1
|
Serghani MM, Heiser C, Schwartz AR, Amatoury J. Exploring hypoglossal nerve stimulation therapy for obstructive sleep apnea: A comprehensive review of clinical and physiological upper airway outcomes. Sleep Med Rev 2024; 76:101947. [PMID: 38788518 DOI: 10.1016/j.smrv.2024.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Obstructive sleep apnea (OSA) is a chronic disorder characterized by recurrent episodes of upper airway collapse during sleep, which can lead to serious health issues like cardiovascular disease and neurocognitive impairments. While positive airway pressure serves as the standard treatment, intolerance in some individuals necessitates exploration of alternative therapies. Hypoglossal nerve stimulation (HGNS) promises to mitigate OSA morbidity by stimulating the tongue muscles to maintain airway patency. However, its effectiveness varies, prompting research for optimization. This review summarizes the effects of HGNS on upper airway obstruction from human and animal studies. It examines physiological responses including critical closing pressure, maximal airflow, nasal and upper airway resistance, compliance, stiffness, and geometry. Interactions among these parameters and discrepant findings in animal and human studies are explored. Additionally, the review summarizes the impact of HGNS on established OSA metrics, such as the apnea-hypopnea index, oxygen desaturation index, and sleep arousals. Various therapeutic modalities, including selective unilateral or bilateral HGNS, targeted unilateral HGNS, and whole unilateral or bilateral HGNS, are discussed. This review consolidates our understanding of HGNS mechanisms, fostering exploration of under-investigated outcomes and approaches to drive advancements in HGNS therapy.
Collapse
Affiliation(s)
- Marie-Michèle Serghani
- Sleep and Upper Airway Research Group (SUARG), Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture (MSFEA), American University of Beirut (AUB), Beirut, Lebanon
| | - Clemens Heiser
- Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Department ENT-HNS, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Alan R Schwartz
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Otolaryngology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason Amatoury
- Sleep and Upper Airway Research Group (SUARG), Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture (MSFEA), American University of Beirut (AUB), Beirut, Lebanon.
| |
Collapse
|
2
|
Sieck GC, Hernandez-Vizcarrondo GA, Brown AD, Fogarty MJ. Sarcopenia of the longitudinal tongue muscles in rats. Respir Physiol Neurobiol 2024; 319:104180. [PMID: 37863156 PMCID: PMC10851598 DOI: 10.1016/j.resp.2023.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The tongue is a muscular hydrostat, with lingual movements occurring during breathing, chewing, swallowing, vocalization, vomiting, coughing and grooming/sexual activities. In the elderly, reduced lingual dysfunction and weakness contribute to increased risks of obstructive sleep apnea and aspiration pneumonia. In Fischer 344 (F344) rats, a validated model of aging, hypoglossal motor neuron death is apparent, although there is no information regarding tongue strength. The intrinsic tongue muscles, the superior and inferior longitudinal, transversalis and verticalis exist in an interdigitated state. Recently, we established a method to measure the specific force of individual intrinsic tongue muscle, accounting for the tissue bulk that is not in the direction of uniaxial force. In the longitudinal muscles of 6- (n = 10), 18- (n = 9) and 24-month-old (n = 12) female and male F344 rats, we assessed specific force, fatigability, fiber type dependent cross-sectional area (CSA) and overall CSA. Muscle force and fatigue was assessed ex vivo using platinum plate simulation electrodes. Tongue muscles were frozen in melting isopentane, and transverse sections cut at 10 µm. Muscle fiber type was classified based on immunoreactivity to myosin heavy chain (MyHC) isoform antibodies. In H&E stained muscle, CSA and uniaxial muscle contributions to total tongue bulk was assessed. We observed a robust ∼30% loss of longitudinal specific force, with reductions in overall longitudinal muscle fiber CSA and specific atrophy of type IIx/IIb fibers. It will be important to investigate the mechanistic underpinnings of hypoglossal motor neuron death and tongue muscle weakness to eventually provide therapies for age-associated lingual dysfunctions.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Alyssa D Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Knapman FL, Cohen EM, Kulaga T, Lovell N, Lisowski L, McMullan S, Burke PGR, Bilston LE. Direct optogenetic activation of upper airway muscles in an acute model of upper airway hypotonia mimicking sleep onset. Sleep 2023; 46:zsad226. [PMID: 37651221 DOI: 10.1093/sleep/zsad226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA), where the upper airway collapses repeatedly during sleep due to inadequate dilator muscle tone, is challenging to treat as current therapies are poorly tolerated or have variable and unpredictable efficacy. We propose a novel, optogenetics-based therapy, that stimulates upper airway dilator muscle contractions in response to light. To determine the feasibility of a novel optogenetics-based OSA therapy, we developed a rodent model of human sleep-related upper airway muscle atonia. Using this model, we evaluated intralingual delivery of candidate optogenetic constructs, notably a muscle-targeted approach that will likely have a favorable safety profile. METHODS rAAV serotype 9 viral vectors expressing a channelrhodopsin-2 variant, driven by a muscle-specific or nonspecific promoter were injected into rat tongues to compare strength and specificity of opsin expression. Light-evoked electromyographic responses were recorded in an acute, rodent model of OSA. Airway dilation was captured with ultrasound. RESULTS The muscle-specific promoter produced sufficient opsin expression for light stimulation to restore and/or enhance electromyographic signals (linear mixed model, F = 140.0, p < 0.001) and induce visible tongue contraction and airway dilation. The muscle-specific promoter induced stronger (RM-ANOVA, F(1,8) = 10.0, p = 0.013) and more specific opsin expression than the nonspecific promoter in an otherwise equivalent construct. Viral DNA and RNA were robust in the tongue, but low or absent in all other tissues. CONCLUSIONS Significant functional responses to direct optogenetic muscle activation were achieved following muscle-specific promoter-driven rAAV-mediated transduction, providing proof-of-concept for an optogenetic therapy for patients with inadequate dilator muscle activity during sleep.
Collapse
Affiliation(s)
- Fiona L Knapman
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Tom Kulaga
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nigel Lovell
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Simon McMullan
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Peter G R Burke
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Koecklin KHU, Kato C, Abe Y, Yabushita T, Kokai S, Ono T. Histological and contractile changes in the genioglossus muscle after nasal obstruction in growing rats. Sci Rep 2023; 13:6245. [PMID: 37069178 PMCID: PMC10110532 DOI: 10.1038/s41598-023-32921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
The aim of the study was to address the genioglossus muscle physiological and histological changes after unilateral nasal obstruction in growing rats. Fifty-four 6-day-old male Wistar albino rats were randomly divided into control (n = 27) and experimental (n = 27) groups. Unilateral nasal obstruction was performed at 8 days old. Contractile properties of the genioglossus whole muscle were measured at 5-, 7- and 9-week-old, including the twitch and tetanic forces, contraction time, half-decay time, and fatigue index. The histological characteristics of the genioglossus were also evaluated at 5-, 7- and 9-week-old, analyzing the myosin heavy chain composition of the slow, fast, IIa and IIb muscle fiber type, by measuring the number, rate, diameter and cross-sectional area. The maximal twitch force, and tetanic force at 60 Hz and 80 Hz force was significantly increased at all ages after nasal obstruction. The fatigue index was decreased at 5 weeks-old after nasal obstruction. The diameter and cross-sectional area of the fast, IIa and IIb muscle fiber types were increased at 7 and 9 weeks after nasal obstruction, while only the diameter of IIa type and cross-sectional area of IIb type were increased at 5 weeks-old after nasal obstruction. Nasal obstruction during growth affects the whole genioglossus muscle contractile properties and histological characteristics, increasing its force, the diameter and area of its muscle fibers. These changes in the genioglossus muscle may affect the normal growth, development and function of the craniofacial complex.
Collapse
Affiliation(s)
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasunori Abe
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Satoshi Kokai
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
5
|
Fogarty MJ, Sieck GC. Tongue muscle contractile, fatigue, and fiber type properties in rats. J Appl Physiol (1985) 2021; 131:1043-1055. [PMID: 34323593 DOI: 10.1152/japplphysiol.00329.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intrinsic and extrinsic tongue muscles manipulate the position and shape of the tongue and are activated during many oral and respiratory behaviors. In the present study, in 6-mo-old Fischer 344 rats, we examined mechanical and fatigue properties of tongue muscles in relation to their fiber type composition. In an ex vivo preparation, isometric force and fatigue was assessed by direct muscle stimulation. Tongue muscles were frozen in melting isopentane and transverse sections cut at 10 µm. In hematoxylin-eosin (H&E)-stained muscle sections, the relative fractions of muscle versus extracellular matrix were determined. Muscle fibers were classified as type I, IIa and IIx, and/or IIb based on immunoreactivity to specific myosin heavy chain isoform antibodies. Cross-sectional areas (CSAs) and proportions of different fiber types were used to calculate their relative contribution to total muscle CSAs. We found that the superior and inferior longitudinal intrinsic muscles (4.4 N/cm2) and genioglossus muscle (3.0 N/cm2) generated the greatest maximum isometric force compared with the transversalis muscle (0.9 N/cm2). The longitudinal muscles and the transversalis muscle displayed greater fatigue during repetitive stimulation consistent with the greater relative contribution of type IIx and/or IIb fibers. By contrast, the genioglossus, comprising a higher proportion of type I and IIa fibers, was more fatigue resistant. This study advances our understanding of the force, fatigue, and fiber type-specific properties of individual tongue musculature. The assessments and approach provide a readily accessible muscular readout for scenarios where motor control dysfunction or tongue weakness is evident.NEW & NOTEWORTHY For the individual tongue muscles, relatively little quantification of uniaxial force, fatigue, and fiber type-specific properties has been documented. Here, we assessed uniaxial-specific force generation, fatigability, and muscle fiber type-specific properties in the superior and inferior longitudinal muscles, the transversalis, and the genioglossus in Fischer 344 rats. The longitudinal muscles produced the greatest isometric tetanic-specific forces. The genioglossus was more fatigue resistant and comprised higher proportions of I and IIa fibers.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, grid.66875.3aMayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, grid.66875.3aMayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Garner DP, Lamira J. Respiratory outcomes with the use of a lower custom fit genioglossal-effecting oral appliance. Clin Exp Dent Res 2020; 6:100-106. [PMID: 32067401 PMCID: PMC7025983 DOI: 10.1002/cre2.254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Sleep apnea research cites that an oral appliance, which places the mandible in a more forward position and the genioglossus (tongue muscle) on the floor of the mouth, improves aspects of the pharyngeal opening. Exercise science research has cited improvements in airway dynamics and physiological variables with oral appliance use during exercise. Thus, the purpose of this study was to design an oral appliance that would act on the genioglossus and determine if there were effects on respiratory parameters while exercising. MATERIALS AND METHODS Seventeen healthy subjects ages 18-43 participated in this study. Prior to the exercise protocol, the order of the oral applicance (OA) or no oral appliance (no OA) condition was randomly assigned to subjects, with subjects completing both conditions. Respiratory parameters (respiratory rate, ventilation, oxygen, and carbon dioxide) were measured between conditions while subjects ran for 10 min at steady state. RESULTS The results demonstrated that both respiratory rate (25.97 BPM, OA and 28.35 BPM, no OA) and ventilation (47.66 l/min, OA and 50.34 l/min, No OA) were significantly lowered (p < .01) in the OA condition. There were no differences in carbon dioxide (1.89 l/min, no OA and 1.88 l/min, OA) or oxygen outcomes (2.17 l/min, no OA and 2.17 l/min OA). DISCUSSION The outcomes from this study suggest that the design of the oral appliance elicits an effect on the genioglossus, thereby resulting in lowered respiratory rate and ventilation with no negative effects on oxygen uptake during exercise.
Collapse
Affiliation(s)
- Dena P. Garner
- Department of Health and Human Performance, the CitadelThe CitadelCharlestonSouth Carolina
| | - Jensine Lamira
- Department of Health and Human Performance, the CitadelThe CitadelCharlestonSouth Carolina
| |
Collapse
|
7
|
Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo. Sci Rep 2020; 10:550. [PMID: 31953471 PMCID: PMC6969049 DOI: 10.1038/s41598-019-57328-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P < 0.001, n = 7) and frequency (P = 0.002, n = 8, with responses to 10 Hz stimulation greater than for 15–25 Hz, P < 0.022). Stimulations during REM sleep elicited significantly reduced responses at powers 3–20 mW compared to non-rapid eye movement (non-REM) sleep and wakefulness (each P < 0.05, n = 7). Response thresholds were also greater in REM sleep (10 mW) compared to non-REM and waking (3 to 5 mW, P < 0.05), and the slopes of the regressions between input photostimulation powers and output motor responses were specifically reduced in REM sleep (P < 0.001). This study identifies that variations in photostimulation input produce tunable changes in hypoglossal motor output in-vivo and identifies REM sleep specific suppression of net motor excitability and responsivity.
Collapse
|
8
|
Pilarski JQ, Leiter JC, Fregosi RF. Muscles of Breathing: Development, Function, and Patterns of Activation. Compr Physiol 2019; 9:1025-1080. [PMID: 31187893 DOI: 10.1002/cphy.c180008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review is a comprehensive description of all muscles that assist lung inflation or deflation in any way. The developmental origin, anatomical orientation, mechanical action, innervation, and pattern of activation are described for each respiratory muscle fulfilling this broad definition. In addition, the circumstances in which each muscle is called upon to assist ventilation are discussed. The number of "respiratory" muscles is large, and the coordination of respiratory muscles with "nonrespiratory" muscles and in nonrespiratory activities is complex-commensurate with the diversity of activities that humans pursue, including sleep (8.27). The capacity for speech and adoption of the bipedal posture in human evolution has resulted in patterns of respiratory muscle activation that differ significantly from most other animals. A disproportionate number of respiratory muscles affect the nose, mouth, pharynx, and larynx, reflecting the vital importance of coordinated muscle activity to control upper airway patency during both wakefulness and sleep. The upright posture has freed the hands from locomotor functions, but the evolutionary history and ontogeny of forelimb muscles pervades the patterns of activation and the forces generated by these muscles during breathing. The distinction between respiratory and nonrespiratory muscles is artificial, as many "nonrespiratory" muscles can augment breathing under conditions of high ventilator demand. Understanding the ontogeny, innervation, activation patterns, and functions of respiratory muscles is clinically useful, particularly in sleep medicine. Detailed explorations of how the nervous system controls the multiple muscles required for successful completion of respiratory behaviors will continue to be a fruitful area of investigation. © 2019 American Physiological Society. Compr Physiol 9:1025-1080, 2019.
Collapse
Affiliation(s)
- Jason Q Pilarski
- Department of Biological and Dental Sciences, Idaho State University Pocatello, Idaho, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Ralph F Fregosi
- Departments of Physiology and Neuroscience, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
9
|
Phenotypic approaches to obstructive sleep apnoea – New pathways for targeted therapy. Sleep Med Rev 2018; 37:45-59. [DOI: 10.1016/j.smrv.2016.12.003] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 02/01/2023]
|
10
|
Activation of the Hypoglossal to Tongue Musculature Motor Pathway by Remote Control. Sci Rep 2017; 7:45860. [PMID: 28383527 PMCID: PMC5382915 DOI: 10.1038/srep45860] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Reduced tongue muscle tone precipitates obstructive sleep apnea (OSA), and activation of the tongue musculature can lessen OSA. The hypoglossal motor nucleus (HMN) innervates the tongue muscles but there is no pharmacological agent currently able to selectively manipulate a channel (e.g., Kir2.4) that is highly restricted in its expression to cranial motor pools such as the HMN. To model the effect of manipulating such a restricted target, we introduced a “designer” receptor into the HMN and selectively modulated it with a “designer” drug. We used cre-dependent viral vectors (AAV8-hSyn-DIO-hM3Dq-mCherry) to transduce hypoglossal motoneurons of ChAT-Cre+ mice with hM3Dq (activating) receptors. We measured sleep and breathing in three conditions: (i) sham, (ii) after systemic administration of clozapine-N-oxide (CNO; 1 mg/kg) or (iii) vehicle. CNO activates hM3Dq receptors but is otherwise biologically inert. Systemic administration of CNO caused significant and sustained increases in tongue muscle activity in non-REM (261 ± 33% for 10 hrs) and REM sleep (217 ± 21% for 8 hrs), both P < 0.01 versus controls. Responses were specific and selective for the tongue with no effects on diaphragm or postural muscle activities, or sleep-wake states. These results support targeting a selective and restricted “druggable” target at the HMN (e.g., Kir2.4) to activate tongue motor activity during sleep.
Collapse
|
11
|
Kidder IJ, Mudery JA, Barreda S, Taska DJ, Bailey EF. Evaluating the control: minipump implantation and breathing behavior in the neonatal rat. J Appl Physiol (1985) 2016; 121:615-22. [PMID: 27402557 PMCID: PMC11735011 DOI: 10.1152/japplphysiol.00080.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
We evaluated genioglossus (GG) gross motoneuron morphology, electromyographic (EMG) activities, and respiratory patterning in rat pups allowed to develop without interference (unexposed) and pups born to dams subjected to osmotic minipump implantation in utero (saline-exposed). In experiment 1, 48 Sprague-Dawley rat pups (Charles-River Laboratories), ages postnatal day 7 (P7) through postnatal day 10 (P10), were drawn from two experimental groups, saline-exposed (n = 24) and unexposed (n = 24), and studied on P7, P8, P9, or P10. Pups in both groups were sedated (Inactin hydrate, 70 mg/kg), and fine-wire electrodes were inserted into the GG muscle of the tongue and intercostal muscles to record EMG activities during breathing in air and at three levels of normoxic hypercapnia [inspired CO2 fraction (FiCO2 ): 0.03, 0.06, and 0.09]. Using this approach, we assessed breathing frequency, heart rate, apnea type, respiratory event types, and respiratory stability. In experiment 2, 16 rat pups were drawn from the same experimental groups, saline-exposed (n = 9) and unexposed (n = 7), and used in motoneuron-labeling studies. In these pups a retrograde dye was injected into the GG muscle, and the brain stems were subsequently harvested and sliced. Labeled GG motoneurons were identified with microscopy, impaled, and filled with Lucifer yellow. Double-labeled motoneurons were reconstructed, and the number of primary projections and soma volumes were calculated. Whereas pups in each group exhibited the same number (P = 0.226) and duration (P = 0.093) of respiratory event types and comparable motoneuron morphologies, pups in the implant group exhibited more central apneas and respiratory instability relative to pups allowed to develop without interference.
Collapse
Affiliation(s)
- Ian J Kidder
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona; and
| | - Jordan A Mudery
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona; and
| | - Santiago Barreda
- Department of Linguistics, University of California Davis, Davis, California
| | - David J Taska
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona; and
| | - E Fiona Bailey
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona; and
| |
Collapse
|
12
|
Abstract
AbstractMore than 35 years ago, Meltzoff and Moore (1977) published their famous article, “Imitation of facial and manual gestures by human neonates.” Their central conclusion, that neonates can imitate, was and continues to be controversial. Here, we focus on an often-neglected aspect of this debate, namely, neonatal spontaneous behaviors themselves. We present a case study of a paradigmatic orofacial “gesture,” namely tongue protrusion and retraction (TP/R). Against the background of new research on mammalian aerodigestive development, we ask: How does the human aerodigestive system develop, and what role does TP/R play in the neonate's emerging system of aerodigestion? We show that mammalian aerodigestion develops in two phases: (1) from the onset of isolated orofacial movementsin uteroto the postnatal mastery of suckling at 4 months after birth; and (2) thereafter, from preparation to the mastery of mastication and deglutition of solid foods. Like other orofacial stereotypies, TP/R emerges in the first phase and vanishes prior to the second. Based upon recent advances in activity-driven early neural development, we suggest a sequence of three developmental events in which TP/R might participate: the acquisition of tongue control, the integration of the central pattern generator (CPG) for TP/R with other aerodigestive CPGs, and the formation of connections within the cortical maps of S1 and M1. If correct, orofacial stereotypies are crucial to the maturation of aerodigestion in the neonatal period but also unlikely to co-occur with imitative behavior.
Collapse
|
13
|
Bordoni B, Marelli F, Morabito B. The tongue after whiplash: case report and osteopathic treatment. Int Med Case Rep J 2016; 9:179-82. [PMID: 27462180 PMCID: PMC4939984 DOI: 10.2147/imcrj.s111147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tongue plays a fundamental role in several bodily functions; in the case of a dysfunction, an exhaustive knowledge of manual techniques to treat the tongue is useful in order to help patients on their path toward recovery. A 30-year-old male patient with a recent history of whiplash, with increasing cervical pain during swallowing and reduced ability to open the mouth, was treated with osteopathic techniques addressed to the tongue. The osteopathic techniques led to a disappearance of pain and the complete recovery of the normal functions of the tongue, such as swallowing and mouth opening. The manual osteopathic approach consists of applying a low load, in order to produce a long-lasting stretching of the myofascial complex, with the aim of restoring the optimal length of this continuum, decreasing pain, and improving functionality. According to the authors’ knowledge, this is the first article reporting a case of resolution of a post whiplash disorder through osteopathic treatment of the tongue.
Collapse
Affiliation(s)
- Bruno Bordoni
- Department of Cardiology, Santa Maria Nascente IRCCS, Don Carlo Gnocchi Foundation, Institute of Hospitalization and Care with Scientific Address, Milan; CRESO, School of Osteopathic Centre for Research and Studies, Castellanza; CRESO, School of Osteopathic Centre for Research and Studies, Falconara Marittima, Ancona
| | - Fabiola Marelli
- CRESO, School of Osteopathic Centre for Research and Studies, Castellanza; CRESO, School of Osteopathic Centre for Research and Studies, Falconara Marittima, Ancona
| | - Bruno Morabito
- CRESO, School of Osteopathic Centre for Research and Studies, Castellanza; CRESO, School of Osteopathic Centre for Research and Studies, Falconara Marittima, Ancona; Foundation Polyclinic University A, Gemelli University Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Garcia AJ, Zanella S, Dashevskiy T, Khan SA, Khuu MA, Prabhakar NR, Ramirez JM. Chronic Intermittent Hypoxia Alters Local Respiratory Circuit Function at the Level of the preBötzinger Complex. Front Neurosci 2016; 10:4. [PMID: 26869872 PMCID: PMC4740384 DOI: 10.3389/fnins.2016.00004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/07/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is a common state experienced in several breathing disorders, including obstructive sleep apnea (OSA) and apneas of prematurity. Unraveling how CIH affects the CNS, and in turn how the CNS contributes to apneas is perhaps the most challenging task. The preBötzinger complex (preBötC) is a pre-motor respiratory network critical for inspiratory rhythm generation. Here, we test the hypothesis that CIH increases irregular output from the isolated preBötC, which can be mitigated by antioxidant treatment. Electrophysiological recordings from brainstem slices revealed that CIH enhanced burst-to-burst irregularity in period and/or amplitude. Irregularities represented a change in individual fidelity among preBötC neurons, and changed transmission from preBötC to the hypoglossal motor nucleus (XIIn), which resulted in increased transmission failure to XIIn. CIH increased the degree of lipid peroxidation in the preBötC and treatment with the antioxidant, 5,10,15,20-Tetrakis (1-methylpyridinium-4-yl)-21H,23H-porphyrin manganese(III) pentachloride (MnTMPyP), reduced CIH-mediated irregularities on the network rhythm and improved transmission of preBötC to the XIIn. These findings suggest that CIH promotes a pro-oxidant state that destabilizes rhythmogenesis originating from the preBötC and changes the local rhythm generating circuit which in turn, can lead to intermittent transmission failure to the XIIn. We propose that these CIH-mediated effects represent a part of the central mechanism that may perpetuate apneas and respiratory instability, which are hallmark traits in several dysautonomic conditions.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
| | - Sebastien Zanella
- Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
| | - Tatiana Dashevskiy
- Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
| | - Shakil A Khan
- Institute for Integrative Physiology, The University of Chicago Chicago, IL, USA
| | - Maggie A Khuu
- Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology, The University of Chicago Chicago, IL, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research InstituteSeattle, WA, USA; Departments of Neurological Surgery and Pediatrics, University of WashingtonSeattle, WA, USA
| |
Collapse
|
15
|
|
16
|
Uchima Koecklin KH, Kato C, Funaki Y, Hiranuma M, Ishida T, Fujita K, Yabushita T, Kokai S, Ono T. Effect of unilateral nasal obstruction on tongue protrusion forces in growing rats. J Appl Physiol (1985) 2015; 118:1128-35. [DOI: 10.1152/japplphysiol.01152.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/10/2015] [Indexed: 01/23/2023] Open
Abstract
Mouth breathing caused by nasal obstruction affects the normal growth and development of craniofacial structures, including changes in the orofacial muscles. Tongue muscles play an important role in patency of the pharyngeal airway, and changes in the breathing pattern may influence tongue function. The purpose of this study was to evaluate the effect of unilateral nasal obstruction during growth on contractile properties of the tongue-protruding muscles. Sixty 6-day-old male Wistar albino rats were divided randomly into control ( n = 30) and experimental ( n = 30) groups. Rats in the experimental group underwent a unilateral nasal obstruction after cauterization of the external nostril at the age of 8 days, and muscle contractile characteristics were measured at 5, 7, and 9 wk of age. The specific parameters measured were twitch force, contraction time, half-decay time, tetanic force, and fatigue index. Repeated-measures multivariate analysis of variance was used for intergroup and intragroup statistical comparisons. Twitch contraction force and half-decay time were significantly increased in the experimental group at all ages. Tetanic forces at 60 and 80 Hz were significantly higher in the experimental group at all ages. The fatigue index was decreased significantly in the experimental group at the age of 5 wk. These results suggest that early unilateral nasal obstruction may increase the contraction force of the tongue-protruding muscles and prolong the duration of muscle contraction, which may influence the shape and development of the craniofacial complex.
Collapse
Affiliation(s)
- Karin Harumi Uchima Koecklin
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chiho Kato
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukiha Funaki
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Maya Hiranuma
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Ishida
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Fujita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadachika Yabushita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Kokai
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Ono
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Effects of tongue position and lung volume on voluntary maximal tongue protrusion force in humans. Respir Physiol Neurobiol 2015; 206:61-6. [DOI: 10.1016/j.resp.2014.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/19/2014] [Accepted: 11/28/2014] [Indexed: 11/23/2022]
|
18
|
Meadows PM, Whitehead MC, Zaidi FN. Effects of targeted activation of tongue muscles on oropharyngeal patency in the rat. J Neurol Sci 2014; 346:178-93. [PMID: 25190291 DOI: 10.1016/j.jns.2014.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/24/2014] [Accepted: 08/16/2014] [Indexed: 02/01/2023]
Abstract
Laboratory rats were acutely implanted with an electrode array composed of eight independently controllable contacts applied to ventral and dorsal aspects of the left and right hypoglossal nerves (HGNs) and their branches. Bipolar intramuscular electromyographic (EMG) electrodes were implanted into the left and right genioglossus, hyoglossus and styloglossus muscles to identify which muscles were activated during stimulation via the contacts. Elicited movements, including changes in the position of the tongue and in the size and the shape of the airway, were documented video-graphically through a surgery microscope and an endoscope. Constant current electrical stimulation activated various combinations of electrode contacts and the stimulation patterns were correlated with corresponding oral movements, airway sizes, and EMG activities. Results demonstrate that graded responses and differential activation of the various tongue muscles are achievable by stimulation of specific contacts in the electrode array. These effects are interpreted to result from the targeted activation of regions of the nerve lying under and between the electrodes. Further testing established that the muscle responses elicited by unilateral electrical stimulation with the present approach can be smoothly graded, that the muscle responses resulted in opening of the airway and could be reliably maintained for long durations.
Collapse
|
19
|
When norepinephrine becomes a driver of breathing irregularities: how intermittent hypoxia fundamentally alters the modulatory response of the respiratory network. J Neurosci 2014; 34:36-50. [PMID: 24381266 DOI: 10.1523/jneurosci.3644-12.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neuronal networks are endogenously modulated by aminergic and peptidergic substances. These modulatory processes are critical for maintaining normal activity and adapting networks to changes in metabolic, behavioral, and environmental conditions. However, disturbances in neuromodulation have also been associated with pathologies. Using whole animals (in vivo) and functional brainstem slices (in vitro) from mice, we demonstrate that exposure to acute intermittent hypoxia (AIH) leads to fundamental changes in the neuromodulatory response of the respiratory network located within the preBötzinger complex (preBötC), an area critical for breathing. Norepinephrine, which normally regularizes respiratory activity, renders respiratory activity irregular after AIH. Respiratory irregularities are caused both in vitro and in vivo by AIH, which increases synaptic inhibition within the preBötC when norepinephrine is endogenously or exogenously increased. These irregularities are prevented by blocking synaptic inhibition before AIH. However, regular breathing cannot be reestablished if synaptic inhibition is blocked after AIH. We conclude that subtle changes in synaptic transmission can have dramatic consequences at the network level as endogenously released neuromodulators that are normally adaptive become the drivers of irregularity. Moreover, irregularities in the preBötC result in irregularities in the motor output in vivo and in incomplete transmission of inspiratory activity to the hypoglossus motor nucleus. Our finding has basic science implications for understanding network functions in general, and it may be clinically relevant for understanding pathological disturbances associated with hypoxic episodes such as those associated with myocardial infarcts, obstructive sleep apneas, apneas of prematurity, Rett syndrome, and sudden infant death syndrome.
Collapse
|
20
|
Abstract
Obstructive sleep apnea (OSA) is a common disorder characterized by repetitive collapse of the pharyngeal airway during sleep. Control of pharyngeal patency is a complex process relating primarily to basic anatomy and the activity of many pharyngeal dilator muscles. The control of these muscles is regulated by a number of processes including respiratory drive, negative pressure reflexes, and state (sleep) effects. In general, patients with OSA have an anatomically small airway the patency of which is maintained during wakefulness by reflex-driven augmented dilator muscle activation. At sleep onset, muscle activity falls, thereby compromising the upper airway. However, recent data suggest that the mechanism of OSA differs substantially among patients, with variable contributions from several physiologic characteristics including, among others: level of upper airway dilator muscle activation required to open the airway, increase in chemical drive required to recruit the pharyngeal muscles, chemical control loop gain, and arousal threshold. Thus, the cause of sleep apnea likely varies substantially between patients. Other physiologic mechanisms likely contributing to OSA pathogenesis include falling lung volume during sleep, shifts in blood volume from peripheral tissues to the neck, and airway edema. Apnea severity may progress over time, likely due to weight gain, muscle/nerve injury, aging effects on airway anatomy/collapsibility, and changes in ventilatory control stability.
Collapse
Affiliation(s)
- David P White
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
21
|
Horner RL. Neural control of the upper airway: integrative physiological mechanisms and relevance for sleep disordered breathing. Compr Physiol 2013; 2:479-535. [PMID: 23728986 DOI: 10.1002/cphy.c110023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The various neural mechanisms affecting the control of the upper airway muscles are discussed in this review, with particular emphasis on structure-function relationships and integrative physiological motor-control processes. Particular foci of attention include the respiratory function of the upper airway muscles, and the various reflex mechanisms underlying their control, specifically the reflex responses to changes in airway pressure, reflexes from pulmonary receptors, chemoreceptor and baroreceptor reflexes, and postural effects on upper airway motor control. This article also addresses the determinants of upper airway collapsibility and the influence of neural drive to the upper airway muscles, and the influence of common drugs such as ethanol, sedative hypnotics, and opioids on upper airway motor control. In addition to an examination of these basic physiological mechanisms, consideration is given throughout this review as to how these mechanisms relate to integrative function in the intact normal upper airway in wakefulness and sleep, and how they may be involved in the pathogenesis of clinical problems such obstructive sleep apnea hypopnea.
Collapse
|
22
|
Fregosi RF, Ludlow CL. Activation of upper airway muscles during breathing and swallowing. J Appl Physiol (1985) 2013; 116:291-301. [PMID: 24092695 DOI: 10.1152/japplphysiol.00670.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The upper airway is a complex muscular tube that is used by the respiratory and digestive systems. The upper airway is invested with several small and anatomically peculiar muscles. The muscle fiber orientations and their nervous innervation are both extremely complex, and how the activity of the muscles is initiated and adjusted during complex behaviors is poorly understood. The bulk of the evidence suggests that the entire assembly of tongue and laryngeal muscles operate together but differently during breathing and swallowing, like a ballet rather than a solo performance. Here we review the functional anatomy of the tongue and laryngeal muscles, and their neural innervation. We also consider how muscular activity is altered as respiratory drive changes, and briefly address upper airway muscle control during swallowing.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Department of Physiology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
23
|
Chalmers HJ, Farberman A, Bermingham A, Sears W, Viel L. The use of a tongue tie alters laryngohyoid position in the standing horse. Equine Vet J 2013; 45:711-4. [DOI: 10.1111/evj.12056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 12/30/2012] [Indexed: 11/26/2022]
Affiliation(s)
- H. J. Chalmers
- Department of Clinical Studies; Ontario Veterinary College; University of Guelph; Ontario Canada
| | - A. Farberman
- Department of Clinical Studies; Ontario Veterinary College; University of Guelph; Ontario Canada
| | - A. Bermingham
- Department of Clinical Studies; Ontario Veterinary College; University of Guelph; Ontario Canada
| | - W. Sears
- Department of Population Medicine; Ontario Veterinary College; University of Guelph; Ontario Canada
| | - L. Viel
- Department of Clinical Studies; Ontario Veterinary College; University of Guelph; Ontario Canada
| |
Collapse
|
24
|
Van Erck-Westergren E, Franklin SH, Bayly WM. Respiratory diseases and their effects on respiratory function and exercise capacity. Equine Vet J 2013; 45:376-87. [PMID: 23368813 DOI: 10.1111/evj.12028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 12/02/2012] [Indexed: 12/26/2022]
Abstract
Given that aerobic metabolism is the predominant energy pathway for most sports, the respiratory system can be a rate-limiting factor in the exercise capacity of fit and healthy horses. Consequently, respiratory diseases, even in mild forms, are potentially deleterious to any athletic performance. The functional impairment associated with a respiratory condition depends on the degree of severity of the disease and the equestrian discipline involved. Respiratory abnormalities generally result in an increase in respiratory impedance and work of breathing and a reduced level of ventilation that can be detected objectively by deterioration in breathing mechanics and arterial blood gas tensions and/or lactataemia. The overall prevalence of airway diseases is comparatively high in equine athletes and may affect the upper airways, lower airways or both. Diseases of the airways have been associated with a wide variety of anatomical and/or inflammatory conditions. In some instances, the diagnosis is challenging because conditions can be subclinical in horses at rest and become clinically relevant only during exercise. In such cases, an exercise test may be warranted in the evaluation of the patient. The design of the exercise test is critical to inducing the clinical signs of the problem and establishing an accurate diagnosis. Additional diagnostic techniques, such as airway sampling, can be valuable in the diagnosis of subclinical lower airway problems that have the capacity to impair performance. As all these techniques become more widely used in practice, they should inevitably enhance veterinarians' diagnostic capabilities and improve their assessment of treatment effectiveness and the long-term management of equine athletes.
Collapse
|
25
|
Zaidi FN, Meadows P, Jacobowitz O, Davidson TM. Tongue anatomy and physiology, the scientific basis for a novel targeted neurostimulation system designed for the treatment of obstructive sleep apnea. Neuromodulation 2012; 16:376-86; discussion 386. [PMID: 22938390 DOI: 10.1111/j.1525-1403.2012.00514.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a chronic condition that affects millions adults. The effective standard treatment is positive airway pressure (PAP). However, approximately half of the patients that are prescribed PAP are unable or unwilling to comply with this therapy. Untreated OSA ultimately leads to very serious comorbidities. An alternative therapy for this patient population, therefore, is desirable. Hypoglossal nerve (HGN) stimulation is under investigation by multiple groups as a possible alternative therapy for OSA. OBJECTIVE To understand the underlying mechanisms of actions related to HGN stimulation, and the implication of this knowledge for specifying and designing a neurostimulation system for the treatment of OSA. RESULTS Loss of lingual and pharyngeal tone within a narrow airway is the primary mechanism for OSA. Posterior and anterior tongues are different in their anatomy and physiology. Muscle fibers in the posterior tongue are predominantly fatigue resistant that are responsible for the long sustained tonic activities required for maintaining the tongue's position and preventing its mass from falling into the retroglossal airway. The human tongue is a muscular hydrostat and hence would benefit from a sophisticated HGN stimulation system that is capable of achieving a concerted spatio-temporal interplay of multiple lingual muscles, including retrusors. CONCLUSION Targeted neurostimulation of the proximal HGN presents as a viable system approach that is far more versatile and physiologic and quite different than prior systems.
Collapse
Affiliation(s)
- Faisal N Zaidi
- Imthera Medical, Inc., San Diego, CA, USA. Hudson Valley Ear, Nose & Throat PC, Middletown, NY, USA. New York Presbyterian Hospital/Columbia University and Attending, Mount Sinai Medical Center and Sleep Surgery and Sleep Medicine, New York, NY, USA. Head & Neck Surgery Clinic, UCSD Hillcrest-Medical Offices North, University of California San Diego, San Diego, CA, USA
| | | | | | | |
Collapse
|
26
|
Lee KZ, Fuller DD, Hwang JC. Pulmonary C-fiber activation attenuates respiratory-related tongue movements. J Appl Physiol (1985) 2012; 113:1369-76. [PMID: 22936725 DOI: 10.1152/japplphysiol.00031.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional impact of pulmonary C-fiber activation on upper airway biomechanics has not been evaluated. Here, we tested the hypothesis that pulmonary C-fiber activation alters the respiratory-related control of tongue movements. The force produced by tongue movements was quantified in spontaneously breathing, anesthetized adult rats before and after stimulation of pulmonary C fibers via intrajugular delivery of capsaicin (0.625 and 1.25 μg/kg). Brief occlusion of the trachea was used to increase the respiratory drive to the tongue muscles, and hypoglossal (XII) nerve branches were selectively sectioned to denervate the protrusive and retrusive tongue musculature. Tracheal occlusion triggered inspiratory-related tongue retrusion in rats with XII nerves intact or following section of the medial XII nerve branch, which innervates the genioglossus muscle. Inspiratory-related tongue protrusion was only observed after section of the lateral XII branch, which innervates the primary tongue retrusor muscles. The tension produced by inspiratory-related tongue movement was significantly attenuated by capsaicin, but tongue movements remained retrusive, unless the medial XII branch was sectioned. Capsaicin also significantly delayed the onset of tongue movements such that tongue forces could not be detected until after onset of the inspiratory diaphragm activity. We conclude that altered neural drive to the tongue muscles following pulmonary C-fiber activation has a functionally significant effect on tongue movements. The diminished tongue force and delay in the onset of tongue movements following pulmonary C-fiber activation are potentially unfavorable for upper airway patency.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
27
|
MORE ABOUT MOUTHPIECES: Authors' response. J Am Dent Assoc 2012. [DOI: 10.14219/jada.archive.2012.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
The effects of mouthpiece use on gas exchange parameters during steady-state exercise in college-aged men and women. J Am Dent Assoc 2012; 142:1041-7. [PMID: 21881071 DOI: 10.14219/jada.archive.2011.0325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The authors conducted a study to assess the effects of custom-fitted mouthpieces on gas exchange parameters, including volume of oxygen consumption over time [corrected] (VO(2)), volume of oxygen consumption over time per kilogram of body weight [corrected] (VO(2) /kg) and volume of carbon dioxide production over time [corrected] (VO(2)). METHODS Sixteen physically fit college students aged 18 through 21 years performed two 10-minute treadmill runs (6.5 miles per hour, 0 percent grade) for each of three treatment conditions (mouthpiece, no mouthpiece and nose breathing). The authors assigned the conditions randomly for each participant and for each session. They assessed gas exchange parameters by using a metabolic measurement system. RESULTS The authors used analysis of variance to compare all variables. They set the significance level at α = .05 and used a Tukey post hoc analysis of treatment means to identify differences between groups. The results showed significant improvements (P < .05) in VO(2,) VO(2) /kg and VCO(2) in the mouthpiece condition. CONCLUSIONS The study findings show that use of a custom-fitted mouthpiece resulted in improved specific gas exchange parameters. The authors are pursuing further studies to explain the mechanisms involved in the improved endurance performance exhibited with mouthpiece use. CLINICAL IMPLICATIONS Dental care professionals have an obligation to understand the increasing research evidence in support of mouthpiece use during exercise and athletic activity and to educate their patients.
Collapse
|
29
|
Fregosi RF. Respiratory related control of hypoglossal motoneurons--knowing what we do not know. Respir Physiol Neurobiol 2011; 179:43-7. [PMID: 21741499 DOI: 10.1016/j.resp.2011.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 06/24/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022]
Abstract
Because tongue position and stiffness help insure that the pharyngeal airspace is sufficiently open during breathing, the respiration-related behavior of the tongue muscles has been studied in detail, particularly during the last two decades. Although eight different muscles act upon the mammal tongue, we know very little about the respiration-related control of the majority of these, and almost nothing about how they work together as a complex electro-mechanical system. Other significant gaps include how hypoglossal motoneuron axons find their appropriate muscle target during development, whether the biophysical properties of hypoglossal motoneurons driving different muscles are the same, and how afferent information from cardiorespiratory reflex systems is transmitted from major brainstem integrating centers to the hypoglossal motoneuron pool. This brief review outlines some of these issues, with the hope that this will spur research in the field, ultimately leading to an improved understanding of the respiration-related control of the mammalian tongue musculature.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Department of Physiology, College of Medicine and Department of Neuroscience, College of Science, The University of Arizona, Tucson, AZ 85721-0093, United States.
| |
Collapse
|
30
|
Fregosi RF. Influence of tongue muscle contraction and transmural pressure on nasopharyngeal geometry in the rat. J Appl Physiol (1985) 2011; 111:766-74. [PMID: 21719721 DOI: 10.1152/japplphysiol.01501.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian pharynx is a hollow muscular tube that participates in ingestion and respiration, and its size, shape, and stiffness can be altered by contraction of skeletal muscles that lie inside or outside of its walls. MRI was used to determine the interaction between pharyngeal pressure and selective stimulation of extrinsic tongue muscles on the shape of the rat nasopharynx. Pressure (-9, -6, -3, 3, 6, and 9 cmH₂O) was applied randomly to the isolated pharyngeal airway of anesthetized rats that were positioned in a 4.7-T MRI scanner. The anterior-posterior (AP) and lateral diameters of the nasopharynx were measured in eight axial slices at each level of pressure, with and without bilateral hypoglossal nerve stimulation (0.1-ms pulse, 1/3 maximal force, 80 Hz). The rat nasopharynx is nearly circular, and positive pharyngeal pressure caused similar expansion of AP and lateral diameters; as a result, airway shape (ratio of lateral to AP diameter) remained constant. Negative pressure did not change AP or lateral diameter significantly, suggesting that a negative pressure reflex activated the tongue or other pharyngeal muscles. Stimulation of tongue protrudor muscles alone or coactivation of protrudor and retractor muscles caused greater AP than lateral expansion, making the nasopharynx slightly more elliptical, with the long axis in the AP direction. These effects tended to be more pronounced at negative pharyngeal pressures and greater in the caudal than rostral nasopharynx. These data show that stimulation of rodent tongue muscles can adjust pharyngeal shape, extending previous work showing that tongue muscle contraction alters pharyngeal compliance and volume, and provide physiological insight that can be applied to the treatment of obstructive sleep apnea.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Dept. of Physiology, Gittings Bldg., The Univ. of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
31
|
Lee KZ, Qiu K, Sandhu MS, Elmallah MK, Falk DJ, Lane MA, Reier PJ, Byrne BJ, Fuller DD. Hypoglossal neuropathology and respiratory activity in pompe mice. Front Physiol 2011; 2:31. [PMID: 21747768 PMCID: PMC3129133 DOI: 10.3389/fphys.2011.00031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/17/2011] [Indexed: 01/25/2023] Open
Abstract
Pompe disease is a lysosomal storage disorder associated with systemic deficiency of acid α-glucosidase (GAA). Respiratory-related problems in Pompe disease include hypoventilation and upper airway dysfunction. Although these problems have generally been attributed to muscular pathology, recent work has highlighted the potential role of central nervous system (CNS) neuropathology in Pompe motor deficiencies. We used a murine model of Pompe disease to test the hypothesis that systemic GAA deficiency is associated with hypoglossal (XII) motoneuron pathology and altered XII motor output during breathing. Brainstem tissue was harvested from adult Gaa−/− mice and the periodic acid Schiff method was used to examine neuronal glycogen accumulation. Semi-thin (2 μm) plastic sections showed widespread medullary neuropathology with extensive cytoplasmic glycogen accumulation in XII motoneuron soma. We next recorded efferent XII bursting in anesthetized and ventilated Gaa−/− and B6/129 mice both before and after bilateral vagotomy. The coefficient of variation of respiratory cycle duration was greater in Gaa−/− compared to B6/129 mice (p < 0.01). Vagotomy caused a robust increase in XII inspiratory burst amplitude in B6/129 mice (239 ± 44% baseline; p < 0.01) but had little impact on burst amplitude in Gaa−/− mice (130 ± 23% baseline; p > 0.05). We conclude that CNS GAA deficiency results in substantial glycogen accumulation in XII motoneuron cell bodies and altered XII motor output. Therapeutic strategies targeting the CNS may be required to fully correct respiratory-related deficits in Pompe disease.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Physical Therapy, McKnight Brain Institute, University of Florida, Gainesville FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bailey EF. Activities of human genioglossus motor units. Respir Physiol Neurobiol 2011; 179:14-22. [PMID: 21558022 DOI: 10.1016/j.resp.2011.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 01/13/2023]
Abstract
Upper airway muscles play an important role in regulating airway lumen and in increasing the ability of the pharynx to remain patent in the face of subatmospheric intraluminal pressures produced during inspiration. Due to the considerable technical challenges associated with recording from muscles of the upper airway, much of the experimental work conducted in human subjects has centered on recording respiratory-related activities of the extrinsic tongue protudor muscle, the genioglossus (GG). The GG is one of eight muscles that invest the human tongue (Abd-El-Malek, 1939). All eight muscles are innervated by the hypoglossal nerve (cranial nerve XII) the cell bodies of which are located in the hypoglossal motor nucleus (HMN) of the caudal medulla. Much of the earlier work on the respiratory-related activity of XII motoneurons was based on recordings obtained from single motor axons dissected from the whole XII nerve or from whole muscle GG EMG recordings. Detailed information regarding respiratory-related GG motor unit activities was lacking until as recently as 2006. This paper examines key findings that have emerged from the last decade of work conducted in human subjects. Wherever appropriate, these results are compared with results obtained from in vitro and in vivo studies conducted in non-human mammals. The review is written with the objective of facilitating some discussion and some new thoughts regarding future research directions. The material is framed around four topics: (a) motor unit type, (b) rate coding and recruitment, (c) motor unit activity patterns, and (d) a compartment based view of pharyngeal airway control.
Collapse
Affiliation(s)
- E Fiona Bailey
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721-0093, USA.
| |
Collapse
|
33
|
Rice A, Fuglevand AJ, Laine CM, Fregosi RF. Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles. J Neurophysiol 2011; 105:2330-6. [PMID: 21307319 DOI: 10.1152/jn.01078.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.
Collapse
Affiliation(s)
- Amber Rice
- Department of Physiology, The University of Arizona, Tucson, AZ 85721-0093, USA
| | | | | | | |
Collapse
|
34
|
Pilarski JQ, Wakefield HE, Fuglevand AJ, Levine RB, Fregosi RF. Developmental nicotine exposure alters neurotransmission and excitability in hypoglossal motoneurons. J Neurophysiol 2011; 105:423-33. [PMID: 21068261 PMCID: PMC3023378 DOI: 10.1152/jn.00876.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 11/09/2010] [Indexed: 01/24/2023] Open
Abstract
Hypoglossal motoneurons (XII MNs) control muscles of the mammalian tongue and are rhythmically active during breathing. Acetylcholine (ACh) modulates XII MN activity by promoting the release of glutamate from neurons that express nicotinic ACh receptors (nAChRs). Chronic nicotine exposure alters nAChRs on neurons throughout the brain, including brain stem respiratory neurons. Here we test the hypothesis that developmental nicotine exposure (DNE) reduces excitatory synaptic input to XII MNs. Voltage-clamp experiments in rhythmically active medullary slices showed that the frequency of excitatory postsynaptic currents (EPSCs) onto XII MNs from DNE animals is reduced by 61% (DNE = 1.7 ± 0.4 events/s; control = 4.4 ± 0.6 events/s; P < 0.002). We also examine the intrinsic excitability of XII MNs to test whether cells from DNE animals have altered membrane properties. Current-clamp experiments showed XII MNs from DNE animals had higher intrinsic excitability, as evaluated by measuring their response to injected current. DNE cells had high-input resistances (DNE = 131.9 ± 13.7 MΩ, control = 78.6 ± 9.7 MΩ, P < 0.008), began firing at lower current levels (DNE = 144 ± 22 pA, control = 351 ± 45 pA, P < 0.003), and exhibited higher frequency-current gain values (DNE = 0.087 ± 0.012 Hz/pA, control = 0.050 ± 0.004 Hz/pA, P < 0.02). Taken together, our data show previously unreported effects of DNE on XII MN function and may also help to explain the association between DNE and the incidence of central and obstructive apneas.
Collapse
Affiliation(s)
- Jason Q Pilarski
- The University of Arizona, College of Medicine, Department of Physiology, P.O. Box 210093, Tucson, AZ 85721-0093, USA.
| | | | | | | | | |
Collapse
|
35
|
Lee KZ, Fuller DD. Preinspiratory and inspiratory hypoglossal motor output during hypoxia-induced plasticity in the rat. J Appl Physiol (1985) 2010; 108:1187-98. [PMID: 20150564 DOI: 10.1152/japplphysiol.01285.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory-related discharge in the hypoglossal (XII) nerve is composed of preinspiratory (pre-I) and inspiratory (I) activity. Our first purpose was to test the hypothesis that hypoxia-induced plasticity in XII motor output is differentially expressed in pre-I vs. I XII bursting. Short-term potentiation (STP) of XII motor output was induced in urethane-anesthetized, vagotomized, and ventilated rats by exposure to isocapnic hypoxia (PaO2 of approximately 35 Torr). Both pre-I and I XII discharge abruptly increased at beginning of hypoxia (i.e., acute hypoxic response), and the relative increase in amplitude was much greater for pre-I (507+/-46% baseline) vs. I bursting (257+/-16% baseline; P<0.01). In addition, STP was expressed in I but not pre-I bursting following hypoxia. Specifically, I activity remained elevated following termination of hypoxia but pre-I bursting abruptly returned to prehypoxia levels. Our second purpose was to test the hypothesis that STP of I XII activity results from recruitment of inactive or "silent" XII motoneurons (MNs) vs. rate coding of active MNs. Single fiber recordings were used to classify XII MNs as I, expiratory-inspiratory, or silent based on baseline discharge patterns. STP of I XII activity following hypoxia was associated with increased discharge frequency in active I and silent MNs but not expiratory-inspiratory MNs. We conclude that the expression of respiratory plasticity is differentially regulated between pre-I and I XII activity. In addition, both recruitment of silent MNs and rate coding of active I MNs contribute to increases in XII motor output following hypoxia.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Physical Therapy, University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, PO Box 100154, 100 Newell Dr, Gainesville, FL 32610, USA.
| | | |
Collapse
|
36
|
Saboisky JP, Chamberlin NL, Malhotra A. Potential therapeutic targets in obstructive sleep apnoea. Expert Opin Ther Targets 2009; 13:795-809. [PMID: 19530985 DOI: 10.1517/14728220903005608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Obstructive sleep apnoea (OSA) is a disease of ever-increasing importance due to its association with multiple impairments and rising prevalence in an increasingly susceptible demographic. The syndrome is linked with loud snoring, disrupted sleep and observed apnoeas. Serious co-morbidities associated with OSA appear to be reversed by continuous positive airway pressure (CPAP) treatment; however, CPAP is variably tolerated leaving many patients untreated and emphasising the need for alternative treatments. Virtually all OSA patients have airways that are anatomically vulnerable to collapse, but numerous pathophysiological factors underlie when and how OSA is manifested. This review describes how the complexity of OSA requires multiple treatment approaches that are individually targeted. This approach may take the form of more specific diagnoses in terms of the mechanisms underlying OSA as well as rational pharmacological treatment directed toward such disparate ends as arousal threshold and ventilatory control/chemosensitivity, and mechanical treatment in the form of surgery and augmentation of lung volumes.
Collapse
Affiliation(s)
- Julian P Saboisky
- Brigham and Women's Hospital, Harvard Medical School, Division of Sleep Medicine, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
37
|
Cheetham J, Pigott JH, Hermanson JW, Campoy L, Soderholm LV, Thorson LM, Ducharme NG. Role of the hypoglossal nerve in equine nasopharyngeal stability. J Appl Physiol (1985) 2009; 107:471-7. [DOI: 10.1152/japplphysiol.91177.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The equine upper airway is highly adapted to provide the extremely high oxygen demand associated with strenuous aerobic exercise in this species. The tongue musculature, innervated by the hypoglossal nerve, plays an important role in airway stability in humans who also have a highly adapted upper airway to allow speech. The role of the hypoglossal nerve in stabilizing the equine upper airway has not been established. Isolated tongues from eight mature horses were dissected to determine the distal anatomy and branching of the equine hypoglossal nerve. Using this information, a peripheral nerve location technique was used to perform bilateral block of the common trunk of the hypoglossal nerve in 10 horses. Each horse was subjected to two trials with bilateral hypoglossal nerve block and two control trials (unblocked). Upper airway stability at exercise was determined using videoendoscopy and measurement of tracheal and pharyngeal pressure. Three main nerve branches were identified, medial and lateral branches and a discrete branch that innervated the geniohyoid muscle alone. Bilateral hypoglossal block induced nasopharyngeal instability in 10/19 trials, and none of the control trials (0/18) resulted in instability ( P < 0.001). Mean treadmill speed (± SD) at the onset of instability was 10.8 ± 2.5 m/s. Following its onset, nasopharyngeal instability persisted until the end of the treadmill test. This instability, induced by hypoglossal nerve block, produced an expiratory obstruction similar to that seen in a naturally occurring equine disease (dorsal displacement of the soft palate, DDSP) with reduced inspiratory and expiratory pharyngeal pressure and increased expiratory tracheal pressure. These data suggest that stability of the equine upper airway at exercise may be mediated through the hypoglossal nerve. Naturally occurring DDSP in the horse shares a number of anatomic similarities with obstructive sleep apnea. Study of species with extreme respiratory adaptation, such as the horse, may provide insight into respiratory functioning in humans.
Collapse
|
38
|
Lu JW, Kubin L. Electromyographic activity at the base and tip of the tongue across sleep-wake states in rats. Respir Physiol Neurobiol 2009; 167:307-15. [PMID: 19539786 DOI: 10.1016/j.resp.2009.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/19/2009] [Accepted: 06/09/2009] [Indexed: 11/19/2022]
Abstract
Obstructive sleep apnea (OSA) patients have elevated tonic and phasic inspiratory activity in the genioglossus and other upper airway muscles during wakefulness; this protects their upper airway from collapse. In this group, sleep-related decrements of upper airway motor tone result in sleep-related upper airway obstructions. We previously reported that in the rat, a species widely used to study the neural mechanisms of both sleep and breathing, lingual electromyographic activity (EMG) is minimal or absent during slow-wave sleep (SWS) and then gradually increases after the onset of rapid eye movement sleep (REMS) due to the appearance of large phasic bursts. Here, we investigated whether sleep-wake patterns and respiratory modulation of lingual EMG depend on the site of EMG recording within the tongue. In nine chronically instrumented rats, we recorded from 17 sites within the tongue and from the diaphragm across sleep-wake states. We quantified lingual EMG in successive 10s intervals of continuous 2h recordings (1-3 p.m.). We found that sleep-wake patterns of lingual EMG did not differ between the base and tip of the tongue, and that respiratory modulation was extremely rare regardless of the recording site. We also determined that the often rhythmic lingual bursts during REMS do not occur with respiratory rhythmicity. This pattern differs from that in OSA subjects who, unlike rats, have collapsible upper airway, exhibit prominent respiratory modulation of upper airway motor tone during quiet wakefulness, retain considerable tonic and inspiratory phasic activity during SWS, and show nadirs of activity during REMS.
Collapse
Affiliation(s)
- Jackie W Lu
- Department of Animal Biology 209E/VET, School of Veterinary Medicine and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA
| | | |
Collapse
|
39
|
Horner RL. Neuromodulation of hypoglossal motoneurons during sleep. Respir Physiol Neurobiol 2008; 164:179-96. [DOI: 10.1016/j.resp.2008.06.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/27/2008] [Accepted: 06/05/2008] [Indexed: 01/13/2023]
|
40
|
Cheng S, Butler JE, Gandevia SC, Bilston LE. Movement of the tongue during normal breathing in awake healthy humans. J Physiol 2008; 586:4283-94. [PMID: 18635645 DOI: 10.1113/jphysiol.2008.156430] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Electromyographic (EMG) activity of the airway muscles suggest that genioglossus is the primary upper airway dilator muscle. However, EMG data do not necessarily translate into tissue motion and most imaging modalities are limited to assessment of the surfaces of the upper airway. In this study, we hypothesized that genioglossus moves rhythmically during the respiratory cycle and that the motion within is inhomogeneous. A 'tagged' magnetic resonance imaging technique was used to characterize respiratory-related tissue motions around the human upper airway in quiet breathing. Motion of airway tissues at different segments of the eupnoeic respiratory cycle was imaged in six adult subjects by triggering the scanner at the end of inspiration. Displacements of the 'tags' were analysed using the harmonic phase method (HARP). Respiratory timing was monitored by a band around the upper abdomen. The genioglossus moved during the respiratory cycle. During expiration, the genioglossus moved posteriorly and during inspiration, it moved anteriorly. The degree of motion varied between subjects. The maximal anteroposterior movement of a point tracked on the genioglossus was 1.02 +/- 0.54 mm (mean +/- s.d.). The genioglossus moved over the geniohyoid muscle, with minimal movement in other muscles surrounding the airway at the level of the soft palate. Local deformation of the tongue was analysed using two-dimensional strain maps. Across the respiratory cycle, positive strains within genioglossus reached peaks of 17.5 +/- 9.3% and negative strains reached peaks of -16.3 +/- 9.3% relative to end inspiration. The patterns of strains were consistent with elongation and compression within a constant volume structure. Hence, these data suggest that even during respiration, the tongue behaves as a muscular hydrostat.
Collapse
Affiliation(s)
- S Cheng
- Prince of Wales Medical Research Institute, Cnr Barker Street & Easy Street, Randwick, Australia 2031
| | | | | | | |
Collapse
|
41
|
Morello SL, Ducharme NG, Hackett RP, Warnick LD, Mitchell LM, Soderholm LV. Activity of selected rostral and caudal hyoid muscles in clinically normal horses during strenuous exercise. Am J Vet Res 2008; 69:682-9. [DOI: 10.2460/ajvr.69.5.682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Fregosi RF. Influence of tongue muscle contraction and dynamic airway pressure on velopharyngeal volume in the rat. J Appl Physiol (1985) 2008; 104:682-93. [DOI: 10.1152/japplphysiol.01043.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian pharynx is a collapsible tube that narrows during inspiration as transmural pressure becomes negative. The velopharynx (VP), which lies posterior to the soft palate, is considered to be one of the most collapsible pharyngeal regions. I tested the hypothesis that negative transmural pressure would narrow the VP, and that electrical stimulation of extrinsic tongue muscles would reverse this effect. Pressure (−6, −3, 3, and 6 cmH2O) was applied to the isolated pharyngeal airway of anesthetized rats that were positioned in a 4.7-T MRI scanner. The volume of eight axial slices encompassing the length of the VP was computed at each level of pressure, with and without bilateral hypoglossal nerve stimulation (0.1-ms pulse, one-third maximum force, 80 Hz). Negative pressure narrowed the VP, and either whole hypoglossal nerve stimulation (coactivation of protrudor and retractor muscles) or medial nerve branch stimulation (independent activation of tongue protrudor muscles) reversed this effect, with the greatest impact in the caudal one-third of the VP. The dilating effects of medial branch stimulation were slightly larger than whole nerve stimulation. Positive pressure dilated the VP, but tongue muscle contraction did not cause further dilation under these conditions. I conclude that the narrowest and most collapsible segment of the rat pharynx is in the caudal VP, posterior to the tip of the soft palate. Either coactivation of protrudor and retractor muscles or independent contraction of protrudor muscles caused dilation of this region, but the latter was slightly more effective.
Collapse
|
43
|
Van Zutphen C, Janssen P, Hassan M, Cabrera R, Bailey EF, Fregosi RF. Regional velopharyngeal compliance in the rat: influence of tongue muscle contraction. NMR IN BIOMEDICINE 2007; 20:682-91. [PMID: 17274106 DOI: 10.1002/nbm.1129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The velopharynx is the most collapsible segment of the upper airway in patients with obstructive sleep apnea. However, we do not know if velopharyngeal compliance is uniform throughout its length, or if compliance is modified by contraction of upper airway muscles. We tested the hypothesis that rostral and caudal velopharyngeal (VP) compliance differs, and that tongue muscle contraction reduces compliance. High-resolution MR images of the VP were made at nasopharyngeal pressures ranging from -9 to 9 cmH(2)O in anesthetized rats. Images were obtained twice at each pressure, once with and once without bilateral hypoglossal nerve stimulation. The volume of the caudal and rostral VP was computed at each pressure. The caudal VP was significantly (P = 0.0058) more compliant than the rostral VP, but electrical stimulation of the tongue muscles did not change compliance. VP critical pressure (Pcrit; pressure at zero airway volume) averaged -25.2 and -12.1 cmH(2)O in the rostral and caudal VP, respectively (P < 0.0001). Coactivation of tongue protrudor and retractor muscles or contraction of protrudor muscles alone dilated the VP and made Pcrit more negative (P < 0.0001), but only in the caudal VP. In the rat, the caudal VP is more collapsible than the rostral VP, and either coactivation of tongue protrudor and retractor muscles or contraction of protrudor muscles alone makes this region more difficult to close. Thus, tongue muscle contraction protects the caudal VP, which appears to be a particularly vulnerable segment of the nasopharyngeal airway. With suitable modification, the methods described here, including tongue muscle stimulation at different pharyngeal pressures, may be appropriate for experiments in human subjects.
Collapse
Affiliation(s)
- Cornelius Van Zutphen
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chamberlin NL, Eikermann M, Fassbender P, White DP, Malhotra A. Genioglossus premotoneurons and the negative pressure reflex in rats. J Physiol 2006; 579:515-26. [PMID: 17185342 PMCID: PMC2075396 DOI: 10.1113/jphysiol.2006.121889] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reflex increases in genioglossus (GG) muscle activity in response to negative pharyngeal pressure are important for maintenance of upper airway patency in humans. However, little is known of the central circuitry that mediates this negative pressure reflex (NPR). We used two approaches to determine which GG premotoneurons relay negative pressure-related information to the hypoglossal motor nucleus. First, to identify GG premotoneurons, we injected pseudorabies virus (PRV152) into the GG muscle. We found that medullary GG premotoneurons were concentrated mainly in the reticular formation adjacent to the hypoglossal motor nucleus. Second, in order to determine whether these perihypoglossal neurons were involved in the NPR, we quantified GG EMG responses to negative pressure applied to the isolated upper airway in anaesthetized rats before and after microinjection of muscimol (9 nl; 0.25 mM), a GABA-A receptor agonist, into the perihypoglossal premotor field. Pressures as low as -4 cm H(2)O increased inspiratory phase-related GG activity. The NPR was abolished following bilateral injections of muscimol into the perihypoglossal premotor field at and up to 500 mum rostral to the obex. Muscimol in this location also increased the amplitude of basal, unstimulated phasic GG activity. By contrast, inhibition of neurons caudal to the obex decreased phasic GG activity but had no impact on the NPR. These results suggest that perihypoglossal GG premotoneurons near the obex mediate the NPR and those caudal to the obex are important mediators of respiratory-related GG activity but are not involved in the NPR.
Collapse
Affiliation(s)
- Nancy L Chamberlin
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|