1
|
Kimura S, Iwata M, Takase H, Lo EH, Arai K. Oxidative stress and chronic cerebral hypoperfusion: An overview from preclinical rodent models. J Cereb Blood Flow Metab 2025; 45:381-395. [PMID: 39663901 PMCID: PMC11635795 DOI: 10.1177/0271678x241305899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/12/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is an important clinical condition characterized by a prolonged reduction in cerebral blood flow that contributes to several neurodegenerative diseases, including vascular dementia and Alzheimer's disease. A number of rodent models of CCH have been developed that mimic the human pathological conditions of reduced cerebral perfusion. These models have been instrumental in elucidating the molecular and cellular mechanisms involved in CCH-induced brain damage. Oxidative stress is induced by perturbations in cellular pathways caused by CCH, including mitochondrial dysfunction, ion pump dysfunction, and adenosine triphosphate (ATP) depletion. The deleterious stress leads to the accumulation of reactive oxygen species (ROS) and exacerbates damage to neuronal structures, significantly impairing cognitive function. Among the various therapeutic strategies being evaluated, edaravone, a potent antioxidant, is emerging as a promising drug due to its neuroprotective properties against oxidative stress. Initially approved for use in ischemic stroke, research using rodent CCH models has shown that edaravone has significant efficacy in scavenging free radicals and ameliorating oxidative stress-induced neuronal damage under CCH conditions. This mini-review summarizes the current literature on the rodent models of CCH and then discusses the therapeutic potential of edaravone to reduce neuronal and vascular damage caused by CCH-induced oxidative stress.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Maho Iwata
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Developmental Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Mendiola PJ, O’Herron P, Xie K, Brands MW, Bush W, Patterson RE, Di Stefano V, Filosa JA. Blood pressure variability compromises vascular function in middle-aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619509. [PMID: 39484398 PMCID: PMC11526967 DOI: 10.1101/2024.10.21.619509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Blood pressure variability (BPV) has emerged as a novel risk factor for cognitive decline and dementia, independent of alterations in average blood pressure (BP). However, the underlying consequences of large BP fluctuations on the neurovascular complex are unknown. We developed a novel mouse model of BPV in middle-aged mice based on intermittent Angiotensin II infusions. Using radio telemetry, we demonstrated that the 24-hr BP averages of these mice were similar to controls, indicating BPV without hypertension. Chronic (20-25 days) BPV led to a blunted bradycardic response and cognitive deficits. Two-photon imaging of parenchymal arterioles showed enhanced pressure-evoked constrictions (myogenic response) in BPV mice. Sensory stimulus-evoked dilations (neurovascular coupling) were greater at higher BP levels in control mice, but this pressure-dependence was lost in BPV mice. Our findings support the notion that large BP variations impair vascular function at the neurovascular complex and contribute to cognitive decline.
Collapse
Affiliation(s)
- Perenkita J. Mendiola
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Philip O’Herron
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kun Xie
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Michael W. Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Weston Bush
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rachel E. Patterson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Valeria Di Stefano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jessica A. Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
3
|
Yamamoto S, Honma K, Fujii M, Kakimoto M, Kirihara S, Nakayama H, Kitamori K, Sato I, Hirohata S, Watanabe S. SHRSP5/Dmcr rats fed a high-fat and high-cholesterol diet develop disease-induced sarcopenia as nonalcoholic steatohepatitis progresses. Ann Anat 2023; 249:152104. [PMID: 37209870 DOI: 10.1016/j.aanat.2023.152104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Secondary sarcopenia develops as a result of a bedridden state and illnesses, such as cachexia, liver disease, and diabetes. However, there is a lack of animal models to investigate the underlying mechanisms and potential treatments for secondary sarcopenia. Recently, secondary sarcopenia has been associated with the prognosis of nonalcoholic steatohepatitis. This study aimed to investigate whether stroke-prone spontaneously hypertensive rat 5 (SHRSP5/Dmcr) which developed severe nonalcoholic steatohepatitis by a high-fat and high-cholesterol (HFC; containing 2% cholic acid) diet is a useful model of secondary sarcopenia. METHODS SHRSP5/Dmcr rats were divided into 6 groups fed with a Stroke-Prone (SP: normal chow) or HFC diets for different periods (4, 12, and 20 weeks), and WKY/Izm rats were divided into 2 groups fed an SP or HFC diet. Body weight, food intake, and muscle force were measured weekly for all rats. After the end of the diet period, skeletal muscle strength evoked by electrical stimulation was recorded, blood was collected, and organ weight was measured. The sera were used for biochemical analysis and the organs were used for histopathological analysis. RESULTS SHRSP5/Dmcr rats fed an HFC diet developed nonalcoholic steatohepatitis, and their skeletal muscles, especially fast muscles, showed atrophy, indicating that muscle atrophy is aggravated by the progression of nonalcoholic steatohepatitis. In contrast, WKY/Izm rats fed an HFC diet did not exhibit sarcopenia. CONCLUSIONS This study suggests that SHRSP5/Dmcr rats could be a useful novel model for investigate the mechanism of secondary sarcopenia disorder associated with nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Shusei Yamamoto
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Koki Honma
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Moe Fujii
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, 543, Takoda, Tobe-cho, Iyo-gun, Ehime 791-2101, Japan.
| | - Mai Kakimoto
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Sora Kirihara
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Hinako Nakayama
- Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, 2-1723, Omori, Moriyama-ku, Nagoya-shi, Aichi 463-8521, Japan.
| | - Ikumi Sato
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Department of Medical Laboratory Science, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Satoshi Hirohata
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Shogo Watanabe
- Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
4
|
Cerebrovascular G i Proteins Protect Against Brain Hypoperfusion and Collateral Failure in Cerebral Ischemia. Mol Imaging Biol 2023; 25:363-374. [PMID: 36074223 PMCID: PMC10006265 DOI: 10.1007/s11307-022-01764-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/23/2022] [Accepted: 08/02/2022] [Indexed: 10/14/2022]
Abstract
Cerebral hypoperfusion and vascular dysfunction are closely related to common risk factors for ischemic stroke such as hypertension, dyslipidemia, diabetes, and smoking. The role of inhibitory G protein-dependent receptor (GiPCR) signaling in regulating cerebrovascular functions remains largely elusive. We examined the importance of GiPCR signaling in cerebral blood flow (CBF) and its stability after sudden interruption using various in vivo high-resolution magnetic resonance imaging techniques. To this end, we induced a functional knockout of GiPCR signaling in the brain vasculature by injection of pertussis toxin (PTX). Our results show that PTX induced global brain hypoperfusion and microvascular collapse. When PTX-pretreated animals underwent transient unilateral occlusion of one common carotid artery, CBF was disrupted in the ipsilateral hemisphere resulting in the collapse of the cortically penetrating microvessels. In addition, pronounced stroke features in the affected brain regions appeared in both MRI and histological examination. Our findings suggest an impact of cerebrovascular GiPCR signaling in the maintenance of CBF, which may be useful for novel pharmacotherapeutic approaches to prevent and treat cerebrovascular dysfunction and stroke.
Collapse
|
5
|
Beneficial Effects of Dietary Nitrite on a Model of Nonalcoholic Steatohepatitis Induced by High-Fat/High-Cholesterol Diets in SHRSP5/Dmcr Rats: A Preliminary Study. Int J Mol Sci 2022; 23:ijms23062931. [PMID: 35328352 PMCID: PMC8951310 DOI: 10.3390/ijms23062931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease that leads to liver cirrhosis and hepatocellular carcinoma. Endothelial dysfunction caused by hepatic lipotoxicity is an underlying NASH pathology observed in the liver and the cardiovascular system. Here, we evaluated the effect of dietary nitrite on a rat NASH model. Stroke-prone, spontaneously hypertensive 5/Dmcr rats were fed a high-fat/high-cholesterol diet to develop the NASH model, with nitrite or captopril (100 mg/L, each) supplementation in drinking water for 8 weeks. The effects of nitrite and captopril were evaluated using immunohistochemical analyses of the liver and heart tissues. Dietary nitrite suppressed liver fibrosis in the rats by reducing oxidative stress, as measured using the protein levels of nicotinamide adenine dinucleotide phosphate oxidase components and inflammatory cell accumulation in the liver. Nitrite lowered the blood pressure in hypertensive NASH rats and suppressed left ventricular chamber enlargement. Similar therapeutic effects were observed in a captopril-treated rat NASH model, suggesting the possibility of a common signaling pathway through which nitrite and captopril improve NASH pathology. In conclusion, dietary nitrite attenuates the development of NASH with cardiovascular involvement in rats and provides an alternative NASH therapeutic strategy.
Collapse
|
6
|
Kim KJ, Diaz JR, Presa JL, Muller PR, Brands MW, Khan MB, Hess DC, Althammer F, Stern JE, Filosa JA. Decreased parenchymal arteriolar tone uncouples vessel-to-neuronal communication in a mouse model of vascular cognitive impairment. GeroScience 2021; 43:1405-1422. [PMID: 33410092 PMCID: PMC8190257 DOI: 10.1007/s11357-020-00305-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/22/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic hypoperfusion is a key contributor to cognitive decline and neurodegenerative conditions, but the cellular mechanisms remain ill-defined. Using a multidisciplinary approach, we sought to elucidate chronic hypoperfusion-evoked functional changes at the neurovascular unit. We used bilateral common carotid artery stenosis (BCAS), a well-established model of vascular cognitive impairment, combined with an ex vivo preparation that allows pressurization of parenchymal arterioles in a brain slice. Our results demonstrate that mild (~ 30%), chronic hypoperfusion significantly altered the functional integrity of the cortical neurovascular unit. Although pial cerebral perfusion recovered over time, parenchymal arterioles progressively lost tone, exhibiting significant reductions by day 28 post-surgery. We provide supportive evidence for reduced adenosine 1 receptor-mediated vasoconstriction as a potential mechanism in the adaptive response underlying the reduced baseline tone in parenchymal arterioles. In addition, we show that in response to the neuromodulator adenosine, the action potential frequency of cortical pyramidal neurons was significantly reduced in all groups. However, a significant decrease in adenosine-induced hyperpolarization was observed in BCAS 14 days. At the microvascular level, constriction-induced inhibition of pyramidal neurons was significantly compromised in BCAS mice. Collectively, these results suggest that BCAS uncouples vessel-to-neuron communication-vasculo-neuronal coupling-a potential early event in cognitive decline.
Collapse
Affiliation(s)
- Ki Jung Kim
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Juan Ramiro Diaz
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Jessica L Presa
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - P Robinson Muller
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Michael W Brands
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Mohammad B Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jessica A Filosa
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
7
|
Presa JL, Saravia F, Bagi Z, Filosa JA. Vasculo-Neuronal Coupling and Neurovascular Coupling at the Neurovascular Unit: Impact of Hypertension. Front Physiol 2020; 11:584135. [PMID: 33101063 PMCID: PMC7546852 DOI: 10.3389/fphys.2020.584135] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Components of the neurovascular unit (NVU) establish dynamic crosstalk that regulates cerebral blood flow and maintain brain homeostasis. Here, we describe accumulating evidence for cellular elements of the NVU contributing to critical physiological processes such as cerebral autoregulation, neurovascular coupling, and vasculo-neuronal coupling. We discuss how alterations in the cellular mechanisms governing NVU homeostasis can lead to pathological changes in which vascular endothelial and smooth muscle cell, pericyte and astrocyte function may play a key role. Because hypertension is a modifiable risk factor for stroke and accelerated cognitive decline in aging, we focus on hypertension-associated changes on cerebral arteriole function and structure, and the molecular mechanisms through which these may contribute to cognitive decline. We gather recent emerging evidence concerning cognitive loss in hypertension and the link with vascular dementia and Alzheimer’s disease. Collectively, we summarize how vascular dysfunction, chronic hypoperfusion, oxidative stress, and inflammatory processes can uncouple communication at the NVU impairing cerebral perfusion and contributing to neurodegeneration.
Collapse
Affiliation(s)
- Jessica L Presa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Flavia Saravia
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
8
|
Yamamoto S, Sato I, Fukuhama N, Akiyama N, Sakai M, Kumazaki S, Ran S, Hirohata S, Kitamori K, Yamori Y, Watanabe S. Bile acids aggravate nonalcoholic steatohepatitis and cardiovascular disease in SHRSP5/Dmcr rat model. Exp Mol Pathol 2020; 114:104437. [PMID: 32246926 DOI: 10.1016/j.yexmp.2020.104437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Nonalcoholic steatohepatitis (NASH) is linked to an increased risk of cardiovascular disease, regardless of the risk factors in metabolic syndrome. However, the intermediary factors between NASH and cardiovascular disease are still unknown. A previous study revealed that serum and hepatic bile acid (BA) levels are increased in some NASH patients. We aimed to examine whether NASH and cardiovascular disease were aggravated by BA using an animal model. METHOD AND RESULTS From 10 to 18 weeks of age, SHRSP5/Dmcr rats divided into 3 groups were fed 3 types of high-fat and high-cholesterol (HFC) diets which were changed in the cholic acid (CA) concentration (0%, 2%, or 4%). The nitro oxide synthase inhibition (L-NAME) was administered intraperitoneally from 16 to 18 weeks of age. The 4% CA groups showed the worst LV dysfunction and myocardial fibrosis, and demonstrated severe hepatic fibrosis and lipid depositions. In addition, a large amount of lipid accumulation was observed in the aortas of the 4% CA group, and NFκB and VCAM-1 gene expression levels were increased. These findings were not seen in the 0% CA group. CONCLUSION In the SHRSP5/Dmcr rat model, NASH and cardiovascular disease were aggravated with increasing BAs concentrations in an HFC diet.
Collapse
Affiliation(s)
- Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ikumi Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Natsuki Fukuhama
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Natsumi Akiyama
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Miku Sakai
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Shota Kumazaki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Shang Ran
- Advanced Institute for Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, Liaoning Province 116-044, China
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, 2-1723, Omori, Moriyama-ku, Nagoya-shi, Aichi 463-8521, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, 4-16, Edagawa-cho, Nishinomiya-shi, Hyogo 663-8143, Japan
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
9
|
Chan SL, Nelson MT, Cipolla MJ. Transient receptor potential vanilloid-4 channels are involved in diminished myogenic tone in brain parenchymal arterioles in response to chronic hypoperfusion in mice. Acta Physiol (Oxf) 2019; 225:e13181. [PMID: 30153398 DOI: 10.1111/apha.13181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022]
Abstract
AIM Adaptive responses of brain parenchymal arterioles (PAs), a target for cerebral small vessel disease, to chronic cerebral hypoperfusion are largely unknown. Previous evidence suggested that transient receptor potential vanilloid 4 channels may be involved in the regulation of cerebrovascular tone. Therefore, we investigated the role of TRPV4 in adaptations of PAs in a mouse model of chronic hypoperfusion. METHODS TRPV4 knockout (-/- ) and wild-type (WT) mice were subjected to unilateral common carotid artery occlusion (UCCAo) for 28 days. Function and structure of PAs ipsilateral to UCCAo were studied isolated and pressurized in an arteriograph. RESULTS Basal tone of PAs was similar between WT and TRPV4-/- mice (22 ± 3 vs 23 ± 5%). After UCCAo, active inner diameters of PAs from WT mice were larger than control (41 ± 2 vs 26 ± 5 μm, P < 0.05) that was due to decreased tone (8 ± 2 vs 23 ± 5%, P < 0.05), increased passive inner diameters (46 ± 3 vs 34 ± 2 μm, P < 0.05), and decreased wall-to-lumen ratio (0.104 ± 0.01 vs 0.137 ± 0.01, P < 0.05). However, UCCAo did not affect vasodilation to a small- and intermediate-conductance calcium-activated potassium channel agonist NS309, the nitric oxide (NO) donor sodium nitroprusside, or constriction to a NO synthase inhibitor L-NNA. Wall thickness and distensibility in PAs from WT mice were unaffected. In TRPV4-/- mice, UCCAo had no effect on active inner diameters or tone and only increased passive inner diameters (53 ± 2 vs 43 ± 3 μm, P < 0.05). CONCLUSION Adaptive response of PAs to chronic cerebral hypoperfusion includes myogenic tone reduction and outward remodelling. TRPV4 channels were involved in tone reduction but not outward remodelling in response to UCCAo.
Collapse
Affiliation(s)
- Siu-Lung Chan
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
| | - Mark T. Nelson
- Department of Pharmacology; University of Vermont College of Medicine; Burlington Vermont
| | - Marilyn J. Cipolla
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
- Department of Pharmacology; University of Vermont College of Medicine; Burlington Vermont
- Department of Obstetrics, Gynecology & Reproductive Sciences; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
10
|
Watanabe S, Kumazaki S, Yamamoto S, Sato I, Kitamori K, Mori M, Yamori Y, Hirohata S. Non-alcoholic steatohepatitis aggravates nitric oxide synthase inhibition-induced arteriosclerosis in SHRSP5/Dmcr rat model. Int J Exp Pathol 2019; 99:282-294. [PMID: 30680827 DOI: 10.1111/iep.12301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is linked to increased cardiovascular risk, independent of the broad spectrum of metabolic syndrome risk factors. Stroke-prone (SP) spontaneously hypertensive rats (SHRSP5/Dmcr) fed a high-fat and high-cholesterol (HFC) diet developed hepatic lesions similar to those in human NASH pathology. These rats simultaneously developed lipid deposits in the mesenteric arteries, cardiac fibrosis, endothelial dysfunction and left ventricle (LV) diastolic dysfunction. However, the intermediary factors between NASH and cardiovascular disease are still unknown. We investigated whether NASH aggravates nitric oxide (NO) synthase inhibition-induced arteriosclerosis in SHRSP5/Dmcr rats. Wistar Kyoto and SHRSP5/Dmcr rats were divided into 4 groups of 5 and fed the stroke-prone (SP) or HFC diets for 8 weeks. To induce NO synthase inhibition, Nω -nitro-L-arginine methyl ester hydrochloride (L-NAME) mixed with drinking water was administered in the final 2 weeks. The NASH+L-NAME group demonstrated the following characteristics related to arteriosclerosis and myocardial ischaemia: (a) LV systolic dysfunction with asynergy, (b) replacement fibrosis caused by the shedding of cardiomyocytes and (c) arterial lipid deposition and coronary occlusion secondary to endothelial dysfunction. These characteristics were not observed in the NASH or non-NASH+L-NAME groups. The SHRSP5/Dmcr rat model demonstrates that NASH significantly aggravates cardiovascular risk.
Collapse
Affiliation(s)
- Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Shota Kumazaki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Ikumi Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
| | - Mari Mori
- Department of Health Management, School of Health Studies, Tokai University, Kanagawa, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, Hyogo, Japan
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
11
|
Diaz JR, Kim KJ, Brands MW, Filosa JA. Augmented astrocyte microdomain Ca 2+ dynamics and parenchymal arteriole tone in angiotensin II-infused hypertensive mice. Glia 2018; 67:551-565. [PMID: 30506941 DOI: 10.1002/glia.23564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 11/09/2022]
Abstract
Hypertension is an important contributor to cognitive decline but the underlying mechanisms are unknown. Although much focus has been placed on the effect of hypertension on vascular function, less is understood of its effects on nonvascular cells. Because astrocytes and parenchymal arterioles (PA) form a functional unit (neurovascular unit), we tested the hypothesis that hypertension-induced changes in PA tone concomitantly increases astrocyte Ca2+ . We used cortical brain slices from 8-week-old mice to measure myogenic responses from pressurized and perfused PA. Chronic hypertension was induced in mice by 28-day angiotensin II (Ang II) infusion; PA resting tone and myogenic responses increased significantly. In addition, chronic hypertension significantly increased spontaneous Ca2+ events within astrocyte microdomains (MD). Similarly, a significant increase in astrocyte Ca2+ was observed during PA myogenic responses supporting enhanced vessel-to-astrocyte signaling. The transient potential receptor vanilloid 4 (TRPV4) channel, expressed in astrocyte processes in contact with blood vessels, namely endfeet, respond to hemodynamic stimuli such as increased pressure/flow. Supporting a role for TRPV4 channels in aberrant astrocyte Ca2+ dynamics in hypertension, cortical astrocytes from hypertensive mice showed augmented TRPV4 channel expression, currents and Ca2+ responses to the selective channel agonist GSK1016790A. In addition, pharmacological TRPV4 channel blockade or genetic deletion abrogated enhanced hypertension-induced increases in PA tone. Together, these data suggest chronic hypertension increases PA tone and Ca2+ events within astrocytes MD. We conclude that aberrant Ca2+ events in astrocyte constitute an early event toward the progression of cognitive decline.
Collapse
Affiliation(s)
| | - Ki Jung Kim
- Department of Physiology, Augusta University, Augusta, Georgia
| | | | | |
Collapse
|
12
|
Watanabe S, Kumazaki S, Kusunoki K, Inoue T, Maeda Y, Usui S, Shinohata R, Ohtsuki T, Hirohata S, Kusachi S, Kitamori K, Mori M, Yamori Y, Oka H. A High-Fat and High-Cholesterol Diet Induces Cardiac Fibrosis, Vascular Endothelial, and Left Ventricular Diastolic Dysfunction in SHRSP5/Dmcr Rats. J Atheroscler Thromb 2017; 25:439-453. [PMID: 29162773 PMCID: PMC5945557 DOI: 10.5551/jat.40956] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM Non-alcoholic steatohepatitis (NASH) increases cardiovascular risk regardless of risk factors in metabolic syndrome. However, the intermediary factors between NASH and vascular disease are still unknown because a suitable animal model has never been established. The stroke-prone (SP) spontaneously hypertensive rat, SHRSP5/Dmcr, simultaneously develops hypertension, acute arterial lipid deposits in mesenteric arteries, and NASH when feed with a high-fat and high-cholesterol (HFC) diet. We investigated whether SHRSP5/Dmcr affected with NASH aggravates the cardiac or vascular dysfunction. METHOD Wister Kyoto and SHRSP5/Dmcr rats were divided into 4 groups of 5 rats each, and fed with a SP or HFC diet. After 8 weeks of HFC or SP diet feeding, glucose and insulin resistance, echocardiography, blood biochemistry, histopathological staining, and endothelial function in aorta were evaluated. RESULTS We demonstrate that SHRSP5/Dmcr rats fed with a HFC diet presented with cardiac and vascular dysfunction caused by cardiac fibrosis, endothelial dysfunction, and left ventricular diastolic dysfunction, in association with NASH and hypertension. These cardiac and vascular dysfunctions were aggravated and not associated with the presence of hypertension, glucose metabolism disorder, and/or obesity. CONCLUSIONS SHRSP5/Dmcr rats may be a suitable animal model for elucidating the organ interaction between NASH and cardiac or vascular dysfunction.
Collapse
Affiliation(s)
- Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Shota Kumazaki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Katsuhiro Kusunoki
- Department of Medical Technology, Faculty of Health Sciences, Okayama University
| | - Terumi Inoue
- Department of Medical Technology, Faculty of Health Sciences, Okayama University
| | - Yui Maeda
- Department of Medical Technology, Faculty of Health Sciences, Okayama University
| | - Shinichi Usui
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Ryoko Shinohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Takashi Ohtsuki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Shozo Kusachi
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University
| | - Mari Mori
- Institute for World Health Development, Mukogawa Women's University
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University
| | - Hisao Oka
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| |
Collapse
|
13
|
Chan SL, Cipolla MJ. Treatment with low dose fasudil for acute ischemic stroke in chronic hypertension. J Cereb Blood Flow Metab 2017; 37:3262-3270. [PMID: 28665172 PMCID: PMC5584704 DOI: 10.1177/0271678x17718665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect of Rho kinase inhibition on changes in cerebral blood flow (CBF), brain injury and vascular function after ischemic stroke in spontaneously hypertensive rats (SHR). Changes in core MCA and collateral perfusion were measured by a validated laser Doppler method. Animals underwent 2 h tMCAO and 2 h reperfusion. Fasudil (0.1 mg/kg, i.v.) or vehicle was given at 30 min ischemia (n = 9/group; mean (SD)). Brain injury was determined by 2,3,5-triphenyltetrazolium chloride staining. To determine the effect of fasudil on vascular function, fasudil was given 10 min before reperfusion and parenchymal arterioles studied isolated (n = 6/group; mean(SD)). Collateral perfusion was low in vehicle-treated SHR (-8(32)%) that changed minimally with fasudil (6(24)%, p > 0.05, effect size: 0.47;95% CI-0.49-1.39). Reperfusion CBF was below baseline in vehicle (-27(26)%) and fasudil (-32(25)%, p > 0.05, effect size: 0.19; 95% CI-0.74-1.11) groups, suggesting incomplete reperfusion in both groups. Fasudil had little effect on brain injury volume (28(13)% vs. 36(7)% in vehicle, p > 0.05, effect size: 0.75; 95% CI-0.24-1.66). In isolated parenchymal arterioles, myogenic tone was similar between groups (37(6)% vs. 38(10)% in vehicle, p > 0.05, effect size: 0.09; 95% CI-1.05-1.21). There were no differences with fasudil treatment vs. vehicle in perfusion, brain injury and vascular function that may be related to the low dose that had minimal blood pressure lowering effect.
Collapse
Affiliation(s)
- Siu-Lung Chan
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, Larner, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marilyn J Cipolla
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, Larner, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
14
|
Cipolla MJ, Sweet JG, Chan SL. Effect of hypertension and peroxynitrite decomposition with FeTMPyP on CBF and stroke outcome. J Cereb Blood Flow Metab 2017; 37:1276-1285. [PMID: 27317653 PMCID: PMC5453450 DOI: 10.1177/0271678x16654158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated the effect of peroxynitrite decomposition catalyst FeTMPyP treatment on perfusion deficit, vascular function and stroke outcome in Wistar ( n = 26) and spontaneously hypertensive rats stroke-prone (SHRSP; n = 26) that underwent tMCAO for 2 h or Sham operation. Peri-infarct CBF was measured by hydrogen clearance in the absence or presence of FeTMPyP (10 mg/kg, i.v.) or vehicle 10 min before reperfusion. Myogenic tone of parenchymal arterioles (PAs) was measured as an indication of small vessel resistance (SVR). Baseline CBF was similar between Wistar and SHRSP (114 ± 12 vs. 132 ± 9 mL/100 g/min); however, MCAO caused greater perfusion deficit in SHRSP (24 ± 6 vs. 7 ± 1 mL/100 g/min; p < 0.05) and increased infarct volume by TTC (12 ± 6 vs. 32 ± 2%; p < 0.05). Reperfusion CBF was decreased from baseline in both SHRSP and Wistar (54 ± 16 and 46 ± 19 mL/100 g/min; p < 0.05), suggesting increased infarction in SHRSP was related to greater perfusion deficit. PAs from SHRSP had increased tone vs. Wistar that was enhanced after tMCAO. FeTMPyP treatment did not affect CBF during ischemia or reperfusion, or tone of PAs, but decreased the incidence of hemorrhage in SHRSP by 50%. Thus, increased tone in PAs from SHRSP could increase perfusion deficit during MCAO that was not alleviated by FeTMPyP.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Julie G Sweet
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Siu-Lung Chan
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
15
|
Nishijima Y, Akamatsu Y, Yang SY, Lee CC, Baran U, Song S, Wang RK, Tominaga T, Liu J. Impaired Collateral Flow Compensation During Chronic Cerebral Hypoperfusion in the Type 2 Diabetic Mice. Stroke 2016; 47:3014-3021. [PMID: 27834741 DOI: 10.1161/strokeaha.116.014882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/03/2016] [Accepted: 09/14/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE The presence of collaterals is associated with a reduced risk of stroke and transient ischemic attack in patients with steno-occlusive carotid artery disease. Although metabolic syndrome negatively impacts collateral status, it is unclear whether and to what extent type 2 diabetes mellitus affects cerebral collateral flow regulation during hypoperfusion. METHODS We examined the spatial and temporal changes of the leptomeningeal collateral flow and the flow dynamics of the penetrating arterioles in the distal middle cerebral artery and anterior cerebral artery branches over 2 weeks after unilateral common carotid artery occlusion (CCAO) using optical coherent tomography in db/+ and db/db mice. We also assessed the temporal adaptation of the circle of Willis after CCAO by measuring circle of Willis vessel diameters. RESULTS After unilateral CCAO, db/db mice exhibited diminished leptomeningeal collateral flow compensation compared with db/+ mice, which coincided with a reduced dilation of distal anterior cerebral artery branches, leading to reduced flow not only in pial vessels but also in penetrating arterioles bordering the distal middle cerebral artery and anterior cerebral artery. However, no apparent cell death was detected in either strain of mice during the first week after CCAO. db/db mice also experienced a more severe early reduction in the vessel diameters of several ipsilateral main feeding arteries in the circle of Willis, in addition to a delayed post-CCAO adaptive response by 1 to 2 weeks, compared with db/+ mice. CONCLUSIONS Type 2 diabetes mellitus is an additional risk factor for hemodynamic compromise during cerebral hypoperfusion, which may increase the severity and the risk of stroke or transient ischemic attack.
Collapse
Affiliation(s)
- Yasuo Nishijima
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Yosuke Akamatsu
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Shih Yen Yang
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Chih Cheng Lee
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Utku Baran
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Shaozhen Song
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Ruikang K Wang
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Teiji Tominaga
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.)
| | - Jialing Liu
- Department of Neurological Surgery, University of California at San Francisco (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); San Francisco Veterans Affairs Medical Center, CA (Y.N., Y.A., S.Y.Y., C.C.L., J.L.); Department of Neurosurgery, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan (Y.N., Y.A., T.T.); and Departments of Bioengineering & Ophthalmology, University of Washington, Seattle (U.B., S.S., R.K.W.).
| |
Collapse
|
16
|
Matin N, Fisher C, Jackson WF, Dorrance AM. Bilateral common carotid artery stenosis in normotensive rats impairs endothelium-dependent dilation of parenchymal arterioles. Am J Physiol Heart Circ Physiol 2016; 310:H1321-9. [PMID: 26968546 DOI: 10.1152/ajpheart.00890.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
Chronic cerebral hypoperfusion is a risk factor for cognitive impairment. Reduced blood flow through the common carotid arteries induced by bilateral carotid artery stenosis (BCAS) is a physiologically relevant model of chronic cerebral hypoperfusion. We hypothesized that BCAS in 20-wk-old Wistar-Kyoto (WKY) rats would impair cognitive function and lead to reduced endothelium-dependent dilation and outward remodeling in the parenchymal arterioles (PAs). After 8 wk of BCAS, both short-term memory and spatial discrimination abilities were impaired. In vivo assessment of cerebrovascular reserve capacity showed a severe impairment after BCAS. PA endothelial function and structure were assessed by pressure myography. BCAS impaired endothelial function in PAs, as evidenced by reduced dilation to carbachol. Addition of nitric oxide synthase and cyclooxygenase inhibitors did not change carbachol-mediated dilation in either group. Inhibiting CYP epoxygenase, the enzyme that produces epoxyeicosatrienoic acid (EETs), a key determinant of endothelium-derived hyperpolarizing factor (EDHF)-mediated dilation, abolished dilation in PAs from Sham rats, but had no effect in PAs from BCAS rats. Expression of TRPV4 channels, a target for EETs, was decreased and maximal dilation to a TRPV4 agonist was attenuated after BCAS. Together these data suggest that EET-mediated dilation is impaired in PAs after BCAS. Thus impaired endothelium-dependent dilation in the PAs may be one of the contributing factors to the cognitive impairment observed after BCAS.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|