1
|
Novak TS, McGregor KM, Krishnamurthy LC, Evancho A, Mammino K, Walters CE, Weber A, Nocera JR. GABA, Aging and Exercise: Functional and Intervention Considerations. Neurosci Insights 2024; 19:26331055241285880. [PMID: 39377050 PMCID: PMC11457286 DOI: 10.1177/26331055241285880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
The global growth of an aging population is expected to coincide with an increase in aging-related pathologies, including those related to brain health. Thus, the potential for accelerated cognitive health declines due to adverse aging is expected to have profound social and economic implications. However, the progression to pathological conditions is not an inevitable part of aging. In fact, engaging in activities that improve cardiovascular fitness appears to be a means that offers the benefits of maintaining and/or improving cognitive health in older age. However, to date, the underlying mechanisms responsible for improved central nervous system health and function with exercise are not yet fully elucidated. Consequently, there is considerable interest in studies aimed at understanding the neurophysiological benefits of exercise on aging. One such area of study suggests that the improvements in brain health via exercise are, in part, driven by the recovery of inhibitory processes related to the neurotransmitter gamma-aminobutyric acid (GABA). In the present review, we highlight the opposing effects of aging and exercise on cortical inhibition and the GABAergic system's functional integrity. We highlight these changes in GABA function by reviewing work with in vivo measurements: transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS). We also highlight recent and significant technological and methodological advances in assessing the GABAergic system's integrity with TMS and MRS. We then discuss potential future research directions to inform mechanistic GABA study targeted to improve health and function in aging. We conclude by highlighting the significance of understanding the effects of exercise and aging, its influence on GABA levels, and why a better understanding is crucial to allow for more targeted and effective interventions aimed to ultimately improve age-related decline in aging.
Collapse
Affiliation(s)
| | - Keith M McGregor
- Birmingham VA Health Care System, Birmingham, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa C Krishnamurthy
- Emory University, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
- Georgia State University, Atlanta, GA, USA
| | | | - Kevin Mammino
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
| | | | - Ashton Weber
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joe R Nocera
- Emory University, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
| |
Collapse
|
2
|
Dienel GA, Schousboe A, McKenna MC, Rothman DL. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J Neurochem 2024; 168:461-495. [PMID: 36928655 DOI: 10.1111/jnc.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Douglas L Rothman
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
3
|
Passarella S, Schurr A, Portincasa P. Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspectives. Int J Mol Sci 2021; 22:12620. [PMID: 34884425 PMCID: PMC8657705 DOI: 10.3390/ijms222312620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
Some metabolic pathways involve two different cell components, for instance, cytosol and mitochondria, with metabolites traffic occurring from cytosol to mitochondria and vice versa, as seen in both glycolysis and gluconeogenesis. However, the knowledge on the role of mitochondrial transport within these two glucose metabolic pathways remains poorly understood, due to controversial information available in published literature. In what follows, we discuss achievements, knowledge gaps, and perspectives on the role of mitochondrial transport in glycolysis and gluconeogenesis. We firstly describe the experimental approaches for quick and easy investigation of mitochondrial transport, with respect to cell metabolic diversity. In addition, we depict the mitochondrial shuttles by which NADH formed in glycolysis is oxidized, the mitochondrial transport of phosphoenolpyruvate in the light of the occurrence of the mitochondrial pyruvate kinase, and the mitochondrial transport and metabolism of L-lactate due to the L-lactate translocators and to the mitochondrial L-lactate dehydrogenase located in the inner mitochondrial compartment.
Collapse
Affiliation(s)
- Salvatore Passarella
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
4
|
Hill M, Walsh S, Talbot C, Price M, Duncan M. Exercise intensity-dependent effects of arm and leg-cycling on cognitive performance. PLoS One 2019; 14:e0224092. [PMID: 31634371 PMCID: PMC6802839 DOI: 10.1371/journal.pone.0224092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/04/2019] [Indexed: 01/31/2023] Open
Abstract
Physiological responses to arm and leg-cycling are different, which may influence psychological and biological mechanisms that influence post-exercise cognitive performance. The aim of this study was to determine the effects of maximal and submaximal (absolute and relative intensity matched) arm and leg-cycling on executive function. Thirteen males (age, 24.7 ± 5.0 years) initially undertook two incremental exercise tests to volitional exhaustion for arm-cycling (82 ± 18 W) and leg-cycling (243 ± 52 W) for the determination of maximal power output. Participants subsequently performed three 20-min constant load exercise trials: (1) arm-cycling at 50% of the ergometer-specific maximal power output (41 ± 9 W), (2) leg-cycling at 50% of the ergometer-specific maximal power output (122 ± 26 W), and (3) leg-cycling at the same absolute power output as the submaximal arm-cycling trial (41 ± 9 W). An executive function task was completed before, immediately after and 15-min after each exercise test. Exhaustive leg-cycling increased reaction time (p < 0.05, d = 1.17), while reaction time reduced following exhaustive arm-cycling (p < 0.05, d = -0.62). Improvements in reaction time were found after acute relative intensity arm (p < 0.05, d = -0.76) and leg-cycling (p < 0.05, d = -0.73), but not following leg-cycling at the same absolute intensity as arm-cycling (p > 0.05). Improvements in reaction time following arm-cycling were maintained for at least 15-min post exercise (p = 0.008, d = -0.73). Arm and leg-cycling performed at the same relative intensity elicit comparable improvements in cognitive performance. These findings suggest that individuals restricted to arm exercise possess a similar capacity to elicit an exercise-induced cognitive performance benefit.
Collapse
Affiliation(s)
- Mathew Hill
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
- * E-mail:
| | - Steven Walsh
- Physical Activity & Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Christopher Talbot
- Physical Activity & Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Michael Price
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Michael Duncan
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
5
|
Trigiani LJ, Hamel E. An endothelial link between the benefits of physical exercise in dementia. J Cereb Blood Flow Metab 2017; 37:2649-2664. [PMID: 28617071 PMCID: PMC5536816 DOI: 10.1177/0271678x17714655] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/25/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
The current absence of a disease-modifying treatment for Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID) highlights the necessity for investigating the benefits of non-pharmacological approaches such as physical exercise (PE). Although evidence exists to support an association between regular PE and higher scores on cognitive function tests, and a slower rate of cognitive decline, there is no clear consensus on the underlying molecular mechanisms of the advantages of PE. This review seeks to summarize the positive effects of PE in human and animal studies while highlighting the vascular link between these benefits. Lifestyle factors such as cardiovascular diseases, metabolic syndrome, and sleep apnea will be addressed in relation to the risk they pose in developing AD and VCID, as will molecular factors known to have an impact on either the initiation or the progression of AD and/or VCID. This will include amyloid-beta clearance, oxidative stress, inflammatory responses, neurogenesis, angiogenesis, glucose metabolism, and white matter integrity. Particularly, this review will address how engaging in PE can counter factors that contribute to disease pathogenesis, and how these alterations are linked to endothelial cell function.
Collapse
Affiliation(s)
- Lianne J Trigiani
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
6
|
Calbet JAL, González-Alonso J, Helge JW, Søndergaard H, Munch-Andersen T, Saltin B, Boushel R. Central and peripheral hemodynamics in exercising humans: leg vs arm exercise. Scand J Med Sci Sports 2016; 25 Suppl 4:144-57. [PMID: 26589128 DOI: 10.1111/sms.12604] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 12/22/2022]
Abstract
In humans, arm exercise is known to elicit larger increases in arterial blood pressure (BP) than leg exercise. However, the precise regulation of regional vascular conductances (VC) for the distribution of cardiac output with exercise intensity remains unknown. Hemodynamic responses were assessed during incremental upright arm cranking (AC) and leg pedalling (LP) to exhaustion (Wmax) in nine males. Systemic VC, peak cardiac output (Qpeak) (indocyanine green) and stroke volume (SV) were 18%, 23%, and 20% lower during AC than LP. The mean BP, the rate-pressure product and the associated myocardial oxygen demand were 22%, 12%, and 14% higher, respectively, during maximal AC than LP. Trunk VC was reduced to similar values at Wmax. At Wmax, muscle mass-normalized VC and fractional O2 extraction were lower in the arm than the leg muscles. However, this was compensated for during AC by raising perfusion pressure to increase O2 delivery, allowing a similar peak VO2 per kg of muscle mass in both extremities. In summary, despite a lower Qpeak during arm cranking the cardiovascular strain is much higher than during leg pedalling. The adjustments of regional conductances during incremental exercise to exhaustion depend mostly on the relative intensity of exercise and are limb-specific.
Collapse
Affiliation(s)
- J A L Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain.,The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - J González-Alonso
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark.,Centre for Sports Medicine and Human Performance, Brunel University London, Uxbridge, UK
| | - J W Helge
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark.,Centre for Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H Søndergaard
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - T Munch-Andersen
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - B Saltin
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - R Boushel
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark.,School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Jensen P, Scott S, Krustrup P, Mohr M. Physiological responses and performance in a simulated trampoline gymnastics competition in elite male gymnasts. J Sports Sci 2013; 31:1761-9. [DOI: 10.1080/02640414.2013.803591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Fisher JP, Hartwich D, Seifert T, Olesen ND, McNulty CL, Nielsen HB, van Lieshout JJ, Secher NH. Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals. J Physiol 2012; 591:1859-70. [PMID: 23230234 DOI: 10.1113/jphysiol.2012.244905] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We evaluated cerebral perfusion, oxygenation and metabolism in 11 young (22 ± 1 years) and nine older (66 ± 2 years) individuals at rest and during cycling exercise at low (25% W(max)), moderate (50% Wmax), high (75% W(max)) and exhaustive (100% W(max)) workloads. Mean middle cerebral artery blood velocity (MCA V(mean)), mean arterial pressure (MAP), cardiac output (CO) and partial pressure of arterial carbon dioxide (P(aCO2)) were measured. Blood samples were obtained from the right internal jugular vein and brachial artery to determine concentration differences for oxygen (O2), glucose and lactate across the brain. The molar ratio between cerebral uptake of O2 versus carbohydrate (O2-carbohydrate index; O2/[glucose + 1/2 lactate]; OCI), the cerebral metabolic rate of O2 (CMRO2) and changes in mitochondrial O2 tension ( P(mitoO2)) were calculated. 100% W(max) was ~33% lower in the older group. Exercise increased MAP and CO in both groups (P < 0.05 vs. rest), but at each intensity MAP was higher and CO lower in the older group (P < 0.05). MCA V(mean), P(aCO2) and cerebral vascular conductance index (MCA V(mean)/MAP) were lower in the older group at each exercise intensity (P < 0.05). In contrast, young and older individuals exhibited similar increases in CMRO2 (by ~30 μmol (100 g(-1)) min(-1)), and decreases in OCI (by ~1.5) and (by ~10 mmHg) during exercise at 75% W(max). Thus, despite the older group having reduced cerebral perfusion and maximal exercise capacity, cerebral oxygenation and uptake of lactate and glucose are similar during exercise in young and older individuals.
Collapse
Affiliation(s)
- James P Fisher
- School of Sport and Exercise Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Mild traumatic brain injury, especially sport-related concussion, is common among young persons. Consequences of transient pathophysiologic dysfunction must be considered in the context of a developing or immature brain, as must the potential for an accumulation of damage with repeated exposure. This review summarizes the underlying neurometabolic cascade of concussion, with emphasis on the young brain in terms of acute pathophysiology, vulnerability, alterations in plasticity and activation, axonal injury, and cumulative risk from chronic, repetitive damage, and discusses their implications in the context of clinical care for the concussed youth, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Daniel W Shrey
- Division of Pediatric Neurology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children's Hospital, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
10
|
Seifert T, Secher NH. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol 2011; 95:406-26. [PMID: 21963551 DOI: 10.1016/j.pneurobio.2011.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 11/26/2022]
Abstract
This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF as evidenced by pharmacological manipulation of adrenergic and cholinergic receptors. Cholinergic blockade by glycopyrrolate blocks the exercise-induced increase in the transcranial Doppler determined mean flow velocity (MCA Vmean). Conversely, alpha-adrenergic activation increases that expression of cerebral perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip, but increases during cycling exercise. The increase in CMRO(2) is unaffected by beta-adrenergic blockade even though CBF is reduced suggesting that cerebral oxygenation becomes critical and a limited cerebral mitochondrial oxygen tension may induce fatigue. Also, sympathetic activity may drive cerebral non-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade, but not by beta1-adrenergic blockade. Furthermore, endurance training appears to lower the cerebral non-oxidative carbohydrate uptake and preserve cerebral oxygenation during submaximal exercise. This is possibly related to an attenuated catecholamine response. Finally, exercise promotes brain health as evidenced by increased release of brain-derived neurotrophic factor (BDNF) from the brain.
Collapse
Affiliation(s)
- Thomas Seifert
- Department of Anaesthesia and The Copenhagen Muscle Research Centre, Rigshospitalet 2041, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
11
|
Gam CMB, Rasmussen P, Secher NH, Seifert T, Larsen FS, Nielsen HB. Maintained cerebral metabolic ratio during exercise in patients with β-adrenergic blockade. Clin Physiol Funct Imaging 2009; 29:420-6. [DOI: 10.1111/j.1475-097x.2009.00889.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Seifert T, Rasmussen P, Brassard P, Homann PH, Wissenberg M, Nordby P, Stallknecht B, Secher NH, Nielsen HB. Cerebral oxygenation and metabolism during exercise following three months of endurance training in healthy overweight males. Am J Physiol Regul Integr Comp Physiol 2009; 297:R867-76. [PMID: 19605762 DOI: 10.1152/ajpregu.00277.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endurance training improves muscular and cardiovascular fitness, but the effect on cerebral oxygenation and metabolism remains unknown. We hypothesized that 3 mo of endurance training would reduce cerebral carbohydrate uptake with maintained cerebral oxygenation during submaximal exercise. Healthy overweight males were included in a randomized, controlled study (training: n = 10; control: n = 7). Arterial and internal jugular venous catheterization was used to determine concentration differences for oxygen, glucose, and lactate across the brain and the oxygen-carbohydrate index [molar uptake of oxygen/(glucose + (1/2) lactate); OCI], changes in mitochondrial oxygen tension (DeltaP(Mito)O(2)) and the cerebral metabolic rate of oxygen (CMRO(2)) were calculated. For all subjects, resting OCI was higher at the 3-mo follow-up (6.3 +/- 1.3 compared with 4.7 +/- 0.9 at baseline, mean +/- SD; P < 0.05) and coincided with a lower plasma epinephrine concentration (P < 0.05). Cerebral adaptations to endurance training manifested when exercising at 70% of maximal oxygen uptake (approximately 211 W). Before training, both OCI (3.9 +/- 0.9) and DeltaP(Mito)O(2) (-22 mmHg) decreased (P < 0.05), whereas CMRO(2) increased by 79 +/- 53 micromol x 100 x g(-1) min(-1) (P < 0.05). At the 3-mo follow-up, OCI (4.9 +/- 1.0) and DeltaP(Mito)O(2) (-7 +/- 13 mmHg) did not decrease significantly from rest and when compared with values before training (P < 0.05), CMRO(2) did not increase. This study demonstrates that endurance training attenuates the cerebral metabolic response to submaximal exercise, as reflected in a lower carbohydrate uptake and maintained cerebral oxygenation.
Collapse
Affiliation(s)
- T Seifert
- Department of Anesthesia, Section of Systems Biology Research, The Copenhagen Muscle Research Center, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shibuya K, Ueda C, Sato K, Shimizu-Okuyama S, Saito M, Kagaya A, Kamo M, Osada T, Sadamoto T. Perceived Exertion is Not Necessarily Associated with Altered Brain Activity during Exercise. J Physiol Anthropol 2009; 28:63-9. [DOI: 10.2114/jpa2.28.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
14
|
Larsen TS, Rasmussen P, Overgaard M, Secher NH, Nielsen HB. Non-selective beta-adrenergic blockade prevents reduction of the cerebral metabolic ratio during exhaustive exercise in humans. J Physiol 2008; 586:2807-15. [PMID: 18403423 DOI: 10.1113/jphysiol.2008.151449] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intense exercise decreases the cerebral metabolic ratio of oxygen to carbohydrates [O(2)/(glucose + (1/2)lactate)], but whether this ratio is influenced by adrenergic stimulation is not known. In eight males, incremental cycle ergometry increased arterial lactate to 15.3 +/- 4.2 mm (mean +/- s.d.) and the arterial-jugular venous (a-v) difference from -0.02 +/- 0.03 mm at rest to 1.0 +/- 0.5 mm (P < 0.05). The a-v difference for glucose increased from 0.7 +/- 0.3 to 0.9 +/- 0.1 mm (P < 0.05) at exhaustion and the cerebral metabolic ratio decreased from 5.5 +/- 1.4 to 3.0 +/- 0.3 (P < 0.01). Administration of a non-selective beta-adrenergic (beta(1) + beta(2)) receptor antagonist (propranolol) reduced heart rate (69 +/- 8 to 58 +/- 6 beats min(-1)) and exercise capacity (239 +/- 42 to 209 +/- 31 W; P < 0.05) with arterial lactate reaching 9.4 +/- 3.6 mm. During exercise with propranolol, the increase in a-v lactate difference (to 0.5 +/- 0.5 mm; P < 0.05) was attenuated and the a-v glucose difference and the cerebral metabolic ratio remained at levels similar to those at rest. Together with the previous finding that the cerebral metabolic ratio is unaffected during exercise with administration of the beta(1)-receptor antagonist metropolol, the present results suggest that the cerebral metabolic ratio decreases in response to a beta(2)-receptor mechanism.
Collapse
Affiliation(s)
- Thomas Seifert Larsen
- Department of Anaesthesia, Rigshospitalet 2041, Blegdamsvej 9, DK 2100, Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
15
|
Volianitis S, Fabricius-Bjerre A, Overgaard A, Strømstad M, Bjarrum M, Carlson C, Petersen NT, Rasmussen P, Secher NH, Nielsen HB. The cerebral metabolic ratio is not affected by oxygen availability during maximal exercise in humans. J Physiol 2007; 586:107-12. [PMID: 17932151 DOI: 10.1113/jphysiol.2007.142273] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intense exercise decreases the cerebral metabolic ratio of O(2) to carbohydrates (glucose + (1/2) lactate) and the cerebral lactate uptake depends on its arterial concentration, but whether these variables are influenced by O(2) availability is not known. In six males, maximal ergometer rowing increased the arterial lactate to 21.4 +/- 0.8 mm (mean +/- s.e.m.) and arterial-jugular venous (a-v) difference from -0.03 +/- 0.01 mm at rest to 2.52 +/- 0.03 mm (P < 0.05). Arterial glucose was raised to 8.5 +/- 0.5 mm and its a-v difference increased from 1.03 +/- 0.01 to 1.86 +/- 0.02 mm (P < 0.05) in the immediate recovery. During exercise, the cerebral metabolic ratio decreased from 5.67 +/- 0.52 at rest to 1.70 +/- 0.23 (P < 0.05) and remained low in the early recovery. Arterial haemoglobin O(2) saturation was 92.5 +/- 0.2% during exercise with room air, and it reached 87.6 +/- 1.0% and 98.9 +/- 0.2% during exercise with an inspired O(2) fraction of 0.17 and 0.30, respectively. Whilst the increase in a-v lactate difference was attenuated by manipulation of cerebral O(2) availability, the cerebral metabolic ratio was not affected significantly. During maximal rowing, the cerebral metabolic ratio reaches the lowest value with no effect by a moderate change in the arterial O(2) content. These findings suggest that intense whole body exercise is associated with marked imbalance in the cerebral metabolic substrate preferences independent of oxygen availability.
Collapse
Affiliation(s)
- S Volianitis
- Department of Health Science and Technology, Aalborg University Denmark, Fredrik Bajers Vej 7E4, Aalborg, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Benwell NM, Mastaglia FL, Thickbroom GW. Reduced functional activation after fatiguing exercise is not confined to primary motor areas. Exp Brain Res 2006; 175:575-83. [PMID: 16819648 DOI: 10.1007/s00221-006-0573-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/23/2006] [Indexed: 11/27/2022]
Abstract
We have previously shown that following a period of unimanual fatiguing exercise, there is a reduction in primary sensorimotor cortex (SM1) activation with movement of either the fatigued or the non-fatigued hand by Benwell et al. (Exp Brain Res 167:160-164, 2005). In the present study we have investigated whether this reduction is confined to motor areas or is more widespread. Functional imaging was performed before and after a 10-minute fatiguing exercise of the left hand (30% of maximum handgrip strength) in seven normal subjects (4 M, mean age 25 years). The activating task was a handgrip against a low resistance (1 kg) in response to a visual cue (chequerboard reversal every 2 +/- 0.5 s). We compared activation in SM1, supplementary motor area (SMA), cerebellum (CB) and primary visual cortex (V1) before and after the fatiguing exercise. After exercise, contralateral SM1 activation was reduced by 33% (P < 0.05) compared to baseline for the fatigued hand and by 49% for the non-fatigued hand (P < 0.05). A similar pattern was seen for the bilateral SMA and ipsilateral CB following exercise (45 vs. 50% for SMA; 30 vs. 35% for CB; fatigued versus non-fatigued). Activation was also reduced in V1 but to a lesser extent than in motor areas (19 vs. 24%; fatigued versus non-fatigued). These results show that although the reduced functional activation during the recovery period after fatiguing exercise is more marked in motor areas, it also extends to non-motor areas such as the visual cortex, suggesting that there are more widespread changes in cerebral haemodynamic responses after fatigue.
Collapse
Affiliation(s)
- Nicola M Benwell
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia.
| | | | | |
Collapse
|
17
|
Abstract
The metabolic response to brain activation in exercise might be expressed as the cerebral metabolic ratio (MR; uptake O2/glucose + 1/2 lactate). At rest, brain energy is provided by a balanced oxidation of glucose as MR is close to 6, but activation provokes a 'surplus' uptake of glucose relative to that of O2. Whereas MR remains stable during light exercise, it is reduced by 30% to 40% when exercise becomes demanding. The MR integrates metabolism in brain areas stimulated by sensory input from skeletal muscle, the mental effort to exercise and control of exercising limbs. The MR decreases during prolonged exhaustive exercise where blood lactate remains low, but when vigorous exercise raises blood lactate, the brain takes up lactate in an amount similar to that of glucose. This lactate taken up by the brain is oxidised as it does not accumulate within the brain and such pronounced brain uptake of substrate occurs independently of plasma hormones. The 'surplus' of glucose equivalents taken up by the activated brain may reach approximately 10 mmol, that is, an amount compatible with the global glycogen level. It is suggested that a low MR predicts shortage of energy that ultimately limits motor activation and reflects a biologic background for 'central fatigue'.
Collapse
Affiliation(s)
- Mads K Dalsgaard
- Department of Anaesthesia and The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Johnson MA, Sharpe GR, McConnell AK. Maximal voluntary hyperpnoea increases blood lactate concentration during exercise. Eur J Appl Physiol 2006; 96:600-8. [PMID: 16450166 DOI: 10.1007/s00421-005-0098-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2005] [Indexed: 11/29/2022]
Abstract
Ventilatory work during heavy endurance exercise has not been thought to influence systemic lactate concentration. We evaluated the effect of maximal isocapnic volitional hyperpnoea upon arterialised venous blood lactate concentration ([lac-]B) during leg cycling exercise at maximum lactate steady state (MLSS). Seven healthy males performed a lactate minimum test to estimate MLSS, which was then resolved using separate 30 min constant power tests (MLSS=207+/-8 W, mean +/- SEM). Thereafter, a 30 min control trial at MLSS was performed. In a further experimental trial, the control trial was mimicked except that from 20 to 28 min maximal isocapnic volitional hyperpnoea was superimposed on exercise. Over 20-28 min minute ventilation, oxygen uptake, and heart rate during the control and experimental trials were 87.3+/-2.4 and 168.3+/-7.0 l min(-1) (P<0.01), the latter being comparable to that achieved in the maximal phase of the lactate minimum test (171.9+/-6.8 l min(-1)), 3.46+/-0.20 and 3.83 +/- 0.20 l min(-1) (P<0.01), and 158.5+/-2.7 and 166.8+/-2.7 beats min(-1) (P<0.05), respectively. From 20 to 30 min of the experimental trial [lac-]B increased from 3.7+/-0.2 to 4.7+/-0.3 mmol l(-1) (P<0.05). The partial pressure of carbon dioxide in arterialised venous blood increased approximately 3 mmHg during volitional hyperpnoea, which may have attenuated the [lac-]B increase. These results show that, during heavy exercise, respiratory muscle work may affect [lac-]B. We speculate that the changes observed were related to the altered lactate turnover in respiratory muscles, locomotor muscles, or both.
Collapse
Affiliation(s)
- Michael A Johnson
- School of Biomedical and Natural Sciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | |
Collapse
|
19
|
Ogoh S, Fadel PJ, Zhang R, Selmer C, Jans Ø, Secher NH, Raven PB. Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans. Am J Physiol Heart Circ Physiol 2005; 288:H1526-31. [PMID: 15591094 DOI: 10.1152/ajpheart.00979.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise challenges cerebral autoregulation (CA) by a large increase in pulse pressure (PP) that may make systolic pressure exceed what is normally considered the upper range of CA. This study examined the relationship between systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) and systolic ( Vs), diastolic ( Vd). and mean ( Vm) middle cerebral artery (MCA) blood flow velocity during mild, moderate, and heavy cycling exercise. Dynamic CA and steady-state changes in MCA V in relation to changes in arterial pressure were evaluated using transfer function analysis. PP increased by 37% and 57% during moderate and heavy exercise, respectively ( P < 0.05), and the pulsatility of MCA V increased markedly. Thus exercise increased MCA Vm and Vs ( P < 0.05) but tended to decrease MCA Vd ( P = 0.06). However, the normalized low-frequency transfer function gain between MAP and MCA Vm and between SBP and MCA Vs remained unchanged from rest to exercise, whereas that between DBP and MCA Vd increased from rest to heavy exercise ( P < 0.05). These findings suggest that during exercise, CA is challenged by a rapid decrease rather than by a rapid increase in blood pressure. However, dynamic CA remains able to modulate blood flow around the exercise-induced increase in MCA Vm, even during high-intensity exercise.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Dept. of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | |
Collapse
|