1
|
Yamamoto S, Sakamaki F, Takahashi G, Kondo Y, Taguchi N, Esashi S, Yuji R, Murakami K, Osaragi K, Tomita K, Kamei S, Matsumoto T, Imai Y, Hasebe T. Retracted: Chest digital dynamic radiography to detect changes in human pulmonary perfusion in response to alveolar hypoxia. J Med Radiat Sci 2023; 70:e1-e11. [PMID: 36101943 PMCID: PMC10715373 DOI: 10.1002/jmrs.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Hypoxic pulmonary vasoconstriction optimises oxygenation in the lung by matching the local-blood perfusion to local-ventilation ratio upon exposure to alveolar hypoxia. It plays an important role in various pulmonary diseases, but few imaging evaluations of this phenomenon in humans. This study aimed to determine whether chest digital dynamic radiography could detect hypoxic pulmonary vasoconstriction as changes in pulmonary blood flow in healthy individuals. METHODS Five Asian men underwent chest digital dynamic radiography before and after 60 sec breath-holding at the maximal inspiratory level in upright and supine positions. Alveolar partial pressure of oxygen and atmospheric pressure were calculated using the blood gas test and digital dynamic radiography imaging, respectively. To evaluate the blood flow, the correlation rate of temporal change in each pixel value between the lung fields and left cardiac ventricles was analysed. RESULTS Sixty seconds of breath-holding caused a mean reduction of 26.7 ± 6.4 mmHg in alveolar partial pressure of oxygen. The mean correlation rate of blood flow in the whole lung was significantly lower after than before breath-holding (before, upright 51.5%, supine 52.2%; after, upright 45.5%, supine 46.1%; both P < 0.05). The correlation rate significantly differed before and after breath-holding in the lower lung fields (upright, 11.8% difference; supine, 10.7% difference; both P < 0.05). The mean radiation exposure of each scan was 0.98 ± 0.09 mGy. No complications occurred. CONCLUSIONS Chest digital dynamic radiography could detect the rapid decrease in pulmonary perfusion in response to alveolar hypoxia. It may suggest hypoxic pulmonary vasoconstriction in healthy individuals.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Fumio Sakamaki
- Department of Respiratory MedicineTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Genki Takahashi
- Department of Respiratory MedicineTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Yusuke Kondo
- Department of Respiratory MedicineTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Naoya Taguchi
- Department of Radiological TechnologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Shogo Esashi
- Department of Radiological TechnologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Ryotaro Yuji
- Department of Radiological TechnologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Katsuki Murakami
- Department of Radiological TechnologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Kensuke Osaragi
- Department of RadiologyKochi University, Kochi Medical SchoolNankokuKochiJapan
| | - Kosuke Tomita
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Shunsuke Kamei
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Tomohiro Matsumoto
- Department of RadiologyKochi University, Kochi Medical SchoolNankokuKochiJapan
| | - Yutaka Imai
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Terumitsu Hasebe
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| |
Collapse
|
2
|
Abstract
The pulmonary circulation is a low-pressure, low-resistance circuit whose primary function is to deliver deoxygenated blood to, and oxygenated blood from, the pulmonary capillary bed enabling gas exchange. The distribution of pulmonary blood flow is regulated by several factors including effects of vascular branching structure, large-scale forces related to gravity, and finer scale factors related to local control. Hypoxic pulmonary vasoconstriction is one such important regulatory mechanism. In the face of local hypoxia, vascular smooth muscle constriction of precapillary arterioles increases local resistance by up to 250%. This has the effect of diverting blood toward better oxygenated regions of the lung and optimizing ventilation-perfusion matching. However, in the face of global hypoxia, the net effect is an increase in pulmonary arterial pressure and vascular resistance. Pulmonary vascular resistance describes the flow-resistive properties of the pulmonary circulation and arises from both precapillary and postcapillary resistances. The pulmonary circulation is also distensible in response to an increase in transmural pressure and this distention, in addition to recruitment, moderates pulmonary arterial pressure and vascular resistance. This article reviews the physiology of the pulmonary vasculature and briefly discusses how this physiology is altered by common circumstances.
Collapse
Affiliation(s)
- Susan R. Hopkins
- Department of Radiology, University of California, San Diego, California
| | - Michael K. Stickland
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| |
Collapse
|
3
|
Kizhakke Puliyakote AS, Prisk GK, Elliott AR, Kim NH, Pazar B, Sá RC, Asadi AK, Hopkins SR. The spatial-temporal dynamics of pulmonary blood flow are altered in pulmonary arterial hypertension. J Appl Physiol (1985) 2023; 134:969-979. [PMID: 36861672 PMCID: PMC10085549 DOI: 10.1152/japplphysiol.00463.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Global fluctuation dispersion (FDglobal), a spatial-temporal metric derived from serial images of the pulmonary perfusion obtained with MRI-arterial spin labeling, describes temporal fluctuations in the spatial distribution of perfusion. In healthy subjects, FDglobal is increased by hyperoxia, hypoxia, and inhaled nitric oxide. We evaluated patients with pulmonary arterial hypertension (PAH, 4F, aged 47 ± 15, mean pulmonary artery pressure 48 ± 7 mmHg) and healthy controls (CON, 7F, aged 47 ± 12) to test the hypothesis that FDglobal is increased in PAH. Images were acquired at ∼4-5 s intervals during voluntary respiratory gating, inspected for quality, registered using a deformable registration algorithm, and normalized. Spatial relative dispersion (RD = SD/mean) and the percent of the lung image with no measurable perfusion signal (%NMP) were also assessed. FDglobal was significantly increased in PAH (PAH = 0.40 ± 0.17, CON = 0.17 ± 0.02, P = 0.006, a 135% increase) with no overlap in values between the two groups, consistent with altered vascular regulation. Both spatial RD and %NMP were also markedly greater in PAH vs. CON (PAH RD = 1.46 ± 0.24, CON = 0.90 ± 0.10, P = 0.0004; PAH NMP = 13.4 ± 6.1%; CON = 2.3 ± 1.4%, P = 0.001 respectively) consistent with vascular remodeling resulting in poorly perfused regions of lung and increased spatial heterogeneity. The difference in FDglobal between normal subjects and patients with PAH in this small cohort suggests that spatial-temporal imaging of perfusion may be useful in the evaluation of patients with PAH. Since this MR imaging technique uses no injected contrast agents and has no ionizing radiation it may be suitable for use in diverse patient populations.NEW & NOTEWORTHY Using proton MRI-arterial spin labeling to obtain serial images of pulmonary perfusion, we show that global fluctuation dispersion (FDglobal), a metric of temporal fluctuations in the spatial distribution of perfusion, was significantly increased in female patients with pulmonary arterial hypertension (PAH) compared with healthy controls. This potentially indicates pulmonary vascular dysregulation. Dynamic measures using proton MRI may provide new tools for evaluating individuals at risk of PAH or for monitoring therapy in patients with PAH.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - G Kim Prisk
- Department of Radiology, University of California, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Ann R Elliott
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Nick H Kim
- Department of Medicine, University of California, San Diego, California, United States
| | - Beni Pazar
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - Rui Carlos Sá
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Amran K Asadi
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - Susan R Hopkins
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| |
Collapse
|
4
|
Rivers RJ, Meininger CJ. The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability. Int J Mol Sci 2023; 24:ijms24065181. [PMID: 36982254 PMCID: PMC10048965 DOI: 10.3390/ijms24065181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Sustained tissue hypoxia is associated with many pathophysiological conditions, including chronic inflammation, chronic wounds, slow-healing fractures, microvascular complications of diabetes, and metastatic spread of tumors. This extended deficiency of oxygen (O2) in the tissue sets creates a microenvironment that supports inflammation and initiates cell survival paradigms. Elevating tissue carbon dioxide levels (CO2) pushes the tissue environment toward "thrive mode," bringing increased blood flow, added O2, reduced inflammation, and enhanced angiogenesis. This review presents the science supporting the clinical benefits observed with the administration of therapeutic CO2. It also presents the current knowledge regarding the cellular and molecular mechanisms responsible for the biological effects of CO2 therapy. The most notable findings of the review include (a) CO2 activates angiogenesis not mediated by hypoxia-inducible factor 1a, (b) CO2 is strongly anti-inflammatory, (c) CO2 inhibits tumor growth and metastasis, and (d) CO2 can stimulate the same pathways as exercise and thereby, acts as a critical mediator in the biological response of skeletal muscle to tissue hypoxia.
Collapse
Affiliation(s)
- Richard J Rivers
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
5
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
6
|
Geier ET, Prisk GK, Sá RC. Measuring short-term changes in specific ventilation using dynamic specific ventilation imaging. J Appl Physiol (1985) 2022; 132:1370-1378. [PMID: 35482322 DOI: 10.1152/japplphysiol.00652.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specific ventilation imaging (SVI) measures the spatial distribution of specific ventilation (SV) in the lung with MRI by using inhaled oxygen as a contrast agent. Because of the inherently low signal to noise ratio in the technique, multiple switches between inspiring air and O2 are utilized, and the high spatial resolution SV distribution determined as an average over the entire imaging period (~20 minutes). We hypothesized that a trade-off between spatial and temporal resolution could allow imaging at a higher temporal resolution, at the cost of a coarser, yet acceptable, spatial resolution. The appropriate window length and spatial resolution compromise was determined by generating synthetic data with signal- and contrast-to-noise characteristics reflective of that in previously published experimental data, with a known and unchanging distribution of SV, and showed that acceptable results could be obtained in an imaging period of ~7 minutes (80 breaths), with a spatial resolution of ~1cm3. Previously published data were then reanalyzed. The average heterogeneity of the temporally resolved maps of SV were not different to the previous overall analysis, however the temporally resolved maps were less effective at detecting the amount of bronchoconstriction resulting from methacholine administration. The results further indicated that the initial response to inhaled methacholine and subsequent inhalation of albuterol were largely complete within ~22 minutes and ~9 minutes respectively, although there was a tendency for an ongoing developing effect in both cases. These results suggest that it is feasible to use a shortened SVI protocol, with a modest sacrifice in spatial resolution, in order to measure temporally dynamic processes.
Collapse
Affiliation(s)
- Eric T Geier
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Gordon Kim Prisk
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Buxton RB, Prisk GK, Hopkins SR. A novel nonlinear analysis of blood flow dynamics applied to the human lung. J Appl Physiol (1985) 2022; 132:1546-1559. [PMID: 35421317 DOI: 10.1152/japplphysiol.00715.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial/temporal dynamics of blood flow in the human lung can be measured noninvasively with magnetic resonance imaging (MRI) using arterial spin labeling (ASL). We report a novel data analysis method using nonlinear prediction to identify dynamic interactions between blood flow units (image voxels), potentially providing a probe of underlying vascular control mechanisms. The approach first estimates the linear relationship (predictability) of one voxel time series with another using correlation analysis, and after removing the linear component estimates the nonlinear relationship with a numerical mutual information approach. Dimensionless global metrics for linear prediction (FL) and nonlinear prediction (FNL) represent the average amplitude of fluctuations in one voxel estimated by another voxel, as a percentage of the global average voxel flow. A proof-of-principle test of this approach analyzed experimental data from a study of high-altitude pulmonary edema (HAPE), providing two groups exhibiting known differences in vascular reactivity. Subjects were mountaineers divided into HAPE-susceptible (S, n=4) and HAPE-resistant (R, n=5) groups based on prior history at high altitude. Dynamic ASL measurements in the lung in normoxia (N, FIO2=0.21) and hypoxia (H, FIO2=0.13±0.01) were compared. The nonlinear prediction metric FNL decreased with hypoxia (7.4±1.3(N) vs. 6.3±0.7(H), P=0.03) and was significantly different between groups (7.4±1.2 (R) vs. 6.2±14.1 (S), P=0.03). This proof-of-principle test demonstrates that this nonlinear analysis approach applied to ASL data is sensitive to physiological effects even in small subject cohorts, and potentially can be used in a wide range of studies in health and disease in the lung and other organs.
Collapse
Affiliation(s)
| | | | - Susan Roberta Hopkins
- Department of Radiology, University of California San Diego.,Department of Medicine, University of California San Diego
| |
Collapse
|