1
|
Caddy HT, Criddle JL, Wigati KW, Carter HH, Kelsey LJ, Soloshenko A, Morgan WH, Doyle BJ, Green DJ. Retinal and cerebral hemodynamics redistribute to favor thermoregulation in response to passive environmental heating and heated exercise in humans. Temperature (Austin) 2024; 12:55-70. [PMID: 40041160 PMCID: PMC11875494 DOI: 10.1080/23328940.2024.2411771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 03/06/2025] Open
Abstract
Core temperature (TC) changes, alongside exercise, affect hemodynamic responses across different conduit and microvascular beds. This study investigated impacts of ecologically valid environmental heat and exercise exposures on cerebral, skin and retinal vascular responses by combining physiological assessments alongside computational fluid dynamics (CFD) modeling. Young, healthy participants (n = 12) were exposed to environmental passive heating (PH), and heated exercise (HE) (ergometer cycling), in climate-controlled conditions (50 mins, 40°C, 50% relative humidity) while maintaining upright posture. Blood flow responses in the common carotid (CCA), internal carotid (ICA) and central retinal (CRA) arteries were assessed using Duplex ultrasound, while forearm skin microvascular blood flow responses were measured using optical coherence tomography angiography. Three-dimensional retinal hemodynamics (flow and pressure) were calculated via CFD simulation, enabling assessment of wall shear stress (WSS). TC rose following PH (+0.2°C, p = 0.004) and HE (+1.4°C, p < 0.001). PH increased skin microvascular blood flow (p < 0.001), whereas microvascular CRA flow decreased (p = 0.038), despite unchanged ICA flow. HE exacerbated these differences, with increased CCA flow (p = 0.007), unchanging ICA flow and decreased CRA flow (p < 0.001), and interactions between vascular (CCA vs. ICA p = 0.018; CCA vs. CRA p = 0.004) and microvascular (skin vs. retinal arteriolar p < 0.001) territories. Simulations revealed patterns of WSS and lumen pressure that uniformly decreased following HE. Under ecologically valid thermal challenge, different responses occur in distinct conduit and microvascular territories, with blood flow distribution favoring systemic thermoregulation, while flow may redistribute within the brain.
Collapse
Affiliation(s)
- Harrison T. Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia
- The UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Jesse L. Criddle
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Kristanti W. Wigati
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
- Medical Physiology and Biochemistry Department, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Howard H. Carter
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Lachlan J. Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia
- The UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | | | - William H. Morgan
- Lions Eye Institute, Perth, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- International Space Centre, Perth, Australia
| | - Barry J. Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia
- The UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Daniel J. Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| |
Collapse
|
2
|
Caddy HT, Thomas HJ, Kelsey LJ, Smith KJ, Doyle BJ, Green DJ. Comparison of computational fluid dynamics with transcranial Doppler ultrasound in response to physiological stimuli. Biomech Model Mechanobiol 2024; 23:255-269. [PMID: 37805938 PMCID: PMC10902019 DOI: 10.1007/s10237-023-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Cerebrovascular haemodynamics are sensitive to multiple physiological stimuli that require synergistic response to maintain adequate perfusion. Understanding haemodynamic changes within cerebral arteries is important to inform how the brain regulates perfusion; however, methods for direct measurement of cerebral haemodynamics in these environments are challenging. The aim of this study was to assess velocity waveform metrics obtained using transcranial Doppler (TCD) with flow-conserving subject-specific three-dimensional (3D) simulations using computational fluid dynamics (CFD). Twelve healthy participants underwent head and neck imaging with 3 T magnetic resonance angiography. Velocity waveforms in the middle cerebral artery were measured with TCD ultrasound, while diameter and velocity were measured using duplex ultrasound in the internal carotid and vertebral arteries to calculate incoming cerebral flow at rest, during hypercapnia and exercise. CFD simulations were developed for each condition, with velocity waveform metrics extracted in the same insonation region as TCD. Exposure to stimuli induced significant changes in cardiorespiratory measures across all participants. Measured absolute TCD velocities were significantly higher than those calculated from CFD (P range < 0.001-0.004), and these data were not correlated across conditions (r range 0.030-0.377, P range 0.227-0.925). However, relative changes in systolic and time-averaged velocity from resting levels exhibited significant positive correlations when the distinct techniques were compared (r range 0.577-0.770, P range 0.003-0.049). Our data indicate that while absolute measures of cerebral velocity differ between TCD and 3D CFD simulation, physiological changes from resting levels in systolic and time-averaged velocity are significantly correlated between techniques.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Hannah J Thomas
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Kurt J Smith
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
- Cerebrovascular Health, Exercise, and Environmental Research Sciences Laboratory, University of Victoria, Victoria, Canada
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia.
- School of Engineering, The University of Western Australia, Perth, Australia.
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Caddy HT, Kelsey LJ, Parker LP, Green DJ, Doyle BJ. Modelling large scale artery haemodynamics from the heart to the eye in response to simulated microgravity. NPJ Microgravity 2024; 10:7. [PMID: 38218868 PMCID: PMC10787773 DOI: 10.1038/s41526-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
We investigated variations in haemodynamics in response to simulated microgravity across a semi-subject-specific three-dimensional (3D) continuous arterial network connecting the heart to the eye using computational fluid dynamics (CFD) simulations. Using this model we simulated pulsatile blood flow in an upright Earth gravity case and a simulated microgravity case. Under simulated microgravity, regional time-averaged wall shear stress (TAWSS) increased and oscillatory shear index (OSI) decreased in upper body arteries, whilst the opposite was observed in the lower body. Between cases, uniform changes in TAWSS and OSI were found in the retina across diameters. This work demonstrates that 3D CFD simulations can be performed across continuously connected networks of small and large arteries. Simulated results exhibited similarities to low dimensional spaceflight simulations and measured data-specifically that blood flow and shear stress decrease towards the lower limbs and increase towards the cerebrovasculature and eyes in response to simulated microgravity, relative to an upright position in Earth gravity.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, WA, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Louis P Parker
- FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, WA, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
- School of Engineering, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
4
|
Kwok CHR, Park JC, Joseph SZ, Foster JK, Green DJ, Jansen SJ. Cognition and Cerebral Blood Flow After Extracranial Carotid Revascularization for Carotid Atherosclerosis: A Systematic Review. Clin Ther 2023; 45:1069-1076. [PMID: 37770311 DOI: 10.1016/j.clinthera.2023.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE Extracranial atherosclerotic carotid stenosis is associated with inadequate cerebral blood flow (CBF) and cognitive dysfunction. The impact of extracranial carotid revascularization on cognition and how any cognitive change relates to changes in CBF are less clear. This review examines the effects of revascularization of extracranial carotid disease by carotid endarterectomy (CEA) or carotid stenting (CAS) on cognition, and how this relates to changes in CBF. METHODS A systematic review of existing reports in the Medline, Embase, and Cochrane databases was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis statement recommendations. All original retrospective or prospective studies and clinical trials that compared pre- and postoperative cognitive function and CBF in patients with extracranial carotid stenosis who underwent CEA or CAS versus a control group, published between January 1985 and December 2022, were identified and considered eligible for inclusion in this study. FINDINGS Seven studies (661 participants; 460 CEA or CAS) were identified. All were observational studies and of moderate to good methodologic quality. Six studies (619 participants; follow-up range 1 month to 2 years) demonstrated improvement in some cognitive domains following CEA or CAS, improvement in CBF following revascularization, and correlated some of these cognitive changes with changes in CBF. One study (42 participants; 3 months follow-up) found cognitive improvement following CEA, but found no improvement in CBF or any correlation between cognitive and CBF change. The literature however represented heterogenous study populations examining asymptomatic and/or symptomatic carotid stenosis, differing in treatment modality and criteria for control groups ranging from healthy volunteers to those with stenosis but not who underwent surgical revascularization, and finally, differing reporting methods. This heterogeneity precluded meta-analysis. IMPLICATIONS Definitive conclusions are limited by variation in cognitive function assessment, timing of testing, and how these are correlated to CBF. However, research suggests a potential improvement in cognition which may be associated with improvement in CBF, particularly in those patients who have more significant CBF deficit at baseline. Further studies are required to better understand this association and provide a clearer picture of the cognitive effects of carotid revascularization.
Collapse
Affiliation(s)
- C H Ricky Kwok
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth; School of Human Sciences (Exercise and Sports Sciences).
| | - Jun Cheul Park
- Department of Vascular Surgery, Waikato Hospital, Hamilton, New Zealand
| | - Simon Z Joseph
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth; School of Human Sciences (Exercise and Sports Sciences)
| | - Jonathan K Foster
- Synapse Neuropsychology, Perth; Faculty of Health Sciences; School of Paediatrics and Child Health, Faculty of Health and Medical Science
| | | | - Shirley J Jansen
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth; Heart and Vascular Research Institute, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth; School of Medicine, The University of Western Australia, Perth
| |
Collapse
|
5
|
Yi H, Yang Z, Bramlage L, Ludwig B. Pathophysiology of intracranial aneurysms in monozygotic twins: A rare case study from hemodynamic perspectives. Comput Biol Med 2023; 163:107198. [PMID: 37354818 DOI: 10.1016/j.compbiomed.2023.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Hemodynamic mechanisms of the formation and growth of intracranial aneurysms (IA) in monozygotic twins (MTs) are still under-reported. To partially fill such knowledge gap, this study employed an experimentally validated numerical model to compare hemodynamics in 3 anatomical and 5 ablation study neurovascular models from a rare pair of MTs in terms of 7 critical hemodynamic parameters. Numerical results showed significant differences in hemodynamics between the MTs, although they share the same genes, indicating that genetic mutation and environmental factors might affect neurovascular morphologies and cause hemodynamic changes. After virtual removals of IAs in the ablation study, the locations where the aneurysmal sac/bleb generated in bifurcated anterior cerebral arteries (ACAs) register a locally high instantaneous wall shear stress (IWSS) of 52.9 and 70.1 Pa at the systolic peak in twin A and twin B, respectively. Same scenario can be observed in the distribution of instantaneous wall shear stress gradient (IWSSG), with 571.1 Pa/mm for twin A and 301.3 Pa/mm for twin B due to aggressive blood impingements, leading to IA generation. The fenestrated complex approaching ACA bifurcations in twin A may assist IA growth and rupture, via. Causing abnormal IWSS of 116.3 Pa, IWSSG of 832.5 Pa/mm, and oscillatory shear index (OSI) of 0.49. The bleb in twin B has high risks of progression and possible rupture as the IA suffers relatively low IWSS and high OSI. Additionally, IA generation can change blood flow rates in each connected artery, then affecting blood supplies to associated tissues and organs.
Collapse
Affiliation(s)
- Hang Yi
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, USA
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45435, USA.
| | - Luke Bramlage
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E. Apple St., Dayton, OH, 45409, USA; Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Bryan Ludwig
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E. Apple St., Dayton, OH, 45409, USA; Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| |
Collapse
|
6
|
Weston ME, Barker AR, Tomlinson OW, Coombes JS, Bailey TG, Bond B. Agreement between left and right middle cerebral artery blood velocity responses to incremental and constant work-rate exercise in healthy males and females. Physiol Meas 2023; 44:074001. [PMID: 37406643 DOI: 10.1088/1361-6579/ace49d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Objective.To quantify the agreement between left and right middle cerebral artery blood velocity (MCAv) responses to incremental and constant work-rate exercise in adults.ApproachSeventeen healthy adults (23.8 ± 2.4 years, 9 females) completed a ramp incremental test to exhaustion on a cycle ergometer, three 6-minute transitions at a moderate-intensity, and three at a heavy-intensity, all on separate days. Bilateral MCAv was measured throughout using transcranial Doppler ultrasonography, with left and right MCAv data analysed separately. Data were analysed at baseline, gas exchange threshold, respiratory compensation point and exhaustion during ramp incremental exercise. MCAv responses to constant work-rate exercise were analysed using a mono-exponential model, to determine time- and amplitude-based kinetic response parameters.Main ResultsLeft and right MCAv responses to incremental and constant work-rate exercise were significantly, strongly and positively correlated (r≥ 0.61,P< 0.01). Coefficient of variation (left versus right) ranged from 7.3%-20.7%, 6.4%-26.2% and 5.9%-22.5% for ramp, moderate and heavy-intensity exercise, respectively. The relative change in MCAv from baseline was higher in the right compared to left MCAv during ramp, moderate and heavy-intensity exercise (allP< 0.05), but the effect sizes were small (d≤ 0.4). Small mean left-right differences were present during ramp incremental exercise at all time-points (<6 cm s-1; <4%), and for all kinetic parameters during moderate and heavy-intensity exercise (<3 cm s-1, <3%, <4 s).SignificanceThese findings demonstrate similarities between left and right MCAv responses to incremental and constant-work rate exercise in adults on a group-level, but also highlight individual variation in the agreement between left and right MCAv exercise responses.
Collapse
Affiliation(s)
- Max E Weston
- Children's Health and Exercise Research Centre, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Owen W Tomlinson
- Children's Health and Exercise Research Centre, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
- School of Nursing Midwifery and Social Work, The University of Queensland, Brisbane, Australia
| | - Bert Bond
- Children's Health and Exercise Research Centre, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Yi H, Yang Z, Bramlage LC, Ludwig BR. Morphology and Hemodynamics of Cerebral Arteries and Aneurysms in a Rare Pair of Monozygotic Twins. Diagnostics (Basel) 2023; 13:2004. [PMID: 37370899 DOI: 10.3390/diagnostics13122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In this preliminary study, the underlying pathophysiology mechanisms of cerebral aneurysms (CAs) in monozygotic twins (MTs) were investigated via a rare pair of MTs (twin A and twin B) involving four reconstructed arterial models using preclinical information. First, dimensions and configurated outlines of three-perspective geometries were compared. Adopting an in-vitro validated numerical CA model, hemodynamic characteristics were investigated in the MTs, respectively. Despite expected genetic similarities, morphological comparisons show that configurations of cerebral arteries exhibit significant differences between the twins. The ICA size of twin A is larger than that in twin B (2.23~25.86%), varying with specific locations, attributing to variations during embryological developments and environmental influences. Numerical modeling indicates the MTs have some hemodynamic similarities such as pressure distributions (~13,400 Pa) and their oscillatory shear index (OSI) (0~0.49), but present significant differences in local regions. Specifically, the difference in blood flow rate in the MTs is from 16% to 221%, varying with specifically compared arteries. The maximum time-averaged wall shear stress (53.6 Pa vs. 37.8 Pa) and different local OSI distributions were also observed between the MTs. The findings revealed that morphological variations in MTs could be generated by embryological and environmental factors, further influencing hemodynamic characteristics on CA pathophysiology.
Collapse
Affiliation(s)
- Hang Yi
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
| | - Luke C Bramlage
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E Apple St., Dayton, OH 45409, USA
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Bryan R Ludwig
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E Apple St., Dayton, OH 45409, USA
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
8
|
Mulser L, Moreau D. Effect of Acute Cardiovascular Exercise on Cerebral Blood Flow: A Systematic Review. Brain Res 2023; 1809:148355. [PMID: 37003561 DOI: 10.1016/j.brainres.2023.148355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
A single bout of cardiovascular exercise can have a cascade of physiological effects, including increased blood flow to the brain. This effect has been documented across multiple modalities, yet studies have reported mixed findings. Here, we systematically review evidence for the acute effect of cardiovascular exercise on cerebral blood flow across a range of neuroimaging techniques and exercise characteristics. Based on 52 studies and a combined sample size of 1,174 individuals, our results indicate that the acute effect of cardiovascular exercise on cerebral blood flow generally follows an inverted U-shaped relationship, whereby blood flow increases early on but eventually decreases as exercise continues. However, we also find that this effect is not uniform across studies, instead varying across a number of key variables including exercise characteristics, brain regions, and neuroimaging modalities. As the most comprehensive synthesis on the topic to date, this systematic review sheds light on the determinants of exercise-induced change in cerebral blood flow, a necessary step toward personalized interventions targeting brain health across a range of populations.
Collapse
Affiliation(s)
- Lisa Mulser
- School of Psychology The University of Auckland
| | - David Moreau
- School of Psychology and Centre for Brain Research The University of Auckland.
| |
Collapse
|
9
|
Thomas HJ, Marsh CE, Scurrah KJ, Naylor LH, Smith KJ, Green DJ. Studies of twin responses to understand exercise THerapy (STRUETH): Cerebrovascular function. J Physiol 2022; 600:2729-2746. [PMID: 35474455 DOI: 10.1113/jp282998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Characterising individual responses to resistance and endurance exercise training can inform optimal strategies for exercise prescription. This study utilised monozygotic and dizygotic twins in a randomised cross-over study to determine individual responsiveness to different modalities of exercise training. The influence of environment versus genetics in cerebrovascular responses to training was determined. It is apparent that individuals respond differently to distinct exercise stimuli and that switching modality may be a beneficial way to obtain positive responses in cerebrovascular function. This study has implications for improving individualised exercise prescription to maintain or improve cerebral structure and function. ABSTRACT Introduction We studied monozygotic (MZ) and dizygotic (DZ) twin pairs following resistance (RES) and endurance (END) training to assess genetic and environmental contributions to cerebrovascular function. Methods Cerebrovascular function (rest, autoregulation, hypercapnia, exercise) was assessed in 86 healthy same-sex MZ (30 pairs) and DZ (13 pairs) twins, who underwent three-months of END and RES. Carbon dioxide (PET CO2 ), mean arterial pressure (MAP) and middle cerebral artery velocity (MCAv) were measured and MCAv resistance (MCACVRi ) was calculated. Results Resting MCAv reduced by -2.8 cm/s following RES (P = 0.024), with no change following END (-0.3 cm/s, P = 0.758). Change in MCACVRi following RES was +0.11 mmHg/cm/s (P < 0.001), which was significantly greater than END (+0.02 mmHg/cm/s, P = 0.030). MAP also increased following RES (+4 mmHg, P = 0.010), but not END (+1 mmHg, P = 0.518). No changes were apparent in PET CO2 . At rest, positive response rates following RES ranged from 27-71% and 40-64% following END. Intraclass correlations between twins were moderate for most variables at baseline. In response to training, only MZ pairs were significantly correlated for change in MCAv (P = 0.005) and low frequency phase (P = 0.047) following RES. Conclusion This study is the first to compare cerebrovascular function following RES and END in MZ and DZ twins. Most individuals who did not respond to one modality were able to respond by switching modality and baseline heritability estimates were higher than training response. Exercise professionals should therefore consider modality and environmental factors when optimising interventions. Abstract figure legend Schematic summary of the assessment battery of cerebrovascular measures of function and health developed by Ainslie and Green. Transcranial Doppler (TCD) measures are complemented by contemporaneous assessment of whole brain blood flow, derived from simultaneous high-resolution ultrasound via insonation of the internal carotid and vertebral arteries. Results show that group response does not always reflect individual responses, and that switching exercise modality can increase individual responsiveness to exercise training. Low twin correlations in response to exercise training indicate nurture has a larger contribution to training response than nature. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hannah J Thomas
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Channa E Marsh
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Katrina J Scurrah
- Twins Research Australia, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Louise H Naylor
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Kurt J Smith
- Cerebrovascular Health, Exercise, and Environmental Research Sciences Laboratory, School of Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|