pattern of ventilation and the ventilatory CO2 /H+ chemoreflex by exposing healthy goats to either room air or an elevated inspired CO2 (InCO2 ) of 6% for 30 days. A second objective was to determine whether chronic hypercapnia per se contributes to cognitive dysfunction. During 30 days of exposure to 6% InCO2 , steady-state (SS) ventilation ( V ̇ I ) initially increased to 335% of control, and then within 1-5 days decreased and stabilized at ∼230% of control. There was an initial respiratory acidosis that was partially mitigated over time due to increased arterial [HCO3 - ]. There was a transient decrease in the ventilatory CO2 /H+ chemoreflex, followed by return to pre-exposure levels. The SS V ̇ I during chronic hypercapnia was greater than predicted from the acute CO2 /H+ chemoreflex, suggesting separate mechanisms regulating SS V ̇ I and the chemoreflex. Finally, as assessed by a shape discrimination test, we found a sustained decrease in cognitive function during chronic hypercapnia. We conclude that chronic hypercapnia per se results in: (1) a disconnect between SS V ̇ I and the CO2 /H+ chemoreflex, and (2) deterioration of cognitive function.
Collapse
Affiliation(s)
| | | | - Kirstyn Buchholz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas M Langer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53226, USA
| |
Collapse
|
7
|
Mouradian GC, Liu P, Hodges MR. Raphe gene expression changes implicate immune-related functions in ventilatory plasticity following carotid body denervation in rats. Exp Neurol 2016; 287:102-112. [PMID: 27132994 DOI: 10.1016/j.expneurol.2016.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022]
Abstract
The regulation of blood gases in mammals requires precise feedback mechanisms including chemoreceptor feedback from the carotid bodies. Carotid body denervation (CBD) leads to immediate hypoventilation (increased PaCO2) in adult rats, but over a period of days and weeks ventilation normalizes due in part to central (brain) mechanisms. Here, we tested the hypothesis that functional ventilatory recovery following CBD correlated with significant shifts in medullary raphe gene expression of molecules/pathways associated with known or novel forms of neuroplasticity. Tissue punches were obtained from snap frozen brainstems collected from rats 1-2days or 14-15days post-sham or post-bilateral CBD surgery (verified by physiologic measurements), and subjected to mRNA sequencing to identify, quantify, and statistically compare gene expression level differences among these groups of rats. We found the greatest number of gene expression changes acutely after CBD (154 genes), with fewer changes in the weeks after CBD (69-80 genes) and the fewest changes in expression among the time control groups (39 genes). Little or no changes were observed for multiple genes associated with serotonin- or glutamate receptor-dependent forms of neuroplasticity. However, an unbiased assessment of gene expression changes using a bioinformatics pathway analysis highlighted multiple changes in gene expression in signaling pathways associated with immune function. These included several growth factors and cytokines associated with peripheral and innate immune systems. Thus, these medullary raphe gene expression data support a role for immune-related signaling pathways in the functional restoration of blood gas control after CBD, but little or no role for serotonin- or glutamate receptor-mediated plasticity.
Collapse
Affiliation(s)
- Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
8
|
Muere C, Neumueller S, Olesiak S, Miller J, Hodges MR, Pan L, Forster HV. Blockade of neurokinin-1 receptors in the ventral respiratory column does not affect breathing but alters neurochemical release. J Appl Physiol (1985) 2015; 118:732-41. [PMID: 25635003 DOI: 10.1152/japplphysiol.00884.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Substance P (SP) and its receptor, neurokinin-1 (NK1R), have been shown to be excitatory modulators of respiratory frequency and to stabilize breathing regularity. Studies in anesthetized mice suggest that tonic activation of NK1Rs is particularly important when other excitatory inputs to the pre-Bötzinger complex in the ventral respiratory column (VRC) are attenuated. Consistent with these findings, muscarinic receptor blockade in the VRC of intact goats elicits an increase in breathing frequency associated with increases in SP and serotonin concentrations, suggesting an involvement of these substances in neuromodulator compensation. To gain insight on the contribution to breathing of endogenous SP and NK1R activation, and how NK1R modulates the release of other neurochemicals, we individually dialyzed antagonists to NK1R (133, 267, 500 μM Spantide; 3 mM RP67580) throughout the VRC of awake and sleeping goats. We found that NK1R blockade with either Spantide at any dose or RP67580 had no effect on breathing or regularity. Both antagonists significantly (P < 0.001) increased SP, while RP67580 also increased serotonin and glycine and decreased thyrotropin-releasing hormone concentrations in the dialysate. Taken together, these data support the concept of neuromodulator interdependence, and we believe that the loss of excitatory input from NK1Rs was locally compensated by changes in other neurochemicals.
Collapse
Affiliation(s)
- Clarissa Muere
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Suzanne Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samantha Olesiak
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin Miller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lawrence Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Hubert V Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|