1
|
Traylor MK, Batman GB, Sears KN, Ransom KV, Hammer SM, Keller JL. Sex-specific microvascular and hemodynamic responses to passive limb heating in young adults. Microcirculation 2024; 31:e12848. [PMID: 38281244 DOI: 10.1111/micc.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
OBJECTIVE We examined sex-specific microvascular reactivity and hemodynamic responses under conditions of augmented resting blood flow induced by passive heating compared to normal blood flow. METHODS Thirty-eight adults (19 females) completed a vascular occlusion test (VOT) on two occasions preceded by rest with or without passive heating in a randomized, counterbalanced order. Skeletal muscle tissue oxygenation (StO2, %) was assessed with near-infrared spectroscopy (NIRS), and the rate of desaturation and resaturation as well as maximal StO2 (StO2max) and prolonged hypersaturation (area under the curve, StO2AUC) were quantified. Before the VOT, brachial artery blood flow (BABF), vascular conductance, and relative BABF (BABF normalized to forearm lean mass) were determined. Sex × condition ANOVAs were used. A p-value ≤.05 was considered statistically significant. RESULTS Twenty minutes of heating increased BABF compared to the control (102.9 ± 28.3 vs. 36.0 ± 20.9 mL min-1; p < .01). Males demonstrated greater BABF than females (91.9 ± 34.0 vs. 47.0 ± 19.1 mL min-1; p < .01). There was no sex difference in normalized BABF. There were no significant interactions for NIRS-VOT outcomes, but heat did increase the rate of desaturation (-0.140 ± 0.02 vs. -0.119 ± 0.03% s-1; p < .01), whereas regardless of condition, males exhibited greater rates of resaturation and StO2max than females. CONCLUSIONS These results suggest that blood flow is not the primary factor causing sex differences in NIRS-VOT outcomes.
Collapse
Affiliation(s)
- Miranda K Traylor
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Genevieve B Batman
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Kylie N Sears
- School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kyndall V Ransom
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
- Chemistry Department, College of Arts and Science, University of South Alabama, Mobile, Alabama, USA
| | - Shane M Hammer
- School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Joshua L Keller
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology & Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
2
|
Katagiri M, Nakabayashi M, Matsuda Y, Ono Y, Ichinose M. Differential changes in blood flow and oxygen utilization in active muscles between voluntary exercise and electrical muscle stimulation in young adults. J Appl Physiol (1985) 2024; 136:1053-1064. [PMID: 38482573 DOI: 10.1152/japplphysiol.00863.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 04/24/2024] Open
Abstract
The physiological effects on blood flow and oxygen utilization in active muscles during and after involuntary contraction triggered by electrical muscle stimulation (EMS) remain unclear, particularly compared with those elicited by voluntary (VOL) contractions. Therefore, we used diffuse correlation and near-infrared spectroscopy (DCS-NIRS) to compare changes in local muscle blood flow and oxygen consumption during and after these two types of muscle contractions in humans. Overall, 24 healthy young adults participated in the study, and data were successfully obtained from 17 of them. Intermittent (2-s contraction, 2-s relaxation) isometric ankle dorsiflexion with a target tension of 20% of maximal VOL contraction was performed by EMS or VOL for 2 min, followed by a 6-min recovery period. DCS-NIRS probes were placed on the tibialis anterior muscle, and relative changes in local tissue blood flow index (rBFI), oxygen extraction fraction (rOEF), and metabolic rate of oxygen (rMRO2) were continuously derived. EMS induced more significant increases in rOEF and rMRO2 than VOL exercise but a comparable increase in rBFI. After EMS, rBFI and rMRO2 decreased more slowly than after VOL and remained significantly higher until the end of the recovery period. We concluded that EMS augments oxygen consumption in contracting muscles by enhancing oxygen extraction while increasing oxygen delivery at a rate similar to the VOL exercise. Under the conditions examined in this study, EMS demonstrated a more pronounced and/or prolonged enhancement in local muscle perfusion and aerobic metabolism compared with VOL exercise in healthy participants.NEW & NOTEWORTHY This is the first study to visualize continuous changes in blood flow and oxygen utilization within contracted muscles during and after electrical muscle stimulation (EMS) using combined diffuse correlation and near-infrared spectroscopy. We found that initiating EMS increases blood flow at a rate comparable to that during voluntary (VOL) exercise but enhances oxygen extraction, resulting in higher oxygen consumption. Furthermore, EMS increased postexercise muscle perfusion and oxygen consumption compared with that after VOL exercise.
Collapse
Affiliation(s)
- Makoto Katagiri
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Mikie Nakabayashi
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Yasuhiro Matsuda
- Faculty of Medical Science, Nippon Sport Science University, Kanagawa, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| |
Collapse
|
3
|
Nakabayashi M, Liu S, Broti NM, Ichinose M, Ono Y. Deep-learning-based separation of shallow and deep layer blood flow rates in diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:5358-5375. [PMID: 37854549 PMCID: PMC10581791 DOI: 10.1364/boe.498693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Diffuse correlation spectroscopy faces challenges concerning the contamination of cutaneous and deep tissue blood flow. We propose a long short-term memory network to directly quantify the flow rates of shallow and deep-layer tissues. By exploiting the different contributions of shallow and deep-layer flow rates to auto-correlation functions, we accurately predict the shallow and deep-layer flow rates (RMSE = 0.047 and 0.034 ml/min/100 g of simulated tissue, R2 = 0.99 and 0.99, respectively) in a two-layer flow phantom experiment. This approach is useful in evaluating the blood flow responses of active muscles, where both cutaneous and deep-muscle blood flow increase with exercise.
Collapse
Affiliation(s)
- Mikie Nakabayashi
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 2148571, Japan
| | - Siwei Liu
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 2148571, Japan
| | - Nawara Mahmood Broti
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 2148571, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University,1-1 Surugadai, Kanda, Chiyoda-ku, Tokyo,1018301, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 2148571, Japan
| |
Collapse
|
4
|
Bartlett MF, Palmero-Canton A, Oneglia AP, Mireles J, Brothers RM, Trowbridge CA, Wilkes D, Nelson MD. Epinephrine iontophoresis attenuates changes in skin blood flow and abolishes cutaneous contamination of near-infrared diffuse correlation spectroscopy estimations of muscle perfusion. Am J Physiol Regul Integr Comp Physiol 2023; 324:R368-R380. [PMID: 36693173 PMCID: PMC9970657 DOI: 10.1152/ajpregu.00242.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Near-infrared diffuse correlation spectroscopy (NIR-DCS) is an optical imaging technique for measuring relative changes in skeletal muscle microvascular perfusion (i.e., fold change above baseline) during reactive hyperemia testing and exercise and is reported as a blood flow index (BFI). Although it is generally accepted that changes in BFI are primarily driven by changes in muscle perfusion, it is well known that large, hyperthermia-induced changes in cutaneous blood flow can uncouple this relationship. What remains unknown, is how much of an impact that changes in cutaneous perfusion have on NIR-DCS BFI and estimates of skeletal muscle perfusion under thermoneutral conditions, where changes in cutaneous blood flow are assumed to be relatively low. We therefore used epinephrine iontophoresis to pharmacologically block changes in cutaneous perfusion throughout a battery of experimental procedures. The data show that 1) epinephrine iontophoresis attenuates changes in cutaneous perfusion for up to 4-h posttreatment, even in the face of significant neural and local stimuli, 2) under thermoneutral conditions, cutaneous perfusion does not significantly impact NIR-DCS BFI during reactive hyperemia testing or moderate-intensity exercise, and 3) during passive whole body heat stress, when cutaneous vasodilation is pronounced, epinephrine iontophoresis preserves NIR-DCS measures of skeletal muscle BFI during moderate-intensity exercise. Collectively, these data suggest that cutaneous perfusion is unlikely to have a major impact on NIR-DCS estimates of skeletal muscle BFI under thermoneutral conditions, but that epinephrine iontophoresis can be used to abolish cutaneous contamination of the NIR-DCS BFI signal during studies where skin blood flow may be elevated but skeletal muscle perfusion is of specific interest.
Collapse
Affiliation(s)
- Miles F Bartlett
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Alberto Palmero-Canton
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Andrew P Oneglia
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Julissa Mireles
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Cynthia A Trowbridge
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Dustin Wilkes
- US Dermatology Partners, Weatherford, Texas, United States
| | - Michael D Nelson
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| |
Collapse
|
5
|
Gasser B, Frei A, Niederseer D, Catuogno S, Frey WO, Flück M. Variability in the Aerobic Fitness-Related Dependence on Respiratory Processes During Muscle Work Is Associated With the ACE-I/D Genotype. Front Sports Act Living 2022; 4:814974. [PMID: 35663500 PMCID: PMC9161700 DOI: 10.3389/fspor.2022.814974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Background The efficiency of aerobic energy provision to working skeletal muscle is affected by aerobic fitness and a prominent insertion/deletion polymorphism in the angiotensin-converting enzyme (ACE-I/D) gene for the major modulator of tissue perfusion. We assessed whether variability in the fitness state is dependent on the contribution of multiple aspects of oxygen transport to the development of muscle power, and the respective control coefficients, are associated with the ACE-I/D genotype. Methods Twenty-five women and 19 men completed a ramp test of cycling exercise to exhaustion during which serial steps of oxygen transport [oxygen uptake (L O2 min−1) (VO2), minute ventilation in (L min−1) (VE), cardiac output in equivalents of L min−1 (Q), arterial oxygen saturation (SpO2), muscle oxygen saturation (SmO2), and total hemoglobin concentration (g dL−1) (THb) in Musculus vastus lateralis and Musculus gastrocnemius, respiration exchange ratio (RER)], blood lactate and glucose concentration, were continuously monitored. The contribution/reliance of power output (PO) on the parameters of oxygen transport was estimated based on the slopes in Pearson's moment correlations (|r| > 0.65, p < 0.05) vs. power values over the work phase of the ramp test, and for respective fractional changes per time (defining control coefficients) over the rest, work, and recovery phase of the ramp test. Associations of variability in slopes and control coefficients with the genotype and aerobic fitness were evaluated with ANOVA. Results All parameters characterizing aspects of the pathway of oxygen, except THb, presented strong linear relationships [(|r| > 0.70) to PO]. Metabolic efficiency was 30% higher in the aerobically fit subjects [peak oxygen uptake (mL O2 min−1) (VO2peak) ≥ 50 ml min−1 kg−1], and energy expenditure at rest was associated with the fitness state × ACE-I/D genotype, being highest in the fit non-carriers of the ACE D-allele. For VO2, VE, and RER the power-related slopes of linear relationships during work demonstrated an association with aerobic fitness, being 30–40% steeper in the aerobically fit than unfit subjects. For VE the power-related slope also demonstrated an association with the ACE-I/D genotype. For increasing deficit in muscle oxygen saturation (DSmO2) in Musculus vastus lateralis (DSmO2 Vas), the power-related slope was associated with the interaction between aerobic fitness × ACE-I/D genotype. Conclusion Local and systemic aspects of aerobic energy provision stand under influence of the fitness state and ACE-I/D genotype. This especially concerns the association with the index of the muscle's mitochondrial respiration (SmO2) which compares to the genetic influences of endurance training.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Bewegung und Sport, Universität Basel, Basel, Switzerland
- *Correspondence: Benedikt Gasser
| | - Annika Frei
- Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio Catuogno
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Walter O. Frey
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland
- Swiss Federal Institute of Sport, Macolin, Switzerland
- Martin Flück
| |
Collapse
|
6
|
Gasser B, Franchi MV, Ruoss S, Frei A, Popp WL, Niederseer D, Catuogno S, Frey WO, Flück M. Accelerated Muscle Deoxygenation in Aerobically Fit Subjects During Exhaustive Exercise Is Associated With the ACE Insertion Allele. Front Sports Act Living 2022; 4:814975. [PMID: 35295536 PMCID: PMC8918772 DOI: 10.3389/fspor.2022.814975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Introduction The insertion/deletion (I/D) polymorphism in the gene for the major regulator of vascular tone, angiotensin-converting enzyme-insertion/deletion (ACE-I/D) affects muscle capillarization and mitochondrial biogenesis with endurance training. We tested whether changes of leg muscle oxygen saturation (SmO2) during exhaustive exercise and recovery would depend on the aerobic fitness status and the ACE I/D polymorphism. Methods In total, 34 healthy subjects (age: 31.8 ± 10.2 years, 17 male, 17 female) performed an incremental exercise test to exhaustion. SmO2 in musculus vastus lateralis (VAS) and musculus gastrocnemius (GAS) was recorded with near-IR spectroscopy. Effects of the aerobic fitness status (based on a VO2peak cutoff value of 50 ml O2 min−1 kg−1) and the ACE-I/D genotype (detected by PCR) on kinetic parameters of muscle deoxygenation and reoxygenation were assessed with univariate ANOVA. Results Deoxygenation with exercise was comparable in VAS and GAS (p = 0.321). In both leg muscles, deoxygenation and reoxygenation were 1.5-fold higher in the fit than the unfit volunteers. Differences in muscle deoxygenation, but not VO2peak, were associated with gender-independent (p > 0.58) interaction effects between aerobic fitness × ACE-I/D genotype; being reflected in a 2-fold accelerated deoxygenation of VAS for aerobically fit than unfit ACE-II genotypes and a 2-fold higher deoxygenation of GAS for fit ACE-II genotypes than fit D-allele carriers. Discussion Aerobically fit subjects demonstrated increased rates of leg muscle deoxygenation and reoxygenation. Together with the higher muscle deoxygenation in aerobically fit ACE-II genotypes, this suggests that an ACE-I/D genotype-based personalization of training protocols might serve to best improve aerobic performance.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Bewegung und Sport – Universität Basel, Basel, Switzerland
- *Correspondence: Benedikt Gasser
| | - Martino V. Franchi
- Departement für Bewegung und Sport – Universität Basel, Basel, Switzerland
| | - Severin Ruoss
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Annika Frei
- Departement für Bewegung und Sport – Universität Basel, Basel, Switzerland
| | - Werner L. Popp
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio Catuogno
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Walter O. Frey
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, University of Zurich, Balgrist Campus, Zurich, Switzerland
- Martin Flück
| |
Collapse
|
7
|
Bartlett MF, Akins JD, Oneglia A, Brothers RM, Wilkes D, Nelson MD. Impact of Cutaneous Blood Flow on NIR-DCS Measures of Skeletal Muscle Blood Flow Index. J Appl Physiol (1985) 2021; 131:914-926. [PMID: 34264131 DOI: 10.1152/japplphysiol.00337.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Near-infrared diffuse correlation spectroscopy (NIR-DCS) is an optical technique for estimating relative changes in skeletal muscle perfusion during exercise, but may be affected by changes in cutaneous blood flow, as photons emitted by the laser must first pass through the skin. Accordingly, the purpose of this investigation was to examine how increased cutaneous blood flow affects NIR-DCS blood flow index (BFI) at rest and during exercise using a passive whole-body heating protocol that increases cutaneous, but not skeletal muscle, perfusion in the uncovered limb. BFI and cutaneous perfusion (laser Doppler flowmetry) were assessed in 15 healthy young subjects before (e.g., rest) and during 5-minutes of moderate-intensity hand-grip exercise in normothermic conditions and after cutaneous blood flow was elevated via whole-body heating. Hyperthermia significantly increased both cutaneous perfusion (~7.3-fold; p≤0.001) and NIR-DCS BFI (~4.5-fold; p≤0.001). Although relative BFI (i.e., fold-change above baseline) exhibited a typical exponential increase in muscle perfusion during normothermic exercise (2.81±0.95), there was almost no change in BFI during hyperthermic exercise (1.43±0.44). A subset of 8 subjects were subsequently treated with intradermal injection of botulinum toxin-A (Botox) to block heating-induced elevations in cutaneous blood flow, which 1) nearly abolished the hyperthermia-induced increase in BFI, and 2) restored BFI kinetics during hyperthermic exercise to values that were not different from normothermic exercise (p=0.091). Collectively, our results demonstrate that cutaneous blood flow can have a substantial, detrimental impact on NIR-DCS estimates of skeletal muscle perfusion and highlight the need for technical and/or pharmacological advancements to overcome this issue moving forward.
Collapse
Affiliation(s)
- Miles F Bartlett
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - John D Akins
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Andrew Oneglia
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Dustin Wilkes
- Medical City Weatherford Dermatology Residency Program, Weatherford, TX, United States
| | - Michael D Nelson
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
8
|
Bartlett MF, Jordan SM, Hueber DM, Nelson MD. Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow. J Appl Physiol (1985) 2021; 130:1183-1195. [PMID: 33571054 DOI: 10.1152/japplphysiol.00857.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Near-infrared diffuse correlation spectroscopy (DCS) is increasingly used to study relative changes in skeletal muscle blood flow. However, most diffuse correlation spectrometers assume that tissue optical properties-such as absorption (μa) and reduced scattering (μ's) coefficients-remain constant during physiological provocations, which is untrue for skeletal muscle. Here, we interrogate how changes in tissue μa and μ's affect DCS calculations of blood flow index (BFI). We recalculated BFI using raw autocorrelation curves and μa/μ's values recorded during a reactive hyperemia protocol in 16 healthy young individuals. First, we show that incorrectly assuming baseline μa and μ's substantially affects peak BFI and BFI slope when expressed in absolute terms (cm2/s, P < 0.01), but these differences are abolished when expressed in relative terms (% baseline). Next, to evaluate the impact of physiologic changes in μa and μ's, we compared peak BFI and BFI slope when μa and μ's were held constant throughout the reactive hyperemia protocol versus integrated from a 3-s rolling average. Regardless of approach, group means for peak BFI and BFI slope did not differ. Group means for peak BFI and BFI slope were also similar following ad absurdum analyses, where we simulated supraphysiologic changes in μa/μ's. In both cases, however, we identified individual cases where peak BFI and BFI slope were indeed affected, with this result being driven by relative changes in μa over μ's. Overall, these results provide support for past reports in which μa/μ's were held constant but also advocate for real-time incorporation of μa and μ's moving forward.NEW & NOTEWORTHY We investigated how changes in tissue optical properties affect near-infrared diffuse correlation spectroscopy (NIR-DCS)-derived indices of skeletal muscle blood flow (BFI) during physiological provocation. Although accounting for changes in tissue optical properties has little impact on BFI on a group level, individual BFI calculations are indeed impacted by changes in tissue optical properties. NIR-DCS calculations of BFI should therefore account for real-time, physiologically induced changes in tissue optical properties whenever possible.
Collapse
Affiliation(s)
- Miles F Bartlett
- Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Scott M Jordan
- College of Information and Computer Sciences, The University of Massachusetts Amherst, Amherst, Massachusetts
| | | | - Michael D Nelson
- Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
9
|
Dennis JJ, Wiggins CC, Smith JR, Isautier JMJ, Johnson BD, Joyner MJ, Cross TJ. Measurement of muscle blood flow and O 2 uptake via near-infrared spectroscopy using a novel occlusion protocol. Sci Rep 2021; 11:918. [PMID: 33441688 PMCID: PMC7806775 DOI: 10.1038/s41598-020-79741-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022] Open
Abstract
We describe here a novel protocol that sequentially combines venous followed by arterial occlusions to determine muscle blood flow and O2 uptake from a single measurement point using near-infrared spectroscopy (NIRS) during handgrip exercise. NIRS data were obtained from the flexor digitorum superficialis (FDS) muscle on the dominant arm of 15 young, healthy adults (3 women; 26 ± 7 years; 78.6 ± 9.1 kg). Participants completed a series of 15-s static handgrip contractions at 20, 40 and 60% of maximal voluntary contraction (MVC) immediately followed by either a: (i) venous occlusion (VO); (ii); arterial occlusion (AO); or venous then arterial occlusion (COMBO). Each condition was repeated 3 times for each exercise-intensity. The concordance correlation coefficient (CCC) and robust linear mixed effects modeling were used to determine measurement agreement between vascular occlusion conditions. FDS muscle blood flow ([Formula: see text]) and conductance ([Formula: see text]) demonstrated strong absolute agreement between VO and COMBO trials from rest up to 60%MVC, as evidenced by high values for CCC (> 0.82) and a linear relationship between conditions that closely approximated the line-of-identity (perfect agreement). Conversely, although FDS muscle O2 uptake ([Formula: see text]) displayed "substantial" to "near perfect" agreement between methods across exercise intensities (i.e., CCC > 0.80), there was a tendency for COMBO trials to underestimate [Formula: see text] by up to 7%. These findings indicate that the COMBO method provides valid estimates of [Formula: see text] and, to a slightly lesser extent, [Formula: see text] at rest and during static handgrip exercise up to 60%MVC. Practical implications and suggested improvements of the method are discussed.
Collapse
Affiliation(s)
- Joshua J Dennis
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joshua R Smith
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Jennifer M J Isautier
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Troy J Cross
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA. .,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
10
|
Bascuas PJ, Bataller-Cervero AV, Gutierrez H, Berzosa C. Modifications of viscoelastic properties and physiological parameters after performing uphill and downhill running trials. J Sports Med Phys Fitness 2020; 61:625-635. [PMID: 33146488 DOI: 10.23736/s0022-4707.20.11131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Trail running performance depends on many factors, including energy cost of running, biomechanical parameters and stiffness. The aim of this study was to examine the influence of different positive and negative slopes on metabolic cost, tight hemoglobin saturation, viscoelastic properties, and vertical peak impacts in physically active young runners. METHODS Nine healthy male volunteers (26±5 years) performed two separate uphill and downhill sessions on an instrumented treadmill; both sessions were completed in a random order at a constant running speed with variable slopes from 0% to ±20%. Oxygen uptake (V̇O<inf>2</inf>), carbon dioxide production (V̇CO<inf>2</inf>), pulmonary ventilation (V̇E), respiratory exchange ratio, heart rate (HR), muscle oxygen saturation, vertical impacts, and muscle tone and stiffness were assessed. RESULTS During downhill running, V̇O<inf>2peak</inf> and V̇CO<inf>2</inf> significantly decreased, and impacts higher than 6G significantly increased with a negative slope. During uphill running, V̇O<inf>2peak</inf>, V̇CO<inf>2</inf>, V̇E, and maximum HR significantly increased. Minimum values of oxygen saturation and the vastus medialis tone significantly decreased and impacts of 4-5 G significantly increased with a positive slope. CONCLUSIONS Metabolic demand increased proportionally with the uphill slope and showed a linear negative relationship with a light and moderate downhill slope. Vertical impacts of high G-forces increased during downhill running, data that indicate the importance of our ability to attenuate impacts. Finally, muscle tone and stiffness remained stable at all times, results that demonstrated their acute adaptation to running in the absence of extreme fatigue.
Collapse
Affiliation(s)
- Pablo J Bascuas
- San Jorge University, Campus Universitario, Villanueva de Gállego, Spain
| | | | - Héctor Gutierrez
- San Jorge University, Campus Universitario, Villanueva de Gállego, Spain
| | - César Berzosa
- San Jorge University, Campus Universitario, Villanueva de Gállego, Spain
| |
Collapse
|
11
|
Colburn TD, Weber RE, Hageman KS, Caldwell JT, Schulze KM, Ade CJ, Behnke BJ, Poole DC, Musch TI. Vascular ATP-sensitive K + channels support maximal aerobic capacity and critical speed via convective and diffusive O 2 transport. J Physiol 2020; 598:4843-4858. [PMID: 32798233 PMCID: PMC7874302 DOI: 10.1113/jp280232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS Oral sulphonylureas, widely prescribed for diabetes, inhibit pancreatic ATP-sensitive K+ (KATP ) channels to increase insulin release. However, KATP channels are also located within vascular (endothelium and smooth muscle) and muscle (cardiac and skeletal) tissue. We evaluated left ventricular function at rest, maximal aerobic capacity ( V ̇ O2 max) and submaximal exercise tolerance (i.e. speed-duration relationship) during treadmill running in rats, before and after systemic KATP channel inhibition via glibenclamide. Glibenclamide impaired critical speed proportionally more than V ̇ O2 max but did not alter resting cardiac output. Vascular KATP channel function (topical glibenclamide superfused onto hindlimb skeletal muscle) resolved a decreased blood flow and interstitial PO2 during twitch contractions reflecting impaired O2 delivery-to-utilization matching. Our findings demonstrate that systemic KATP channel inhibition reduces V ̇ O2 max and critical speed during treadmill running in rats due, in part, to impaired convective and diffusive O2 delivery, and thus V ̇ O2 , especially within fast-twitch oxidative skeletal muscle. ABSTRACT Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow and microvascular oxygen delivery-to-utilization matching during exercise. However, oral sulphonylurea treatment for diabetes inhibits pancreatic KATP channels to enhance insulin release. Herein we tested the hypotheses that: i) systemic KATP channel inhibition via glibenclamide (GLI; 10 mg kg-1 i.p.) would decrease cardiac output at rest (echocardiography), maximal aerobic capacity ( V ̇ O2 max) and the speed-duration relationship (i.e. lower critical speed (CS)) during treadmill running; and ii) local KATP channel inhibition (5 mg kg-1 GLI superfusion) would decrease blood flow (15 µm microspheres), interstitial space oxygen pressures (PO2 is; phosphorescence quenching) and convective and diffusive O2 transport ( Q ̇ O2 and DO2 , respectively; Fick Principle and Law of Diffusion) in contracting fast-twitch oxidative mixed gastrocnemius muscle (MG: 9% type I+IIa fibres). At rest, GLI slowed left ventricular relaxation (2.11 ± 0.59 vs. 1.70 ± 0.23 cm s-1 ) and decreased heart rate (321 ± 23 vs. 304 ± 22 bpm, both P < 0.05) while cardiac output remained unaltered (219 ± 64 vs. 197 ± 39 ml min-1 , P > 0.05). During exercise, GLI reduced V ̇ O2 max (71.5 ± 3.1 vs. 67.9 ± 4.8 ml kg-1 min-1 ) and CS (35.9 ± 2.4 vs. 31.9 ± 3.1 m min-1 , both P < 0.05). Local KATP channel inhibition decreased MG blood flow (52 ± 25 vs. 34 ± 13 ml min-1 100 g tissue-1 ) and PO2 isnadir (5.9 ± 0.9 vs. 4.7 ± 1.1 mmHg) during twitch contractions. Furthermore, MG V ̇ O2 was reduced via impaired Q ̇ O2 and DO2 (P < 0.05 for each). Collectively, these data support that vascular KATP channels help sustain submaximal exercise tolerance in healthy rats. For patients taking sulfonylureas, KATP channel inhibition may exacerbate exercise intolerance.
Collapse
Affiliation(s)
- Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
12
|
Rosenberry R, Nelson MD. Reactive hyperemia: a review of methods, mechanisms, and considerations. Am J Physiol Regul Integr Comp Physiol 2020; 318:R605-R618. [PMID: 32022580 DOI: 10.1152/ajpregu.00339.2019] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive hyperemia is a well-established technique for noninvasive assessment of peripheral microvascular function and a predictor of all-cause and cardiovascular morbidity and mortality. In its simplest form, reactive hyperemia represents the magnitude of limb reperfusion following a brief period of ischemia induced by arterial occlusion. Over the past two decades, investigators have employed a variety of methods, including brachial artery velocity by Doppler ultrasound, tissue reperfusion by near-infrared spectroscopy, limb distension by venous occlusion plethysmography, and peripheral artery tonometry, to measure reactive hyperemia. Regardless of the technique used to measure reactive hyperemia, blunted reactive hyperemia is believed to reflect impaired microvascular function. With the advent of several technological advancements, together with an increased interest in the microcirculation, reactive hyperemia is becoming more common as a research tool and is widely used across multiple disciplines. With this in mind, we sought to review the various methodologies commonly used to assess reactive hyperemia and current mechanistic pathways believed to contribute to reactive hyperemia and reflect on several methodological considerations.
Collapse
Affiliation(s)
- Ryan Rosenberry
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Michael D Nelson
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
13
|
Tucker WJ, Rosenberry R, Trojacek D, Sanchez B, Bentley RF, Haykowsky MJ, Tian F, Nelson MD. Near-infrared diffuse correlation spectroscopy tracks changes in oxygen delivery and utilization during exercise with and without isolated arterial compression. Am J Physiol Regul Integr Comp Physiol 2019; 318:R81-R88. [PMID: 31746636 DOI: 10.1152/ajpregu.00212.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Near-infrared diffuse correlation spectroscopy (NIR-DCS) is an emerging technology for simultaneous measurement of skeletal muscle microvascular oxygen delivery and utilization during exercise. The extent to which NIR-DCS can track acute changes in oxygen delivery and utilization has not yet been fully established. To address this knowledge gap, 14 healthy men performed rhythmic handgrip exercise at 30% maximal voluntary contraction, with and without isolated brachial artery compression, designed to acutely reduce convective oxygen delivery to the exercising muscle. Radial artery blood flow (Duplex Ultrasound) and NIR-DCS derived variables [blood flow index (BFI), tissue oxygen saturation (StO2), and metabolic rate of oxygen (MRO2)] were simultaneously measured. During exercise, both radial artery blood flow (+51.6 ± 20.3 mL/min) and DCS-derived BFI (+155.0 ± 82.2%) increased significantly (P < 0.001), whereas StO2 decreased -7.9 ± 6.2% (P = 0.002) from rest. Brachial artery compression during exercise caused a significant reduction in both radial artery blood flow (-32.0 ± 19.5 mL/min, P = 0.001) and DCS-derived BFI (-57.3 ± 51.1%, P = 0.01) and a further reduction of StO2 (-5.6 ± 3.8%, P = 0.001) compared with exercise without compression. MRO2 was not significantly reduced during arterial compression (P = 0.83) due to compensatory reductions in StO2, driven by increases in deoxyhemoglobin/myoglobin (+7.1 ± 6.1 μM, P = 0.01; an index of oxygen extraction). Together, these proof-of-concept data help to further validate NIR-DCS as an effective tool to assess the determinants of skeletal muscle oxygen consumption at the level of the microvasculature during exercise.
Collapse
Affiliation(s)
- Wesley J Tucker
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas.,College of Nursing, University of Texas at Arlington, Arlington, Texas.,Department of Nutrition & Food Sciences, Texas Woman's University, Houston, Texas
| | - Ryan Rosenberry
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Darian Trojacek
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Belinda Sanchez
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Robert F Bentley
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Mark J Haykowsky
- College of Nursing, University of Texas at Arlington, Arlington, Texas
| | - Fenghua Tian
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Michael D Nelson
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|