1
|
Abstract
The pulmonary circulation is a low-pressure, low-resistance circuit whose primary function is to deliver deoxygenated blood to, and oxygenated blood from, the pulmonary capillary bed enabling gas exchange. The distribution of pulmonary blood flow is regulated by several factors including effects of vascular branching structure, large-scale forces related to gravity, and finer scale factors related to local control. Hypoxic pulmonary vasoconstriction is one such important regulatory mechanism. In the face of local hypoxia, vascular smooth muscle constriction of precapillary arterioles increases local resistance by up to 250%. This has the effect of diverting blood toward better oxygenated regions of the lung and optimizing ventilation-perfusion matching. However, in the face of global hypoxia, the net effect is an increase in pulmonary arterial pressure and vascular resistance. Pulmonary vascular resistance describes the flow-resistive properties of the pulmonary circulation and arises from both precapillary and postcapillary resistances. The pulmonary circulation is also distensible in response to an increase in transmural pressure and this distention, in addition to recruitment, moderates pulmonary arterial pressure and vascular resistance. This article reviews the physiology of the pulmonary vasculature and briefly discusses how this physiology is altered by common circumstances.
Collapse
Affiliation(s)
- Susan R. Hopkins
- Department of Radiology, University of California, San Diego, California
| | - Michael K. Stickland
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| |
Collapse
|
2
|
Buxton RB, Prisk GK, Hopkins SR. A novel nonlinear analysis of blood flow dynamics applied to the human lung. J Appl Physiol (1985) 2022; 132:1546-1559. [PMID: 35421317 DOI: 10.1152/japplphysiol.00715.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial/temporal dynamics of blood flow in the human lung can be measured noninvasively with magnetic resonance imaging (MRI) using arterial spin labeling (ASL). We report a novel data analysis method using nonlinear prediction to identify dynamic interactions between blood flow units (image voxels), potentially providing a probe of underlying vascular control mechanisms. The approach first estimates the linear relationship (predictability) of one voxel time series with another using correlation analysis, and after removing the linear component estimates the nonlinear relationship with a numerical mutual information approach. Dimensionless global metrics for linear prediction (FL) and nonlinear prediction (FNL) represent the average amplitude of fluctuations in one voxel estimated by another voxel, as a percentage of the global average voxel flow. A proof-of-principle test of this approach analyzed experimental data from a study of high-altitude pulmonary edema (HAPE), providing two groups exhibiting known differences in vascular reactivity. Subjects were mountaineers divided into HAPE-susceptible (S, n=4) and HAPE-resistant (R, n=5) groups based on prior history at high altitude. Dynamic ASL measurements in the lung in normoxia (N, FIO2=0.21) and hypoxia (H, FIO2=0.13±0.01) were compared. The nonlinear prediction metric FNL decreased with hypoxia (7.4±1.3(N) vs. 6.3±0.7(H), P=0.03) and was significantly different between groups (7.4±1.2 (R) vs. 6.2±14.1 (S), P=0.03). This proof-of-principle test demonstrates that this nonlinear analysis approach applied to ASL data is sensitive to physiological effects even in small subject cohorts, and potentially can be used in a wide range of studies in health and disease in the lung and other organs.
Collapse
Affiliation(s)
| | | | - Susan Roberta Hopkins
- Department of Radiology, University of California San Diego.,Department of Medicine, University of California San Diego
| |
Collapse
|
3
|
Mulchrone A, Moulton H, Eldridge MW, Chesler NC. Susceptibility to high-altitude pulmonary edema is associated with increased pulmonary arterial stiffness during exercise. J Appl Physiol (1985) 2020; 128:514-522. [PMID: 31854245 DOI: 10.1152/japplphysiol.00153.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-altitude pulmonary edema (HAPE), a reversible form of capillary leak, is a common consequence of rapid ascension to high altitude and a major cause of death related to high-altitude exposure. Individuals with a prior history of HAPE are more susceptible to future episodes, but the underlying risk factors remain uncertain. Previous studies have shown that HAPE-susceptible subjects have an exaggerated pulmonary vasoreactivity to acute hypoxia, but incomplete data are available regarding their vascular response to exercise. To examine this, seven HAPE-susceptible subjects and nine control subjects (HAPE-resistant) were studied at rest and during incremental exercise at sea level and at 3,810 m altitude. Studies were conducted in both normoxic (inspired Po2 = 148 Torr) and hypoxic (inspired Po2 = 91 Torr) conditions at each location. Here, we report an expanded analysis of previously published data, including a distensible vessel model that showed that HAPE-susceptible subjects had significantly reduced small distal artery distensibility at sea level compared with HAPE-resistant control subjects [0.011 ± 0.001 vs. 0.021 ± 0.002 mmHg-1; P < 0.001). Moreover, HAPE-susceptible subjects demonstrated constant distensibility over all conditions, suggesting that distal arteries are maximally distended at rest. Consistent with having increased distal artery stiffness, HAPE-susceptible subjects had greater increases in pulmonary artery pulse pressure with exercise, which suggests increased proximal artery stiffness. In summary, HAPE-susceptible subjects have exercise-induced increases in proximal artery stiffness and baseline increases in distal artery stiffness, suggesting increased pulsatile load on the right ventricle.NEW & NOTEWORTHY In comparison to subjects who appear resistant to high-altitude pulmonary edema, those previously symptomatic show greater increases in large and small artery stiffness in response to exercise. These differences in arterial stiffness may be a risk factor for the development of high-altitude pulmonary edema or evidence that consequences of high-altitude pulmonary edema are long-lasting after return to sea level.
Collapse
Affiliation(s)
- A Mulchrone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - H Moulton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - M W Eldridge
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin
| | - N C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
4
|
Zapol WM, Charles HC, Martin AR, Sá RC, Yu B, Ichinose F, MacIntyre N, Mammarappallil J, Moon R, Chen JZ, Geier ET, Darquenne C, Prisk GK, Katz I. Pulmonary Delivery of Therapeutic and Diagnostic Gases. J Aerosol Med Pulm Drug Deliv 2018; 31:78-87. [PMID: 29451844 DOI: 10.1089/jamp.2017.1431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The 21st Congress for the International Society for Aerosols in Medicine included, for the first time, a session on Pulmonary Delivery of Therapeutic and Diagnostic Gases. The rationale for such a session within ISAM is that the pulmonary delivery of gaseous drugs in many cases targets the same therapeutic areas as aerosol drug delivery, and is in many scientific and technical aspects similar to aerosol drug delivery. This article serves as a report on the recent ISAM congress session providing a synopsis of each of the presentations. The topics covered are the conception, testing, and development of the use of nitric oxide to treat pulmonary hypertension; the use of realistic adult nasal replicas to evaluate the performance of pulsed oxygen delivery devices; an overview of several diagnostic gas modalities; and the use of inhaled oxygen as a proton magnetic resonance imaging (MRI) contrast agent for imaging temporal changes in the distribution of specific ventilation during recovery from bronchoconstriction. Themes common to these diverse applications of inhaled gases in medicine are discussed, along with future perspectives on development of therapeutic and diagnostic gases.
Collapse
Affiliation(s)
- Warren M Zapol
- 1 Anesthesia Center for Critical Care Research , Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - H Cecil Charles
- 2 Duke Image Analysis Laboratory, Center for Advanced MR Development, Department of Radiology, Duke University School of Medicine , Durham, North Carolina
| | - Andrew R Martin
- 3 Department of Mechanical Engineering, University of Alberta , Edmonton, Canada
| | - Rui C Sá
- 4 Department of Medicine, University of California , San Diego, San Diego, California
| | - Binglan Yu
- 1 Anesthesia Center for Critical Care Research , Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fumito Ichinose
- 1 Anesthesia Center for Critical Care Research , Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Neil MacIntyre
- 5 Department of Pulmonology, Duke University School of Medicine , Durham, North Carolina
| | - Joseph Mammarappallil
- 6 Department of Radiology, Duke University School of Medicine , Durham, North Carolina
| | - Richard Moon
- 7 Department of Anesthesiology, Duke University School of Medicine , Durham, North Carolina
| | - John Z Chen
- 3 Department of Mechanical Engineering, University of Alberta , Edmonton, Canada
| | - Eric T Geier
- 4 Department of Medicine, University of California , San Diego, San Diego, California
| | - Chantal Darquenne
- 4 Department of Medicine, University of California , San Diego, San Diego, California
| | - G Kim Prisk
- 4 Department of Medicine, University of California , San Diego, San Diego, California.,8 Department of Radiology, University of California , San Diego, San Diego, California
| | - Ira Katz
- 9 Medical R&D, Air Liquide Santé International , Les Loges-en-Josas, France .,10 Department of Mechanical Engineering, Lafayette College , Easton, Pennsylvania
| |
Collapse
|
5
|
Fain SB, Eldridge MW. Exploring new heights with pulmonary functional imaging: insights into high-altitude pulmonary edema. J Appl Physiol (1985) 2017; 122:853-854. [PMID: 28235856 DOI: 10.1152/japplphysiol.00168.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sean B Fain
- University of Wisconsin-Madison Medical School, Wisconsin; and
| | - Marlowe W Eldridge
- Pediatric Critical Care Medicine Departments of Pediatrics, Kinesiology and Biomedical Engineering, University of Wisconsin-Madison, Wisconsin
| |
Collapse
|
6
|
Abstract
More than 140 million people permanently reside in high-altitude regions of Asia, South America, North America, and Africa. Another 40 million people travel to these places annually for occupational and recreational reasons, and are thus exposed to the low ambient partial pressure of oxygen. This review will focus on the pulmonary circulatory responses to acute and chronic high-altitude hypoxia, and the various expressions of maladaptation and disease arising from acute pulmonary vasoconstriction and subsequent remodeling of the vasculature when the hypoxic exposure continues. These unique conditions include high-altitude pulmonary edema, high-altitude pulmonary hypertension, subacute mountain sickness, and chronic mountain sickness.
Collapse
Affiliation(s)
- Maniraj Neupane
- Mountain Medicine Society of Nepal, Maharajgunj, Kathmandu, Nepal
| | - Erik R. Swenson
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, WA
| |
Collapse
|