1
|
Antonaglia C, Citton GM, Soave S, Salton F, Ruaro B, Confalonieri P, Confalonieri M. Deciphering loop gain complexity: a primer for understanding a pathophysiological trait of obstructive sleep apnea patients. Respir Med 2024; 234:107820. [PMID: 39332779 DOI: 10.1016/j.rmed.2024.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Loop Gain (LG), a concept borrowed from engineering used to describe the stability of electrical circuits under negative feedback, has emerged as a crucial pathophysiological trait in sleep respiratory disorders. In simple terms, LG measures how the respiratory control system reacts to changes in breathing. A high LG suggests that minor disturbances in breathing prompt exaggerated responses, potentially leading to instability and oscillations in respiratory patterns. Conversely, a low LG implies that the system responds more gently to disturbances, resulting in stable and well-regulated breathing. However, understanding the concept of loop gain presents challenges due to its dynamic nature across various sleep respiratory disorders, sleep stages, positions, and interactions with other pathophysiological traits. Recent efforts have aimed to identify a non-invasive method for assessing LG, with some evidence suggesting that information regarding pathophysiological traits can be extracted from polysomnography. There exists a clinical imperative for physician to unravel the intricacies of LG when managing Obstructive Sleep Apnea (OSA) patients, because LG abnormalities delineate a distinct pathophysiological phenotype of OSA. Specifically, certain patients exhibit a high LG as the primary factor driving sleep apnea, influencing treatment outcomes. For instance, individuals with high LG may respond differently to therapies such as continuous positive airway pressure (CPAP) or oral appliances compared to those with normal LG, or they can be treated with specific drugs or combination therapies. Thus, understanding LG becomes paramount for precise assessment of OSA patients and is fundamental for optimizing a personalized and effective treatment approach.
Collapse
Affiliation(s)
- Caterina Antonaglia
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy.
| | - Gloria Maria Citton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Sara Soave
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| |
Collapse
|
2
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
3
|
Sands SA, Edwards BA. Pro: can physiological risk factors for obstructive sleep apnea be determined by analysis of data obtained from routine polysomnography? Sleep 2023; 46:zsac310. [PMID: 36715219 PMCID: PMC10171624 DOI: 10.1093/sleep/zsac310] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 01/31/2023] Open
Affiliation(s)
- Scott A Sands
- Division of Sleep Medicine, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Bradley A Edwards
- Department of Physiology, School of Biomedical Sciences and Biomedical Discovery Institute, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Ni YN, Holzer RC, Thomas RJ. Acute and long-term effects of acetazolamide in presumed high loop gain sleep apnea. Sleep Med 2023; 107:137-148. [PMID: 37178545 DOI: 10.1016/j.sleep.2023.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The acute effect during positive pressure titration and long term efficacy of acetazolamide (AZT) in high loop gain sleep apnea (HLGSA) is inadequately assessed. We predicted that AZT may improve HLGSA in both conditions. METHODS A retrospective analysis of polysomnograms from patients with presumed HLGSA and residual respiratory instability administered AZT (125 or 250 mg) about 3 h into an initially drug-free positive pressure titration. A responder was defined as ≥ 50% reduction of the apnea hypopnea index(AHI 3% or arousal) before and after AZT. A multivariable logistic regression model estimated responder predictors. Long term efficacy of AZT was assessed by comparing both auto-machine (aREIFLOW) and manually scored respiratory events (sREIFLOW) extracted from the ventilator, prior to and after 3 months of AZT, in a subset. RESULTS Of the 231 participants (median age of 61[51-68] years) and 184 (80%) males in the acute effect testing: 77 and 154 patients were given 125 mg and 250 mg AZT. Compared to PAP alone, PAP plus AZT was associated with a lower breathing related arousal index (8 [3-16] vs. 5 [2-10], p < 0.001), and AHI3% (19 [7-37] vs. 11 [5-21], p < 0.001); 98 patients were responders. The non-rapid eye movement sleep (NREM) AHI3% (OR 1.031, 95%CI [1.016-1.046], p < 0.001) was a strong predictor for responder status with AZT exposure. In the 109 participants with 3-month data, both aREIFLOW and sREIFLOWwere significantly reduced after AZT. CONCLUSIONS AZT acutely and chronically reduced residual sleep apnea in presumed HLGSA; NREM AHI3% is a response predictor. AZT was well tolerated and beneficial for at least 3 months.
Collapse
Affiliation(s)
- Yue-Nan Ni
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| | - Rena C Holzer
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Robert Joseph Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
5
|
Panza GS, Puri S, Lin HS, Badr MS, Mateika JH. Reply to Chen et al.: Mild Intermittent Hypoxia: A New Treatment Approach for Patients with Obstructive Sleep Apnea and Hypertension. Am J Respir Crit Care Med 2022; 206:123-124. [PMID: 35476606 PMCID: PMC9954335 DOI: 10.1164/rccm.202202-0228le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Gino S. Panza
- John D. Dingell Veterans Affairs Medical CenterDetroit, Michigan,Wayne State University School of MedicineDetroit, Michigan
| | - Shipra Puri
- John D. Dingell Veterans Affairs Medical CenterDetroit, Michigan,Wayne State University School of MedicineDetroit, Michigan
| | - Ho-Sheng Lin
- John D. Dingell Veterans Affairs Medical CenterDetroit, Michigan,Wayne State University School of MedicineDetroit, Michigan
| | - M. Safwan Badr
- John D. Dingell Veterans Affairs Medical CenterDetroit, Michigan,Wayne State University School of MedicineDetroit, Michigan
| | - Jason H. Mateika
- John D. Dingell Veterans Affairs Medical CenterDetroit, Michigan,Wayne State University School of MedicineDetroit, Michigan,Corresponding author (e-mail: )
| |
Collapse
|
6
|
Lechat B, Scott H, Naik G, Hansen K, Nguyen DP, Vakulin A, Catcheside P, Eckert DJ. New and Emerging Approaches to Better Define Sleep Disruption and Its Consequences. Front Neurosci 2021; 15:751730. [PMID: 34690688 PMCID: PMC8530106 DOI: 10.3389/fnins.2021.751730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Current approaches to quantify and diagnose sleep disorders and circadian rhythm disruption are imprecise, laborious, and often do not relate well to key clinical and health outcomes. Newer emerging approaches that aim to overcome the practical and technical constraints of current sleep metrics have considerable potential to better explain sleep disorder pathophysiology and thus to more precisely align diagnostic, treatment and management approaches to underlying pathology. These include more fine-grained and continuous EEG signal feature detection and novel oxygenation metrics to better encapsulate hypoxia duration, frequency, and magnitude readily possible via more advanced data acquisition and scoring algorithm approaches. Recent technological advances may also soon facilitate simple assessment of circadian rhythm physiology at home to enable sleep disorder diagnostics even for “non-circadian rhythm” sleep disorders, such as chronic insomnia and sleep apnea, which in many cases also include a circadian disruption component. Bringing these novel approaches into the clinic and the home settings should be a priority for the field. Modern sleep tracking technology can also further facilitate the transition of sleep diagnostics from the laboratory to the home, where environmental factors such as noise and light could usefully inform clinical decision-making. The “endpoint” of these new and emerging assessments will be better targeted therapies that directly address underlying sleep disorder pathophysiology via an individualized, precision medicine approach. This review outlines the current state-of-the-art in sleep and circadian monitoring and diagnostics and covers several new and emerging approaches to better define sleep disruption and its consequences.
Collapse
Affiliation(s)
- Bastien Lechat
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Hannah Scott
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Ganesh Naik
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Kristy Hansen
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Duc Phuc Nguyen
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Andrew Vakulin
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Peter Catcheside
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
7
|
Panza GS, Sutor T, Gee CM, Graco M, McCully KK, Chiodo A, Badr MS, Nash MS. Is Sleep Disordered Breathing Confounding Rehabilitation Outcomes in Spinal Cord Injury Research? Arch Phys Med Rehabil 2021; 103:1034-1045. [PMID: 34537222 DOI: 10.1016/j.apmr.2021.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/02/2022]
Abstract
The purpose of this article is to highlight the importance of considering sleep-disordered breathing (SDB) as a potential confounder to rehabilitation research interventions in spinal cord injury (SCI). SDB is highly prevalent in SCI, with increased prevalence in individuals with higher and more severe lesions, and the criterion standard treatment with continuous positive airway pressure remains problematic. Despite its high prevalence, SDB is often untested and untreated in individuals with SCI. In individuals without SCI, SDB is known to negatively affect physical function and many of the physiological systems that negatively affect physical rehabilitation in SCI. Thus, owing to the high prevalence, under testing, low treatment adherence, and known negative effect on the physical function, it is contended that underdiagnosed SDB in SCI may be confounding physical rehabilitation research studies in individuals with SCI. Studies investigating the effect of treating SDB and its effect on physical rehabilitation in SCI were unable to be located. Thus, studies investigating the likely integrated relationship among physical rehabilitation, SDB, and proper treatment of SDB in SCI are needed. Owing to rapid growth in both sleep medicine and physical rehabilitation intervention research in SCI, the authors contend it is the appropriate time to begin the conversations and collaborations between these fields. We discuss a general overview of SDB and physical training modalities, as well as how SDB could be affecting these studies.
Collapse
Affiliation(s)
- Gino S Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI.
| | - Tommy Sutor
- Research Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Cameron M Gee
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| | - Marnie Graco
- Institute for Breathing and Sleep, Austin Health; and School of Physiotherapy, University of Melbourne, Melbourne, Australia
| | | | - Anthony Chiodo
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI
| | - M Safwan Badr
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI
| | - Mark S Nash
- Department of Neurological Surgery, Physical Medicine & Rehabiliation, and Physical Therapy, Miami, FL; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL
| | | |
Collapse
|
8
|
Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol 2021; 341:113709. [PMID: 33781731 PMCID: PMC8527806 DOI: 10.1016/j.expneurol.2021.113709] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
This review explores forms of respiratory and autonomic plasticity, and associated outcome measures, that are initiated by exposure to intermittent hypoxia. The review focuses primarily on studies that have been completed in humans and primarily explores the impact of mild intermittent hypoxia on outcome measures. Studies that have explored two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of ventilation and upper airway muscle activity, are initially reviewed. The role these forms of plasticity might have in sleep disordered breathing are also explored. Thereafter, the role of intermittent hypoxia in the initiation of autonomic plasticity is reviewed and the role this form of plasticity has in cardiovascular and hemodynamic responses during and following intermittent hypoxia is addressed. The role of these responses in individuals with sleep disordered breathing and spinal cord injury are subsequently addressed. Ultimately an integrated picture of the respiratory, autonomic and cardiovascular responses to intermittent hypoxia is presented. The goal of the integrated picture is to address the types of responses that one might expect in humans exposed to one-time and repeated daily exposure to mild intermittent hypoxia. This form of intermittent hypoxia is highlighted because of its potential therapeutic impact in promoting functional improvement and recovery in several physiological systems.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Gino Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States of America.
| |
Collapse
|