1
|
Adeva-Andany MM, Adeva-Contreras L, Carneiro-Freire N, Ameneiros-Rodríguez E, Vila-Altesor M, Calvo-Castro I. The impact of high altitude (hypobaric hypoxia) on insulin resistance in humans. J Physiol Biochem 2025; 81:35-55. [PMID: 40019670 DOI: 10.1007/s13105-025-01069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Exposure to hypobaric hypoxia (high altitude) diminishes systemic tissue oxygenation. Tissue hypoxia induces insulin resistance and a metabolic switch that reduces oxidative phosphorylation and glucose storage while enhancing glycolysis. Similarly to hypobaric hypoxia, insulin resistance develops in normal humans undergoing normobaric hypoxia and in patients with obstructive sleep apnea. Following acute exposure to high altitude, insulin resistance returns to baseline values upon returning to sea level or when compensatory mechanisms restore tissue oxygenation. However, insulin resistance persists in subjects unable to achieve sufficient oxygen delivery to tissues. Likewise, long-term residents at high altitude develop persistent insulin resistance when compensatory mechanisms do not attain adequate tissue oxygenation. Among these subjects, insulin resistance may cause clinical complications, such as hypertriglyceridemia, reduced HDL-c, visceral obesity, metabolic dysfunction-associated steatotic liver disease, essential hypertension, type 2 diabetes, subclinical vascular injury, cardiovascular disease, and kidney disease. Impaired tissue oxygenation allows the stabilization of hypoxia-inducible factor-1 (HIF-1), a transcription factor that modulates the transcriptional activity of a number of genes to coordinate the physiological responses to tissue hypoxia. Among them, HIF-1 downregulates PPARG, that codes peroxisome proliferator-activated receptor-gamma (PPAR-γ) and PPARGCA, that codes PPAR-γ coactivator-1α, in order to enable insulin resistance and the metabolic switch from oxidative phosphorylation toward glycolysis.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain.
| | - Lucia Adeva-Contreras
- School of Medicine, Santiago de Compostela University, Santiago de Compostela, Galicia, Spain
| | - Natalia Carneiro-Freire
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain
| | - Eva Ameneiros-Rodríguez
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain
| | - Matilde Vila-Altesor
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain
| | - Isabel Calvo-Castro
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, Ferrol, 15406, Spain
| |
Collapse
|
2
|
Siebenmann C, Roche J, Schlittler M, Simpson LL, Stembridge M. Regulation of haemoglobin concentration at high altitude. J Physiol 2024; 602:5587-5600. [PMID: 38051656 DOI: 10.1113/jp284578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Lowlanders sojourning for more than 1 day at high altitude (HA) experience a reduction in plasma volume (PV) that increases haemoglobin concentration and thus restores arterial oxygen content. If the sojourn extends over weeks, an expansion of total red cell volume (RCV) occurs and contributes to the haemoconcentration. While the reduction in PV was classically attributed to an increased diuretic fluid loss, recent studies support fluid redistribution, rather than loss, as the underlying mechanism. The fluid redistribution is presumably driven by a disappearance of proteins from the circulation and the resulting reduction in oncotic pressure exerted by the plasma, although the fate of the disappearing proteins remains unclear. The RCV expansion is the result of an accelerated erythropoietic activity secondary to enhanced renal erythropoietin release, but a contribution of other mechanisms cannot be excluded. After return from HA, intravascular volumes return to normal values and the normalisation of RCV might involve selective destruction of newly formed erythrocytes, although this explanation has been strongly challenged by recent studies. In contrast to acclimatised lowlanders, native highlanders originating from the Tibetan and the Ethiopian plateaus present with a normal or only mildly elevated haemoglobin concentration. Genetic adaptations blunting the erythropoietic response to HA exposure have been proposed as an explanation for the absence of more pronounced haemoconcentration in these populations, but new evidence also supports a contribution of a larger than expected PV. The functional significance of the relatively low haemoglobin concentration in Tibetan and Ethiopian highlanders is incompletely understood and warrants further investigation.
Collapse
Affiliation(s)
| | - Johanna Roche
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Maja Schlittler
- AO Research Institute Davos, Regenerative Orthopaedics Program, Davos, Switzerland
| | - Lydia L Simpson
- Department of Sport Science, Division of Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
3
|
Santangelo C, Verratti V, Mrakic-Sposta S, Ciampini F, Bonan S, Pignatelli P, Pietrangelo T, Pilato S, Moffa S, Fontana A, Piccinelli R, Donne CL, Lobefalo L, Beccatelli M, Rizzini PL, Seletti D, Mecca R, Beccatelli T, Bondi D. Nutritional physiology and body composition changes during a rapid ascent to high altitude. Appl Physiol Nutr Metab 2024; 49:723-737. [PMID: 38320257 DOI: 10.1139/apnm-2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Exposure to high altitude might cause the body to adapt with negative energy and fluid balance that compromise body composition and physical performance. In this field study involving 12 healthy adults, sex-balanced, and aged 29 ± 4 years with a body mass index of 21.6 ± 1.8 kg/m2, we investigated the effects of a 4-day trekking up to 4556 m a.s.l. on Monte Rosa (Alps, Italy). The food intake was recorded using food diaries and nutrient averages were calculated. The bio-impedance analysis was performed at low and high altitudes, and a wearable biosensor (Swemax) was used to track hydro-saline losses in two participants. Daily total energy intake was 3348 ± 386 kcal for males and 2804 ± 415 kcal for females (13%-14% protein, 35% fat, 44%-46% carbohydrates). Although there was a significant body weight loss (65.0 ± 9.3 vs. 64.2 ± 9.10 kg, p < 0.001, d = 1.398), no significant changes in body composition parameter were found but a trend in the increase of the bioelectrical phase angle in males (p = 0.059, d = -0.991). Body water percentage significantly changed (p = 0.026, η2 p = 0.440), but the absolute water did not, suggesting that the weight loss was not due to water loss. Salivary and urinary osmolality did not change. A reduction in sweat rate at higher altitudes was observed in both participants. Interestingly, salivary leptin increased (p = 0.014, η2 p = 0.510), and salivary ghrelin decreased (p = 0.036, η2 p = 0.403). Therefore, the 4-day trekking at altitude of hypoxia exposure induced changes in satiety and appetite hormones. High altitude expeditions require more specific nutritional guidance, and using multiplex analysis could help in monitoring fluid balance and body composition.
Collapse
Affiliation(s)
- Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (ICF-CNR), Milano, Italy
| | - Federica Ciampini
- School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Sofia Bonan
- School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Pamela Pignatelli
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Serena Pilato
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Samanta Moffa
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Raffaela Piccinelli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Roma, Italy
| | - Cinzia Le Donne
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Roma, Italy
| | - Lucio Lobefalo
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Wang Y, Yin Y, Liu Y, Pei C, Shen Z, Zhao S, Jia N, Huang D, Wang X, Wu Y, Shi S, He Y, Wang Z. Notoginsenoside R1 treatment facilitated Nrf2 nuclear translocation to suppress ferroptosis via Keap1/Nrf2 signaling pathway to alleviated high-altitude myocardial injury. Biomed Pharmacother 2024; 175:116793. [PMID: 38776674 DOI: 10.1016/j.biopha.2024.116793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
High-altitude myocardial injury (HAMI) represents a critical form of altitude illness for which effective drug therapies are generally lacking. Notoginsenoside R1, a prominent constituent derived from Panax notoginseng, has demonstrated various cardioprotective properties in models of myocardial ischemia/reperfusion injury, sepsis-induced cardiomyopathy, cardiac fibrosis, and myocardial injury. The potential utility of notoginsenoside R1 in the management of HAMI warrants prompt investigation. Following the successful construction of a HAMI model, a series of experimental analyses were conducted to assess the effects of notoginsenoside R1 at dosages of 50 mg/Kg and 100 mg/Kg. The results indicated that notoginsenoside R1 exhibited protective effects against hypoxic injury by reducing levels of CK, CK-MB, LDH, and BNP, leading to improved cardiac function and decreased incidence of arrhythmias. Furthermore, notoginsenoside R1 was found to enhance Nrf2 nuclear translocation, subsequently regulating the SLC7A11/GPX4/HO-1 pathway and iron metabolism to mitigate ferroptosis, thereby mitigating cardiac inflammation and oxidative stress induced by high-altitude conditions. In addition, the application of ML385 has confirmed the involvement of Nrf2 nuclear translocation in the therapeutic approach to HAMI. Collectively, the advantageous impacts of notoginsenoside R1 on HAMI have been linked to the suppression of ferroptosis via Nrf2 nuclear translocation signaling.
Collapse
Affiliation(s)
- Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Yongjun Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Ying Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
5
|
Lin FC, Chao HS, Chou CW, Tsai HC, Chang SC. Temporal changes in biomarkers in individuals with and without acute mountain sickness following rapid ascent. Am J Med Sci 2023; 365:510-519. [PMID: 36921671 DOI: 10.1016/j.amjms.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Field studies have reported conflicting results regarding changes in biomarkers at high altitude. This study measured temporal changes in biomarkers and compared the differences between individuals with and without acute mountain sickness (AMS). MATERIALS AND METHODS This study included 34 nonacclimatized healthy participants. Ten-milliliters of blood were collected at four time points: 3 days before ascent (T0), on two successive nights at 3150 m (T1 and T2), and 2 days after descent (T3). Participants were transported by bus from 555 m to 3150 m within 3 hours. AMS was diagnosed using the self-reported Lake Louise Scoring (LLS) questionnaire. RESULTS Compared with T0, significant increases in E-selectin and decreases in vascular endothelial growth factor (VEGF) levels were observed at high altitude. Significantly increased C-reactive protein (CRP), monocyte chemoattractant protein-1 (MCP-1), and S100 calcium-binding protein B (S100B) levels were observed at T2, and significantly decreased vascular cell adhesion molecule-1 (VCAM-1) levels were observed at T3. Eighteen (53%) participants developed AMS. Changes in E-selectin, CRP, MCP-1, and S100B levels were independent of AMS. Relative to individuals without AMS, those with AMS had significantly higher atrial natriuretic peptide (ANP) and VCAM-1 levels and lower plasminogen activator inhibitor-1 (PAI-1) levels at T1 and higher brain natriuretic peptide and lower VEGF and PAI-1 levels at T3. LLSs were positively correlated with ANP and VCAM-1 levels and negatively correlated with PAI-1 levels measured at T1. CONCLUSIONS After acute ascent, individuals with and without AMS exhibited different trends in biomarkers associated with endothelial cell activation and natriuretic peptides.
Collapse
Affiliation(s)
- Fang-Chi Lin
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Heng-Sheng Chao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Wei Chou
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Chen Tsai
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | |
Collapse
|
6
|
Roche J, Rasmussen P, Gatterer H, Roveri G, Turner R, van Hall G, Maillard M, Walzl A, Kob M, Strapazzon G, Goetze JP, Schäfer ST, Kammerer T, Nader E, Connes P, Robert M, Mueller T, Feraille E, Siebenmann C. Hypoxia briefly increases diuresis but reduces plasma volume by fluid redistribution in women. Am J Physiol Heart Circ Physiol 2022; 323:H1068-H1079. [PMID: 36269645 PMCID: PMC9678412 DOI: 10.1152/ajpheart.00394.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have recently reported that hypobaric hypoxia (HH) reduces plasma volume (PV) in men by decreasing total circulating plasma protein (TCPP). Here, we investigated whether this applies to women and whether an inflammatory response and/or endothelial glycocalyx shedding could facilitate the TCCP reduction. We further investigated whether acute HH induces a short-lived diuretic response that was overlooked in our recent study, where only 24-h urine volumes were evaluated. In a strictly controlled crossover protocol, 12 women underwent two 4-day sojourns in a hypobaric chamber: one in normoxia (NX) and one in HH equivalent to 3,500-m altitude. PV, urine output, TCPP, and markers for inflammation and glycocalyx shedding were repeatedly measured. Total body water (TBW) was determined pre- and postsojourns by deuterium dilution. PV was reduced after 12 h of HH and thereafter remained 230-330 mL lower than in NX (P < 0.0001). Urine flow was 45% higher in HH than in NX throughout the first 6 h (P = 0.01) but lower during the second half of the first day (P < 0.001). Twenty-four-hour urine volumes (P ≥ 0.37) and TBW (P ≥ 0.14) were not different between the sojourns. TCPP was lower in HH than in NX at the same time points as PV (P < 0.001), but inflammatory or glycocalyx shedding markers were not consistently increased. As in men, and despite initially increased diuresis, HH-induced PV contraction in women is driven by a loss of TCPP and ensuing fluid redistribution, rather than by fluid loss. The mechanism underlying the TCPP reduction remains unclear but does not seem to involve inflammation or glycocalyx shedding.NEW & NOTEWORTHY This study is the first to investigate the mechanisms underlying plasma volume (PV) contraction in response to hypoxia in women while strictly controlling for confounders. PV contraction in women has a similar time course and magnitude as in men and is driven by the same mechanism, namely, oncotically driven redistribution rather than loss of fluid. We further report that hypoxia facilitates an increase in diuresis, that is, however, short-lived and of little relevance for PV regulation.
Collapse
Affiliation(s)
- Johanna Roche
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | | | - Hannes Gatterer
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giulia Roveri
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Rachel Turner
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Gerrit van Hall
- 3Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,4Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,5Clinical Metabolomics Core Facility, Rigshospitalet, University of Copenhagen, Denmark
| | - Marc Maillard
- 6Service of Nephrology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Anna Walzl
- 7Department of Anesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany
| | - Michael Kob
- 8Division of Clinical Nutrition, Bolzano Regional Hospital, Bolzano, Italy
| | - Giacomo Strapazzon
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Jens Peter Goetze
- 3Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Simon Thomas Schäfer
- 7Department of Anesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany
| | - Tobias Kammerer
- 7Department of Anesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany,9Department for Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elie Nader
- 10Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Philippe Connes
- 10Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Mélanie Robert
- 10Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Thomas Mueller
- 11Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy,12Department of Laboratory Medicine, Hospital Voecklabruck, Voecklabruck, Austria
| | - Eric Feraille
- 13National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland,14Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
7
|
Aoun M, Chelala D. Where do you live and what do you do? Two questions that might impact your kidney health. FRONTIERS IN NEPHROLOGY 2022; 2:1011964. [PMID: 37675017 PMCID: PMC10479685 DOI: 10.3389/fneph.2022.1011964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/13/2022] [Indexed: 09/08/2023]
Abstract
In many cases the social determinants of health need to be assessed through their interaction with environmental factors. This review looks at the impact of physical location and occupation of individuals on their kidney health. It examines the effect of living at high altitude on kidney function and the relationship between extreme cold or hot temperatures and the incidence of kidney injury. It reviews as well the many occupations that have been linked to kidney disease in high-income and low-and-middle-income countries. As a conclusion, this overview proposes preventive recommendations that could be individualized based on weather, altitude, socio-economic level of the country and occupation of the individual.
Collapse
Affiliation(s)
- Mabel Aoun
- Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | | |
Collapse
|
8
|
Bärtsch P. The Impact of Nocebo and Placebo Effects on Reported Incidence of Acute Mountain Sickness. High Alt Med Biol 2021; 23:8-17. [PMID: 34964659 DOI: 10.1089/ham.2021.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bärtsch Peter. The impact of nocebo and placebo effects on reported incidence of acute mountain sickness. High Alt Med Biol 00:000-000, 2021. Well comparable studies reporting acute mountain sickness (AMS) in nonacclimatized, acutely exposed individuals performed at 3,450-3,650 m (9 studies) and 4,559-4,675 m (18 studies) at real altitude or in hypobaric or in normobaric hypoxic chambers were analyzed with the hypothesis that the study design impacts occurrence of AMS. Individual symptoms and overall scores of AMS were not different between the three modalities of exposure to a comparable degree of hypoxia, indicating that hypobaria has, if at all, minimal influence on AMS. Studies not focusing versus those focusing on AMS report lower scores and prevalence of AMS at 3,500 m, but not at 4,559 m, while frequent assessment may be associated with more severe AMS. These data suggest that focusing on AMS creates expectations of getting AMS (nocebo effects) and increases its prevalence, while not paying attention reduces negative expectations and thus AMS. On the other hand, interventions promising improvement may cause positive expectations (placebo effect). Information about purpose and dangers of a study, repeated assessments for AMS, previous experiences of AMS, and observation of illness in other study participants are major factors contributing to negative expectations and thus nocebo effects increasing AMS. They should be considered when designing studies and subject information and be reported in detail in publications of studies on AMS.
Collapse
Affiliation(s)
- Peter Bärtsch
- Department of Internal Medicine, University Clinic, Heidelberg, Germany
| |
Collapse
|
9
|
Bird JD, Leacy JK, Foster GE, Rickards CA, Wilson RJA, O'Halloran KD, Jendzjowsky NG, Pentz BA, Byman BRM, Thrall SF, Skalk AL, Hewitt SA, Steinback CD, Burns D, Ondrus P, Day TA. Time course and magnitude of ventilatory and renal acid-base acclimatization following rapid ascent to and residence at 3,800 m over nine days. J Appl Physiol (1985) 2021; 130:1705-1715. [PMID: 33703943 PMCID: PMC11025293 DOI: 10.1152/japplphysiol.00973.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/05/2021] [Indexed: 11/22/2022] Open
Abstract
Rapid ascent to high altitude imposes an acute hypoxic and acid-base challenge, with ventilatory and renal acclimatization countering these perturbations. Specifically, ventilatory acclimatization improves oxygenation, but with concomitant hypocapnia and respiratory alkalosis. A compensatory, renally mediated relative metabolic acidosis follows via bicarbonate elimination, normalizing arterial pH(a). The time course and magnitude of these integrated acclimatization processes are highly variable between individuals. Using a previously developed metric of renal reactivity (RR), indexing the change in arterial bicarbonate concentration (Δ[HCO3-]a; renal response) over the change in arterial pressure of CO2 (Δ[Formula: see text]; renal stimulus), we aimed to characterize changes in RR magnitude following rapid ascent and residence at altitude. Resident lowlanders (n = 16) were tested at 1,045 m (day [D]0) prior to ascent, on D2 within 24 h of arrival, and D9 during residence at 3,800 m. Radial artery blood draws were obtained to measure acid-base variables: [Formula: see text], [HCO3-]a, and pHa. Compared with D0, [Formula: see text] and [HCO3-]a were lower on D2 (P < 0.01) and D9 (P < 0.01), whereas significant changes in pHa (P = 0.072) and RR (P = 0.056) were not detected. As pHa appeared fully compensated on D2 and RR did not increase significantly from D2 to D9, these data demonstrate renal acid-base compensation within 24 h at moderate steady-state altitude. Moreover, RR was strongly and inversely correlated with ΔpHa on D2 and D9 (r≤ -0.95; P < 0.0001), suggesting that a high-gain renal response better protects pHa. Our study highlights the differential time course, magnitude, and variability of integrated ventilatory and renal acid-base acclimatization following rapid ascent and residence at high altitude.NEW & NOTEWORTHY We assessed the time course, magnitude, and variability of integrated ventilatory and renal acid-base acclimatization with rapid ascent and residence at 3,800 m. Despite reductions in [Formula: see text] upon ascent, pHa was normalized within 24 h of arrival at 3,800 m through renal compensation (i.e., bicarbonate elimination). Renal reactivity (RR) was unchanged between days 2 and 9, suggesting a lack of plasticity at moderate steady-state altitude. RR was strongly correlated with ΔpHa, suggesting that a high-gain renal response better protects pHa.
Collapse
Affiliation(s)
- Jordan D Bird
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Jack K Leacy
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Caroline A Rickards
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Sciences Centre, Fort Worth, Texas
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Nicholas G Jendzjowsky
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California
| | - Brandon A Pentz
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Britta R M Byman
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Scott F Thrall
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Alexandra L Skalk
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Sarah A Hewitt
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - David Burns
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Peter Ondrus
- Department of Family Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Regli IB, Turner R, Woyke S, Rauch S, Brugger H, Gatterer H. Bioelectrical Impedance Vector Analysis: A Valuable Tool to Monitor Daily Body Hydration Dynamics at Altitude. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5455. [PMID: 34065211 PMCID: PMC8161038 DOI: 10.3390/ijerph18105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/19/2022]
Abstract
Bioelectrical impedance vector analysis (BIVA) is a method used to estimate variation in body hydration. We assessed the potential of BIVA for monitoring daily body hydration fluctuations in nine healthy, normally active males under matching normoxic (NX) and hypobaric hypoxic (HH) experimental conditions. Furthermore, we aimed to investigate whether changes in BIVA may correspond with the development of acute mountain sickness (AMS). Subjects were exposed in a hypobaric chamber to both NX (corresponding to an altitude of 262 m) and HH conditions corresponding to an altitude of 3500 m during two four-day sojourns within which food, water intake and physical activity were controlled. Bioimpedance and body weight measurements were performed three times a day and medical symptoms were assessed every morning using the Lake Louise score (LLS). Total body water (TBW) was also assessed on the last day of both sojourns using the deuterium dilution technique. We detected circadian changes in vector length, indicating circadian body water variations that did not differ between NX and HH conditions (ANOVA effects: time: p = 0.018, eta2 = 0.149; interaction: p = 0.214, eta2 = 0.083; condition: p = 0.920, eta2 = 0.001). Even though none of the subjects developed AMS, four subjects showed clinical symptoms according to the LLS during the first 24 hours of HH conditions. These subjects showed a pronounced (Cohen's d: 1.09), yet not statistically significant (p = 0.206) decrease in phase angle 6 hours after exposure, which may indicate fluid shift from the intracellular to the extracellular compartment. At the end of each sojourn, vector length correlated with deuterium dilution TBW "gold standard" measurements (linear regression: NX: p = 0.002 and r2 = 0.756, HH: p < 0.001 and r2 = 0.84). BIVA can be considered a valuable method for monitoring body hydration changes at altitude. Whether such changes are related to the development of clinical symptoms associated with AMS, as indicated in the present investigation, must be confirmed in future studies.
Collapse
Affiliation(s)
- Ivo B. Regli
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy; (R.T.); (S.W.); (S.R.); (H.B.); (H.G.)
- Department of Anaesthesia and Intensive Care, “F. Tappeiner” Hospital, 39012 Merano, Italy
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy; (R.T.); (S.W.); (S.R.); (H.B.); (H.G.)
| | - Simon Woyke
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy; (R.T.); (S.W.); (S.R.); (H.B.); (H.G.)
- Department of Anaesthesiology and Intensive Care, Medical University, 6020 Innsbruck, Austria
| | - Simon Rauch
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy; (R.T.); (S.W.); (S.R.); (H.B.); (H.G.)
- Department of Anaesthesia and Intensive Care, “F. Tappeiner” Hospital, 39012 Merano, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy; (R.T.); (S.W.); (S.R.); (H.B.); (H.G.)
- Department of Anaesthesiology and Intensive Care, Medical University, 6020 Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, 39100 Bolzano, Italy; (R.T.); (S.W.); (S.R.); (H.B.); (H.G.)
| |
Collapse
|
11
|
Gatterer H, Rauch S, Regli IB, Woyke S, Schlittler M, Turner R, Strapazzon G, Brugger H, Goetze JP, Feraille E, Siebenmann C. Plasma volume contraction reduces atrial natriuretic peptide after four days of hypobaric hypoxia exposure. Am J Physiol Regul Integr Comp Physiol 2021; 320:R526-R531. [PMID: 33533684 DOI: 10.1152/ajpregu.00313.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether low arterial oxygen tension ([Formula: see text]) or hypoxia-induced plasma volume (PV) contraction, which reduces central blood volume (BV) and atrial distension, explain reduction in circulating atrial natriuretic peptide (ANP) after prolonged hypoxic exposure. Ten healthy males were exposed for 4 days to hypobaric hypoxia corresponding to an altitude of 3,500 m. PV changes were determined by carbon monoxide rebreathing. Venous plasma concentrations of midregional proANP (MR-proANP) were measured before and at the end of the exposure. At the latter time point, the measurement was repeated after 1) restoration of [Formula: see text] by breathing a hyperoxic gas mixture for 30 min and 2) restoration of BV by fluid infusion. Correspondingly, left ventricular end-diastolic volume (LVEDV), left atrial area (LAA), and right atrial area (RAA) were determined by ultrasound before exposure and both before and after fluid infusion at the end of the exposure. Hypoxic exposure reduced MR-proANP from 37.9 ± 18.5 to 24.5 ± 10.3 pmol/L (P = 0.034), LVEDV from 107.4 ± 33.5 to 91.6 ± 26.3 mL (P = 0.005), LAA from 15.8 ± 4.9 to 13.3 ± 4.2 cm2 (P = 0.007), and RAA from 16.2 ± 3.1 to 14.3 ± 3.5 cm2 (P = 0.001). Hyperoxic breathing did not affect MR-proANP (24.8 ± 12.3 pmol/L, P = 0.890). Conversely, fluid infusion restored LVEDV, LAA, and RAA to near-baseline values (108.0 ± 29.3 mL, 17.2 ± 5.7 cm2, and 17.2 ± 3.1 cm2, respectively, P > 0.05 vs. baseline) and increased MR-proANP to 29.5 ± 13.3 pmol/L (P = 0.010 vs. preinfusion and P = 0.182 vs. baseline). These findings support that ANP reduction in hypoxia is at least partially attributed to plasma volume contraction, whereas reduced [Formula: see text] does not seem to contribute.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Simon Rauch
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | - Ivo B Regli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | - Simon Woyke
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Maja Schlittler
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Eric Feraille
- National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland.,Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland
| | | |
Collapse
|