1
|
Suárez-Mesa R, Ros-Freixedes R, Pena RN, Reixach J, Estany J. Impact of the leptin receptor gene on pig performance and quality traits. Sci Rep 2024; 14:10652. [PMID: 38730110 PMCID: PMC11087582 DOI: 10.1038/s41598-024-61509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
The recessive T allele of the missense polymorphism rs709596309 C > T of the leptin receptor gene is associated with intramuscular fat. However, its overall impact on pork production is still partial. In this work, we investigated the all-round effects of the TT genotype on lean growth efficiency and carcass, meat and fat quality using data from an experiment that compared the performance of 48 TT and 48 C- (24 CT and 24 CC) Duroc barrows. The TT pigs were less efficient for lean growth than the C- pigs. Although heavier, their carcasses had less lean content, were shorter and had lighter loins. Apart from increasing marbling and saturated fatty acid content, changes caused by the TT genotype in meat and fat quality are likely not enough to be perceived by consumers. The effect on visual marbling score exceeded that on intramuscular fat content, which suggests a direct influence of the T allele on the pattern of fat distribution in muscle. With current low-protein diets, the T allele is expected to be cost-effective only in niche markets where a very high level of marbling is critical.
Collapse
Affiliation(s)
- Rafael Suárez-Mesa
- Department of Animal Science, University of Lleida - Agrotecnio-CERCA Center, 191 Rovira Roure, 25198, Lleida, Catalonia, Spain
| | - Roger Ros-Freixedes
- Department of Animal Science, University of Lleida - Agrotecnio-CERCA Center, 191 Rovira Roure, 25198, Lleida, Catalonia, Spain
| | - Ramona N Pena
- Department of Animal Science, University of Lleida - Agrotecnio-CERCA Center, 191 Rovira Roure, 25198, Lleida, Catalonia, Spain
| | - Josep Reixach
- Selección Batallé S.A., 17421, Riudarenes, Catalonia, Spain
| | - Joan Estany
- Department of Animal Science, University of Lleida - Agrotecnio-CERCA Center, 191 Rovira Roure, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
2
|
Galvan-Alvarez V, Gallego-Selles A, Martinez-Canton M, García-Gonzalez E, Gelabert-Rebato M, Ponce-Gonzalez JG, Larsen S, Morales-Alamo D, Losa-Reyna J, Perez-Suarez I, Dorado C, Perez-Valera M, Holmberg HC, Boushel R, de Pablos Velasco P, Helge JW, Martin-Rincon M, Calbet JAL. Antioxidant enzymes and Nrf2/Keap1 in human skeletal muscle: Influence of age, sex, adiposity and aerobic fitness. Free Radic Biol Med 2023; 209:282-291. [PMID: 37858747 DOI: 10.1016/j.freeradbiomed.2023.10.393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Ageing, a sedentary lifestyle, and obesity are associated with increased oxidative stress, while regular exercise is associated with an increased antioxidant capacity in trained skeletal muscles. Whether a higher aerobic fitness is associated with increased expression of antioxidant enzymes and their regulatory factors in skeletal muscle remains unknown. Although oestrogens could promote a higher antioxidant capacity in females, it remains unknown whether a sex dimorphism exists in humans regarding the antioxidant capacity of skeletal muscle. Thus, the aim was to determine the protein expression levels of the antioxidant enzymes SOD1, SOD2, catalase and glutathione reductase (GR) and their regulatory factors Nrf2 and Keap1 in 189 volunteers (120 males and 69 females) to establish whether sex differences exist and how age, VO2max and adiposity influence these. For this purpose, vastus lateralis muscle biopsies were obtained in all participants under resting and unstressed conditions. No significant sex differences in Nrf2, Keap1, SOD1, SOD2, catalase and GR protein expression levels were observed after accounting for VO2max, age and adiposity differences. Multiple regression analysis indicates that the VO2max in mL.kg LLM-1.min-1can be predicted from the levels of SOD2, Total Nrf2 and Keap1 (R = 0.58, P < 0.001), with SOD2 being the main predictor explaining 28 % of variance in VO2max, while Nrf2 and Keap1 explained each around 3 % of the variance. SOD1 protein expression increased with ageing in the whole group after accounting for differences in VO2max and body fat percentage. Overweight and obesity were associated with increased pSer40-Nrf2, pSer40-Nrf2/Total Nrf2 ratio and SOD1 protein expression levels after accounting for differences in age and VO2max. Overall, at the population level, higher aerobic fitness is associated with increased basal expression of muscle antioxidant enzymes, which may explain some of the benefits of regular exercise.
Collapse
Affiliation(s)
- Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Eduardo García-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jesus Gustavo Ponce-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Steen Larsen
- Center of Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose Losa-Reyna
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Ismael Perez-Suarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Hans-Christer Holmberg
- Department of Health Sciences, Luleå University of Technology, Sweden; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Pedro de Pablos Velasco
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Endocrinology and Nutrition, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - Jorn Wulff Helge
- Center of Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway.
| |
Collapse
|
3
|
Hebebrand J, Antel J, von Piechowski L, Kiewert C, Stüve B, Gradl-Dietsch G. Case report: Rapid improvements of anorexia nervosa and probable myalgic encephalomyelitis/chronic fatigue syndrome upon metreleptin treatment during two dosing episodes. Front Psychiatry 2023; 14:1267495. [PMID: 38025476 PMCID: PMC10666640 DOI: 10.3389/fpsyt.2023.1267495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
A comorbidity of anorexia nervosa (AN) and myalgic encephalomyelitis (ME/CSF) is uncommon. A 17 years-old male adolescent with possible onset of ME/CFS after an Epstein Barr Virus infection (EBV) and later onset of AN during a second period of weight loss was twice treated off-label with metreleptin for 15 and 11 days, respectively. As in previous cases, eating disorder specific cognitions and mood improved. Interestingly, fatigue and post-exertional muscle pain (P-EMP) improved, too. We discuss potential mechanisms. Treatment with metreleptin may prove beneficial in AN and in ME/CSF associated with substantial weight loss.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Linda von Piechowski
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Münster, University of Münster, Münster, Germany
| | - Cordula Kiewert
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Stüve
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Neuropediatrics, DRK Children’s Hospital, Siegen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Perez-Valera M, Martinez-Canton M, Gallego-Selles A, Galván-Alvarez V, Gelabert-Rebato M, Morales-Alamo D, Santana A, Martin-Rodriguez S, Ponce-Gonzalez JG, Larsen S, Losa-Reyna J, Perez-Suarez I, Dorado C, Curtelin D, Gonzalez-Henriquez JJ, Boushel R, Hallen J, de Pablos Velasco P, Freixinet-Gilart J, Holmberg HC, Helge JW, Martin-Rincon M, Calbet JAL. Angiotensin-Converting Enzyme 2 (SARS-CoV-2 receptor) expression in human skeletal muscle. Scand J Med Sci Sports 2021; 31:2249-2258. [PMID: 34551157 PMCID: PMC8662278 DOI: 10.1111/sms.14061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The study aimed to determine the levels of skeletal muscle angiotensin-converting enzyme 2 (ACE2, the SARS-CoV-2 receptor) protein expression in men and women and assess whether ACE2 expression in skeletal muscle is associated with cardiorespiratory fitness and adiposity. The level of ACE2 in vastus lateralis muscle biopsies collected in previous studies from 170 men (age: 19-65 years, weight: 56-137 kg, BMI: 23-44) and 69 women (age: 18-55 years, weight: 41-126 kg, BMI: 22-39) was analyzed in duplicate by western blot. VO2 max was determined by ergospirometry and body composition by DXA. ACE2 protein expression was 1.8-fold higher in women than men (p = 0.001, n = 239). This sex difference disappeared after accounting for the percentage of body fat (fat %), VO2 max per kg of legs lean mass (VO2 max-LLM) and age (p = 0.47). Multiple regression analysis showed that the fat % (β = 0.47) is the main predictor of the variability in ACE2 protein expression in skeletal muscle, explaining 5.2% of the variance. VO2 max-LLM had also predictive value (β = 0.09). There was a significant fat % by VO2 max-LLM interaction, such that for subjects with low fat %, VO2 max-LLM was positively associated with ACE2 expression while as fat % increased the slope of the positive association between VO2 max-LLM and ACE2 was reduced. In conclusion, women express higher amounts of ACE2 in their skeletal muscles than men. This sexual dimorphism is mainly explained by sex differences in fat % and cardiorespiratory fitness. The percentage of body fat is the main predictor of the variability in ACE2 protein expression in human skeletal muscle.
Collapse
Affiliation(s)
- Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Victor Galván-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, Las Palmas de Gran Canaria, Spain
| | - Saul Martin-Rodriguez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Steen Larsen
- Center of Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jose Losa-Reyna
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ismael Perez-Suarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Curtelin
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Jose Gonzalez-Henriquez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Department of Mathematics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jostein Hallen
- Department of Physical Performance, The Norwegian School of Sport Sciences, Oslo, Norway
| | - Pedro de Pablos Velasco
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Department of Endocrinology and Nutrition, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - Jorge Freixinet-Gilart
- Department of Thoracic Surgery, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Hans-Christer Holmberg
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institute, Stockholm, Sweden.,Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Jorn W Helge
- Center of Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Performance, The Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
5
|
Cicchella A, Carluccio M, Scoditti E, Kaltsatou A, Massaro M. Leptin and exercise: an update. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.19.04186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Paris MT, Bell KE, Mourtzakis M. Myokines and adipokines in sarcopenia: understanding cross-talk between skeletal muscle and adipose tissue and the role of exercise. Curr Opin Pharmacol 2020; 52:61-66. [PMID: 32668398 DOI: 10.1016/j.coph.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
Detrimental age-associated changes in skeletal muscle and adipose tissue increase the risk of sarcopenia. Age-related changes in myokines, such as myostatin and irisin, as well as adipokines, such as leptin and adiponectin, contribute to cross-talk between muscle and adipose tissue. These age-related changes in myokines and adipokines have important implications for sarcopenia, however, recent literature highlights discrepancies in these relationships. Exercise may alter serum profiles and muscle receptor expression of these factors, but future work is needed to determine whether these changes in myokines and adipokines relate to improvements in muscle mass and function. Here, we describe myokine-mediated and adipokine-mediated interactions between muscle and adipose tissue, and discuss the fundamental importance of these cytokines to understanding the development of sarcopenia.
Collapse
Affiliation(s)
- Michael T Paris
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 1A3, Canada
| | - Kirsten E Bell
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 1A3, Canada
| | - Marina Mourtzakis
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 1A3, Canada.
| |
Collapse
|
7
|
Modulation of inter-organ signalling in obese mice by spontaneous physical activity during mammary cancer development. Sci Rep 2020; 10:8794. [PMID: 32472095 PMCID: PMC7260359 DOI: 10.1038/s41598-020-65131-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulative evidence links breast cancer development to excess weight and obesity. During obesity, dysregulations of adipose tissue induce an increase in pro-inflammatory adipokine secretions, such as leptin and oestrogen secretions. Furthermore, a raise in oxidative stress, along with a decrease in antioxidant capacity, induces and maintains chronic inflammation, which creates a permissive environment for cancer development. Physical activity is recommended as a non-pharmacological therapy in both obese and cancer situations. Physical activity is associated with a moderation of acute inflammation, higher antioxidant defences and adipokine regulation, linked to a decrease of tumour-cell proliferation. However, the biological mechanisms underlying the relationship between oxidative stress, low-grade inflammation, carcinogenesis, obesity and physical activity are poorly understood. Our study is based on old, ovariectomised mice (C57BL/6J mice, 33 weeks old), fed with a high fat diet which increases adipose tissue favouring overweight and obesity, and housed in either an enriched environment, promoting physical activity and social interactions, or a standard environment constituting close to sedentary conditions. Our model of mammary carcinogenesis allowed for the exploration of tissue secretions and signalling pathway activation as well as the oxidative status in tumours to clarify the mechanisms involved in a multiple factorial analysis of the data set. The multiple factorial analysis demonstrated that the most important variables linked to moderate, spontaneous physical activity were the increase in growth factor (epithelial growth factor (EGF), hepatocyte growth factor (HGF)) and the activation of the signalling pathways (STAT3, c-jun n-terminal kinases (JNK), EKR1/2, nuclear factor-kappa B (NF-κB)) in the gastrocnemius (G). In inguinal adipose tissue, the NF-κB inflammation pathway was activated, increasing the IL-6 content. The adiponectin plasma (P) level increased and presented an inverse correlation with tumour oxidative status. Altogether, these results demonstrated that spontaneous physical activity in obesity conditions could slow down tumour growth through crosstalk between muscle, adipose tissue and tumour. A spontaneous moderate physical activity was able to modify the inter-organ exchange in a paracrine manner. The different tissues changed their signalling pathways and adipokine/cytokine secretions, such as adiponectin and leptin, resulting in a decrease in anti-oxidative response and inflammation in the tumour environment. This model showed that moderate, spontaneous physical activity suppresses tumour growth via a dialogue between the organs close to the tumour.
Collapse
|
8
|
Le Guennec D, Rossary A. The interrelationship between physical activity and metabolic regulation of breast cancer progression in obesity via cytokine control. Cytokine Growth Factor Rev 2020; 52:76-87. [DOI: 10.1016/j.cytogfr.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
|
9
|
Morales‐Alamo D, Martinez‐Canton M, Gelabert‐Rebato M, Martin‐Rincon M, Pablos‐Velasco P, Holmberg H, Calbet JAL. Sarcolipin expression in human skeletal muscle: Influence of energy balance and exercise. Scand J Med Sci Sports 2019; 30:408-420. [DOI: 10.1111/sms.13594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/08/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Affiliation(s)
- David Morales‐Alamo
- Department of Physical Education University of Las Palmas de Gran Canaria Campus Universitario de Tafira s/n Las Palmas de Gran Canaria Spain
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
| | - Miriam Martinez‐Canton
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
| | - Miriam Gelabert‐Rebato
- Department of Physical Education University of Las Palmas de Gran Canaria Campus Universitario de Tafira s/n Las Palmas de Gran Canaria Spain
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
- Nektium Pharma Las Palmas de Gran Canaria Spain
| | - Marcos Martin‐Rincon
- Department of Physical Education University of Las Palmas de Gran Canaria Campus Universitario de Tafira s/n Las Palmas de Gran Canaria Spain
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
| | - Pedro Pablos‐Velasco
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
- Service of Endocrinology and Nutrition Hospital Universitario de Gran Canaria Doctor Negrín Las Palmas de Gran Canaria Spain
| | - Hans‐Christer Holmberg
- Department of Health Sciences Swedish Winter Sports Research Centre Mid Sweden University Östersund Sweden
| | - Jose A. L. Calbet
- Department of Physical Education University of Las Palmas de Gran Canaria Campus Universitario de Tafira s/n Las Palmas de Gran Canaria Spain
- IUIBS Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria Canary Islands Spain
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| |
Collapse
|
10
|
Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients 2019; 11:nu11112824. [PMID: 31752260 PMCID: PMC6893734 DOI: 10.3390/nu11112824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit.
Collapse
|
11
|
Narvaez-Sanchez R, Calderón JC, Vega G, Trillos MC, Ospina S. Skeletal muscle as a protagonist in the pregnancy metabolic syndrome. Med Hypotheses 2019; 126:26-37. [PMID: 31010495 DOI: 10.1016/j.mehy.2019.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
The pregnant woman normally shows clinical manifestations similar to a metabolic syndrome (MS), due to her metabolic and hemodynamic adaptations in order to share nutrients with the child. If those adjustments are surpassed, a kind of pregnancy MS (PregMS) could appear, characterized by excessive insulin resistance and vascular maladaptation. Skeletal muscle (SKM) must be a protagonist in the PregMS: SKM strength and mass have been associated inversely with MS incidence in non-pregnant patients, and in pregnant women muscular activity modulates metabolic and vascular adaptations that favor better outcomes. Of note, a sedentary lifestyle affects exactly in the other way. Those effects may be explained not only by the old paradigm of SKM being a great energy consumer and store, but because it is an endocrine organ whose chronic activity or deconditioning correspondingly releases myokines modulating insulin sensitivity and cardiovascular adaptation, by direct or indirect mechanisms not well understood. In this document, we present evidence to support the concept of a PregMS and hypothesize on the role of the SKM mass, fiber types composition and myokines in its pathophysiology. Also, we discuss some exercise interventions in pregnancy as a way to test our hypotheses.
Collapse
Affiliation(s)
- Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia; Red iberoamericana de trastornos vasculares y del embarazo, RIVATREM, Colombia.
| | - Juan C Calderón
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Gloria Vega
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Maria Camila Trillos
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| | - Sara Ospina
- Physiology and Biochemistry Research Group PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia. http://www.udea.edu.co/physis
| |
Collapse
|
12
|
Protein synthesis signaling in skeletal muscle is refractory to whey protein ingestion during a severe energy deficit evoked by prolonged exercise and caloric restriction. Int J Obes (Lond) 2018; 43:872-882. [PMID: 30242237 DOI: 10.1038/s41366-018-0174-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/24/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exercise and protein ingestion preserve muscle mass during moderate energy deficits. OBJECTIVE To determine the molecular mechanisms by which exercise and protein ingestion may spare muscle mass during severe energy deficit (5500 kcal/day). DESIGN Fifteen overweight, but otherwise healthy men, underwent a pre-test (PRE), caloric restriction (3.2 kcals/kg body weight/day) + exercise (45 min one-arm cranking + 8 h walking) for 4 days (CRE), followed by a control diet (CD) for 3 days, with a caloric content similar to pre-intervention while exercise was reduced to less than 10,000 steps per day. During CRE, participants ingested either whey protein (PRO, n = 8) or sucrose (SU, n = 7) (0.8 g/kg body weight/day). Muscle biopsies were obtained from the trained and untrained deltoid, and vastus lateralis. RESULTS Following CRE and CD, serum concentrations of leptin, insulin, and testosterone were reduced, whereas cortisol and the catabolic index (cortisol/total testosterone) increased. The Akt/mTor/p70S6K pathway and total eIF2α were unchanged, while total 4E-BP1 and Thr37/464E-BP1 were higher. After CRE, plasma BCAA and EAA were elevated, with a greater response in PRO group, and total GSK3β, pSer9GSK3β, pSer51eIF2α, and pSer51eIF2α/total eIF2α were reduced, with a greater response of pSer9GSK3β in the PRO group. The changes in signaling were associated with the changes in leptin, insulin, amino acids, cortisol, cortisol/total testosterone, and lean mass. CONCLUSIONS During severe energy deficit, pSer9GSK3β levels are reduced and human skeletal muscle becomes refractory to the anabolic effects of whey protein ingestion, regardless of contractile activity. These effects are associated with the changes in lean mass and serum insulin, testosterone, and cortisol concentrations.
Collapse
|
13
|
Marques-Oliveira GH, Silva TM, Lima WG, Valadares HMS, Chaves VE. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides 2018; 106:49-58. [PMID: 29953915 DOI: 10.1016/j.peptides.2018.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 02/09/2023]
Abstract
Leptin and its receptor are widely distributed in several tissues, mainly in white adipose tissue. The serum leptin is highly correlated with body mass index in rodents and humans, being documented that leptin levels reduces in the fasting state and increase during refeeding, similarly to insulin release by pancreatic islets. Insulin appears to increase leptin mRNA and protein expression and its release by adipocytes. Some studies have suggested that insulin acts through the activation of the transcription factors: sterol regulatory element binding protein 1 (SREBP1), CCAAT enhancer binding protein-α (C/EBP-α) and specificity protein 1 (Sp1). Insulin stimulates the release of preformed and newly synthesized leptin by adipocytes through its signaling cascade. Its effects are blocked by inhibitors of the insulin signaling pathway, as well as by inhibitors of protein synthesis and agents that increase the intracellular cAMP. The literature data suggest that chronic hyperinsulinemia increases serum leptin levels in humans and rodents. In this review, we summarized the most updated knowledge on the effects of insulin on serum leptin levels, presenting the cell mechanisms that control leptin synthesis and release by the white adipose tissue.
Collapse
Affiliation(s)
| | - Thaís Marques Silva
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Marosi K, Moehl K, Navas-Enamorado I, Mitchell SJ, Zhang Y, Lehrmann E, Aon MA, Cortassa S, Becker KG, Mattson MP. Metabolic and molecular framework for the enhancement of endurance by intermittent food deprivation. FASEB J 2018; 32:3844-3858. [PMID: 29485903 DOI: 10.1096/fj.201701378rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evolutionary considerations suggest that the body has been optimized to perform at a high level in the food-deprived state when fatty acids and their ketone metabolites are a major fuel source for muscle cells. Because controlled food deprivation in laboratory animals and intermittent energy restriction in humans is a potent physiologic stimulus for ketosis, we designed a study to determine the impact of intermittent food deprivation during endurance training on performance and to elucidate the underlying cellular and molecular mechanisms. Male mice were randomly assigned to either ad libitum feeding or alternate-day food deprivation (ADF) groups, and half of the mice in each diet group were trained daily on a treadmill for 1 mo. A run to exhaustion endurance test performed at the end of the training period revealed superior performance in the mice maintained on ADF during training compared to mice fed ad libitum during training. Maximal O2 consumption was increased similarly by treadmill training in mice on ADF or ad libitum diets, whereas respiratory exchange ratio was reduced in ADF mice on food-deprivation days and during running. Analyses of gene expression in liver and soleus tissues, and metabolomics analysis of blood suggest that the metabolic switch invoked by ADF and potentiated by exercise strongly modulates molecular pathways involved in mitochondrial biogenesis, metabolism, and cellular plasticity. Our findings demonstrate that ADF engages metabolic and cellular signaling pathways that result in increased metabolic efficiency and endurance capacity.-Marosi, K., Moehl, K., Navas-Enamorado, I., Mitchell, S. J., Zhang, Y., Lehrmann, E., Aon, M. A., Cortassa, S., Becker, K. G., Mattson, M. P. Metabolic and molecular framework for the enhancement of endurance by intermittent food deprivation.
Collapse
Affiliation(s)
- Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ignacio Navas-Enamorado
- Translational Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sarah J Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sonia Cortassa
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|