1
|
Hayashi K, Tanaka H. Alcohol consumption after downhill running does not affect muscle recovery but prolongs pain perception in East Asian men. Phys Act Nutr 2024; 28:24-30. [PMID: 39934627 PMCID: PMC11811611 DOI: 10.20463/pan.2024.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
PURPOSE Alcoholic beverages are commonly consumed following athletic competitions and strenuous exercise for celebration or relaxation purposes. Whether and how alcohol consumption influences muscle recovery and perceived pain following unaccustomed eccentric exercise is unclear. We aimed to determine the effects of alcohol consumption after downhill running on muscular strength and perceived pain in East Asian men. METHODS Twenty-four young men performed 45 min of downhill (-10%) running at a corresponding speed of 70% VO2 max. Immediately after downhill running and again 24 h later, the participants consumed either an alcoholic beverage (1 g ethanol/kg body weight, alcohol group, n=12) or the same quantity of water (control group, n=12). RESULTS Peak isometric and concentric muscle contraction torques during knee extension (via the isokinetic dynamometer) and squat jump height decreased 24 h after downhill running (all p<0.05); however, there were no significant differences between the two groups. The visual analog scores for pain (pain scores) in the quadriceps, hamstring, gastrocnemius, and gluteus maximus muscles increased at 24 h and 48 h in both groups (all p<0.05). Pain scores in the quadriceps decreased gradually from 24 h to 48 h in the control group, but no such trend was observed in the alcohol group (group × time interaction effect; F=4.47, p<0.05). CONCLUSION Acute alcohol consumption does not seem to affect muscle strength or jump performance during recovery. However, the effects on pain appear to persist longer after alcohol consumption in East Asian men.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Health and Physical Education, Faculty of Human Development, Kokugakuin University, Yokohama, Japan
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, USA
| |
Collapse
|
2
|
Sun L, Luan J, Wang J, Li X, Zhang W, Ji X, Liu L, Wang R, Xu B. GEPREP: A comprehensive data atlas of RNA-seq-based gene expression profiles of exercise responses. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100992. [PMID: 39341494 PMCID: PMC11863345 DOI: 10.1016/j.jshs.2024.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Physical activity can regulate and affect gene expression in multiple tissues and cells. Recently, with the development of next-generation sequencing, a large number of RNA-sequencing (RNA-seq)-based gene expression profiles about physical activity have been shared in public resources; however, they are poorly curated and underutilized. To tackle this problem, we developed a data atlas of such data through comprehensive data collection, curation, and organization. METHODS The data atlas, termed gene expression profiles of RNA-seq-based exercise responses (GEPREP), was built on a comprehensive collection of high-quality RNA-seq data on exercise responses. The metadata of each sample were manually curated. Data were uniformly processed and batch effects corrected. All the information was well organized in an easy-to-use website for free search, visualization, and download. RESULTS GEPREP now includes 69 RNA-seq datasets of pre- and post-exercise, comprising 26 human datasets (1120 samples) and 43 mouse datasets (1006 samples). Specifically, there were 977 (87.2 %) human samples of skeletal muscle and 143 (12.8 %) human samples of blood. There were also samples across 9 mice tissues with skeletal muscle (359, 35.7 %) and brain (280, 27.8 %) accounting for the main fractions. Metadata-including subject, exercise interventions, sampling sites, and post-processing methods-are also included. The metadata and gene expression profiles are freely accessible at http://www.geprep.org.cn/. CONCLUSION GEPREP is a comprehensive data atlas of RNA-seq-based gene expression profiles responding to exercise. With its reliable annotations and user-friendly interfaces, it has the potential to deepen our understanding of exercise physiology.
Collapse
Affiliation(s)
- Lei Sun
- School of Information Engineering, Yangzhou University, Yangzhou 225127, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Jinwen Luan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jinbiao Wang
- School of Information Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaoli Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wenqian Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaohui Ji
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Ely MR, Mangum JE, Needham KW, Minson CT, Halliwill JR. Effect of histamine-receptor antagonism on the circulating inflammatory cell and cytokine response to exercise: A pilot study. Physiol Rep 2024; 12:e15936. [PMID: 38307711 PMCID: PMC10837044 DOI: 10.14814/phy2.15936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
The purpose of this study was to gain insight into histamine's role in the exercise inflammatory response and recovery from exercise. To explore this, young healthy participants (n = 12) performed 300 eccentric leg extensions under control (Placebo) versus histamine H1 and H2 receptor antagonism (Blockade) in a randomized cross-over study. Circulating leukocytes and cytokines were measured for 72 h after exercise. Circulating leukocytes were elevated at 6 and 12 h after exercise (p < 0.05) with the peak response being a 44.1 ± 11.7% increase with Blockade versus 13.7 ± 6.6% with Placebo (both p < 0.05 vs. baseline, but also p < 0.05 between Blockade and Placebo). Of the cytokines that were measured, only MCP-1 was elevated following exercise. The response at 6 h post-exercise was a 104.0 ± 72.5% increase with Blockade versus 93.1 ± 41.9% with Placebo (both p < 0.05 vs. baseline, p = 0.82 between Blockade and Placebo). The main findings of the present investigation were that taking combined histamine H1 and H2 receptor antagonists augmented the magnitude but not the duration of the increase of circulating immune cells following exercise. This suggests histamine is not only exerting a local influence within the skeletal muscle but that it may influence the systemic inflammatory patterns.
Collapse
Affiliation(s)
- Matthew R. Ely
- Department of Human PhysiologyUniversity of OregonEugeneOregonUSA
| | - Joshua E. Mangum
- Department of Human PhysiologyUniversity of OregonEugeneOregonUSA
| | | | | | | |
Collapse
|
4
|
Hearon CM, Samels M, Dias KA, MacNamara JP, Levine BD, Sarma S. Isolated knee extensor exercise training improves skeletal muscle vasodilation, blood flow, and functional capacity in patients with HFpEF. Physiol Rep 2022; 10:e15419. [PMID: 35924338 PMCID: PMC9350466 DOI: 10.14814/phy2.15419] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 05/07/2023] Open
Abstract
Patients with HFpEF experience severe exercise intolerance due in part to peripheral vascular and skeletal muscle impairments. Interventions targeting peripheral adaptations to exercise training may reverse vascular dysfunction, increase peripheral oxidative capacity, and improve functional capacity in HFpEF. Determine if 8 weeks of isolated knee extension exercise (KE) training will reverse vascular dysfunction, peripheral oxygen utilization, and exercise capacity in patients with HFpEF. Nine HFpEF patients (66 ± 5 years, 6 females) performed graded IKE exercise (5, 10, and 15 W) and maximal exercise testing (cycle ergometer) before and after IKE training (3x/week, 30 min/leg). Femoral blood flow (ultrasound) and leg vascular conductance (LVC; index of vasodilation) were measured during graded IKE exercise. Peak pulmonary oxygen uptake (V̇O2 ; Douglas bags) and cardiac output (QC ; acetylene rebreathe) were measured during graded maximal cycle exercise. IKE training improved LVC (pre: 810 ± 417, post: 1234 ± 347 ml/min/100 mmHg; p = 0.01) during 15 W IKE exercise and increased functional capacity by 13% (peak V̇O2 during cycle ergometry; pre:12.4 ± 5.2, post: 14.0 ± 6.0 ml/min/kg; p = 0.01). The improvement in peak V̇O2 was independent of changes in Q̇c (pre:12.7 ± 3.5, post: 13.2 ± 3.9 L/min; p = 0.26) and due primarily to increased a-vO2 difference (pre: 10.3 ± 1.6, post: 11.0 ± 1.7; p = 0.02). IKE training improved vasodilation and functional capacity in patients with HFpEF. Exercise interventions aimed at increasing peripheral oxidative capacity may be effective therapeutic options for HFpEF patients.
Collapse
Affiliation(s)
- Christopher M. Hearon
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital DallasDallasTexasUSA
- University of Texas Southwestern Medical CenterDepartment of Internal MedicineDallasTexasUSA
| | - Mitchel Samels
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital DallasDallasTexasUSA
| | - Katrin A. Dias
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital DallasDallasTexasUSA
- University of Texas Southwestern Medical CenterDepartment of Internal MedicineDallasTexasUSA
| | - James P. MacNamara
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital DallasDallasTexasUSA
- University of Texas Southwestern Medical CenterDepartment of Internal MedicineDallasTexasUSA
| | - Benjamin D. Levine
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital DallasDallasTexasUSA
- University of Texas Southwestern Medical CenterDepartment of Internal MedicineDallasTexasUSA
| | - Satyam Sarma
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital DallasDallasTexasUSA
- University of Texas Southwestern Medical CenterDepartment of Internal MedicineDallasTexasUSA
| |
Collapse
|
5
|
Schwellnus M, Adami PE, Bougault V, Budgett R, Clemm HH, Derman W, Erdener U, Fitch K, Hull JH, McIntosh C, Meyer T, Pedersen L, Pyne DB, Reier-Nilsen T, Schobersberger W, Schumacher YO, Sewry N, Soligard T, Valtonen M, Webborn N, Engebretsen L. International Olympic Committee (IOC) consensus statement on acute respiratory illness in athletes part 2: non-infective acute respiratory illness. Br J Sports Med 2022; 56:bjsports-2022-105567. [PMID: 35623888 DOI: 10.1136/bjsports-2022-105567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 01/03/2023]
Abstract
Acute respiratory illness (ARill) is common and threatens the health of athletes. ARill in athletes forms a significant component of the work of Sport and Exercise Medicine (SEM) clinicians. The aim of this consensus is to provide the SEM clinician with an overview and practical clinical approach to non-infective ARill in athletes. The International Olympic Committee (IOC) Medical and Scientific Committee appointed an international consensus group to review ARill in athletes. Key areas of ARill in athletes were originally identified and six subgroups of the IOC Consensus group established to review the following aspects: (1) epidemiology/risk factors for ARill, (2) infective ARill, (3) non-infective ARill, (4) acute asthma/exercise-induced bronchoconstriction and related conditions, (5) effects of ARill on exercise/sports performance, medical complications/return-to-sport (RTS) and (6) acute nasal/laryngeal obstruction presenting as ARill. Following several reviews conducted by subgroups, the sections of the consensus documents were allocated to 'core' members for drafting and internal review. An advanced draft of the consensus document was discussed during a meeting of the main consensus core group, and final edits were completed prior to submission of the manuscript. This document (part 2) of this consensus focuses on respiratory conditions causing non-infective ARill in athletes. These include non-inflammatory obstructive nasal, laryngeal, tracheal or bronchial conditions or non-infective inflammatory conditions of the respiratory epithelium that affect the upper and/or lower airways, frequently as a continuum. The following aspects of more common as well as lesser-known non-infective ARill in athletes are reviewed: epidemiology, risk factors, pathology/pathophysiology, clinical presentation and diagnosis, management, prevention, medical considerations and risks of illness during exercise, effects of illness on exercise/sports performance and RTS guidelines.
Collapse
Affiliation(s)
- Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- SEMLI, IOC Research Centre, Pretoria, Gauteng, South Africa
| | - Paolo Emilio Adami
- Health & Science Department, World Athletics, Monaco, Monaco Principality
| | - Valerie Bougault
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, Nice, Provence-Alpes-Côte d'Azu, France
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Hege Havstad Clemm
- Department of Pediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Wayne Derman
- Institute of Sport and Exercise Medicine (ISEM), Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- ISEM, IOC Research Center, South Africa, Stellenbosch, South Africa
| | - Uğur Erdener
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Ken Fitch
- School of Human Science; Sports, Exercise and Health, The University of Western Australia, Perth, Western Australia, Australia
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London (UCL), London, UK
| | - Cameron McIntosh
- Dr CND McIntosh INC, Edge Day Hospital, Port Elizabeth, South Africa
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrucken, Germany
| | - Lars Pedersen
- Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Tonje Reier-Nilsen
- Oslo Sports Trauma Research Centre, The Norwegian Olympic Sports Centre, Oslo, Norway
- Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Wolfgang Schobersberger
- Insitute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), Kliniken Innsbruck and Private University UMIT Tirol, Hall, Austria
| | | | - Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- SEMLI, IOC Research Centre, Pretoria, Gauteng, South Africa
| | - Torbjørn Soligard
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, Calgary, Alberta, Canada
| | - Maarit Valtonen
- KIHU, Research Institute for Olympic Sports, Jyväskylä, Finland
| | - Nick Webborn
- Centre for Sport and Exercise Science and Medicine, University of Brighton, Brighton, UK
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
- Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
6
|
Andrade MS, Ferrer CRL, Vancini RL, Nikolaidis PT, Knechtle B, Rosemann T, Bachi ALL, Seffrin A, de Lira CAB. The Effect of Muscle Strength on Marathon Race-Induced Muscle Soreness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111258. [PMID: 34769776 PMCID: PMC8583638 DOI: 10.3390/ijerph182111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Muscle soreness after a competition or a training session has been a concern of runners due to its harmful effect on performance. It is not known if stronger individuals present a lower level of muscle soreness after a strenuous physical effort. The aim of this study was to investigate whether the pre-race muscle strength or the V˙O2max level can predict muscle soreness 24, 48 and 72 h after a full marathon in men. METHODS Thirty-one marathon runners participated in this study (age, 40.8 ± 8.8 years old; weight, 74.3 ± 10.4 kg; height, 174.2 ± 7.6 cm; maximum oxygen uptake, V˙O2max, 57.7 ± 6.8 mL/kg/min). The isokinetic strength test for thigh muscles and the V˙O2max level was performed 15-30 days before the marathon and the participants were evaluated for the subjective feeling of soreness before, 24, 48 and 72 h after the marathon. RESULTS The participants presented more pain 24 h after the race (median = 3, IQR = 1) than before it (median = 0, IQR = 0) (p < 0.001), and the strength values for the knee extensor muscles were significantly associated with muscle soreness assessed 24 h after the race (p = 0.028), but not 48 (p = 0.990) or 72 h (p = 0.416) after the race. The V˙O2max level was not associated with the muscle pain level at any moment after the marathon. CONCLUSIONS Marathon runners who presented higher muscular strength for the knee extensor muscles presented lower muscle soreness 24 h after the race, but not after 48 h or 72 h after the race. Therefore, the muscle soreness level 3 days after a marathon race does not depend on muscle strength.
Collapse
Affiliation(s)
- Marilia Santos Andrade
- Department of Physiology, Federal University of Sao Paulo, São Paulo 04021-001, Brazil; (M.S.A.); (C.R.L.F.); (A.S.)
| | - Carolina Ribeiro Lopes Ferrer
- Department of Physiology, Federal University of Sao Paulo, São Paulo 04021-001, Brazil; (M.S.A.); (C.R.L.F.); (A.S.)
| | - Rodrigo Luiz Vancini
- Center of Physical Education and Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil;
| | | | - Beat Knechtle
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
- Correspondence: ; Tel.: +41-(0)-71-226-93-00; Fax: +41-(0)-71-226-93-01
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland;
| | - André Luis Lacerda Bachi
- Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo 04021-001, Brazil;
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - Aldo Seffrin
- Department of Physiology, Federal University of Sao Paulo, São Paulo 04021-001, Brazil; (M.S.A.); (C.R.L.F.); (A.S.)
| | - Claudio Andre Barbosa de Lira
- Human and Exercise Physiology Division, Faculty of Physical Education and Dance, Federal University of Goiás, Goiânia 74690-900, Brazil;
| |
Collapse
|
7
|
Van der Stede T, Blancquaert L, Stassen F, Everaert I, Van Thienen R, Vervaet C, Gliemann L, Hellsten Y, Derave W. Histamine H 1 and H 2 receptors are essential transducers of the integrative exercise training response in humans. SCIENCE ADVANCES 2021; 7:7/16/eabf2856. [PMID: 33853781 PMCID: PMC8046361 DOI: 10.1126/sciadv.abf2856] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 05/12/2023]
Abstract
Exercise training is a powerful strategy to prevent and combat cardiovascular and metabolic diseases, although the integrative nature of the training-induced adaptations is not completely understood. We show that chronic blockade of histamine H1/H2 receptors led to marked impairments of microvascular and mitochondrial adaptations to interval training in humans. Consequently, functional adaptations in exercise capacity, whole-body glycemic control, and vascular function were blunted. Furthermore, the sustained elevation of muscle perfusion after acute interval exercise was severely reduced when H1/H2 receptors were pharmaceutically blocked. Our work suggests that histamine H1/H2 receptors are important transducers of the integrative exercise training response in humans, potentially related to regulation of optimal post-exercise muscle perfusion. These findings add to our understanding of how skeletal muscle and the cardiovascular system adapt to exercise training, knowledge that will help us further unravel and develop the exercise-is-medicine concept.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen 2100, Denmark
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| | - Flore Stassen
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| | - Inge Everaert
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Lasse Gliemann
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen 2100, Denmark
| | - Ylva Hellsten
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen 2100, Denmark
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
8
|
Histamine, mast cell tryptase and post-exercise hypotension in healthy and collapsed marathon runners. Eur J Appl Physiol 2021; 121:1451-1459. [PMID: 33629149 PMCID: PMC8373737 DOI: 10.1007/s00421-021-04645-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/14/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE Heat stress exacerbates post-exercise hypotension (PEH) and cardiovascular disturbances from elevated body temperature may contribute to exertion-related incapacity. Mast cell degranulation and muscle mass are possible modifiers, though these hypotheses lack practical evidence. This study had three aims: (1) to characterise pre-post-responses in histamine and mast cell tryptase (MCT), (2) to investigate relationships between whole body muscle mass (WBMM) and changes in blood pressure post-marathon, (3) to identify any differences in incapacitated runners. METHODS 24 recreational runners were recruited and successfully completed the 2019 Brighton Marathon (COMPLETION). WBMM was measured at baseline. A further eight participants were recruited from incapacitated runners (COLLAPSE). Histamine, MCT, blood pressure, heart rate, body temperature and echocardiographic measures were taken before and after exercise (COMPLETION) and upon incapacitation (COLLAPSE). RESULTS In completion, MCT increased by nearly 50% from baseline (p = 0.0049), whereas histamine and body temperature did not vary (p > 0.946). Systolic (SBP), diastolic (DBP) and mean (MAP) arterial blood pressures and systemic vascular resistance (SVR) declined (p < 0.019). WBMM negatively correlated with Δ SBP (r = - 0.43, p = 0.046). For collapse versus completion, there were significant elevations in MCT (1.77 ± 0.25 μg/L vs 1.18 ± 0.43 μg/L, p = 0.001) and body temperature (39.8 ± 1.3 °C vs 36.2 ± 0.8 °C, p < 0.0001) with a non-significant rise in histamine (9.6 ± 17.9 μg/L vs 13.7 ± 33.9 μg/L, p = 0.107) and significantly lower MAP, DBP and SVR (p < 0.033). CONCLUSION These data support the hypothesis that mast cell degranulation is a vasodilatory mechanism underlying PEH and exercise associated collapse. The magnitude of PEH is inversely proportional to the muscle mass and enhanced by concomitant body heating.
Collapse
|
9
|
Romero-Parra N, Cupeiro R, Alfaro-Magallanes VM, Rael B, Rubio-Arias JÁ, Peinado AB, Benito PJ. Exercise-Induced Muscle Damage During the Menstrual Cycle: A Systematic Review and Meta-Analysis. J Strength Cond Res 2021; 35:549-561. [PMID: 33201156 DOI: 10.1519/jsc.0000000000003878] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Romero-Parra, N, Cupeiro, R, Alfaro-Magallanes, VM, Rael, B, Rubio-Arias, JA, Peinado, AB, and Benito, PJ, IronFEMME Study Group. Exercise-induced muscle damage during the menstrual cycle: A systematic review and meta-analysis. J Strength Cond Res 35(2): 549-561, 2021-A strenuous bout of exercise could trigger damage of muscle tissue, and it is not clear how sex hormone fluctuations occurring during the menstrual cycle (MC) affect this response. The aims of this study were to systematically search and assess studies that have evaluated exercise-induced muscle damage (EIMD) in eumenorrheic women over the MC and to perform a meta-analysis to quantify which MC phases display the muscle damage response. The guidelines of the Preferred Reported Items for Systematic Reviews and Meta-Analysis were followed. A total of 19 articles were analyzed in the quantitative synthesis. Included studies examined EIMD in at least one phase of the following MC phases: early follicular phase (EFP), late follicular phase (LFP), or midluteal phase (MLP). The meta-analysis demonstrated differences between MC phases for delayed onset muscle soreness (DOMS) and strength loss (p < 0.05), whereas no differences were observed between MC phases for creatine kinase. The maximum mean differences between pre-excercise and post-exercise for DOMS were EFP: 6.57 (4.42, 8.71), LFP: 5.37 (2.10, 8.63), and MLP: 3.08 (2.22, 3.95), whereas for strength loss were EFP: -3.46 (-4.95, -1.98), LFP: -1.63 (-2.36, -0.89), and MLP: -0.72 (-1.07, -0.36) (p < 0.001). In conclusion, this meta-analysis suggests that hormone fluctuations throughout the MC affect EIMD in terms of DOMS and strength loss. Lower training loads or longer recovery periods could be considered in the EFP, when sex hormone concentrations are lower and women may be more vulnerable to muscle damage, whereas strength conditioning loads could be enhanced in the MLP.
Collapse
Affiliation(s)
- Nuria Romero-Parra
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Polytechnic University of Madrid (UPM), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Bontemps B, Vercruyssen F, Gruet M, Louis J. Downhill Running: What Are The Effects and How Can We Adapt? A Narrative Review. Sports Med 2020; 50:2083-2110. [PMID: 33037592 PMCID: PMC7674385 DOI: 10.1007/s40279-020-01355-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Downhill running (DR) is a whole-body exercise model that is used to investigate the physiological consequences of eccentric muscle actions and/or exercise-induced muscle damage (EIMD). In a sporting context, DR sections can be part of running disciplines (off-road and road running) and can accentuate EIMD, leading to a reduction in performance. The purpose of this narrative review is to: (1) better inform on the acute and delayed physiological effects of DR; (2) identify and discuss, using a comprehensive approach, the DR characteristics that affect the physiological responses to DR and their potential interactions; (3) provide the current state of evidence on preventive and in-situ strategies to better adapt to DR. Key findings of this review show that DR may have an impact on exercise performance by altering muscle structure and function due to EIMD. In the majority of studies, EIMD are assessed through isometric maximal voluntary contraction, blood creatine kinase and delayed onset muscle soreness, with DR characteristics (slope, exercise duration, and running speed) acting as the main influencing factors. In previous studies, the median (25th percentile, Q1; 75th percentile, Q3) slope, exercise duration, and running speed were - 12% (- 15%; - 10%), 40 min (30 min; 45 min) and 11.3 km h-1 (9.8 km h-1; 12.9 km h-1), respectively. Regardless of DR characteristics, people the least accustomed to DR generally experienced the most EIMD. There is growing evidence to suggest that preventive strategies that consist of prior exposure to DR are the most effective to better tolerate DR. The effectiveness of in-situ strategies such as lower limb compression garments and specific footwear remains to be confirmed. Our review finally highlights important discrepancies between studies in the assessment of EIMD, DR protocols and populations, which prevent drawing firm conclusions on factors that most influence the response to DR, and adaptive strategies to DR.
Collapse
Affiliation(s)
- Bastien Bontemps
- Université de Toulon, Laboratoire IAPS, Toulon, France
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | | | - Mathieu Gruet
- Université de Toulon, Laboratoire IAPS, Toulon, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
11
|
Ely MR, Ratchford SM, La Salle DT, Trinity JD, Wray DW, Halliwill JR. Effect of histamine-receptor antagonism on leg blood flow during exercise. J Appl Physiol (1985) 2020; 128:1626-1634. [PMID: 32407239 DOI: 10.1152/japplphysiol.00689.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histamine mediates vasodilation during inflammatory and immune responses, as well as following endurance exercise. During exercise, intramuscular histamine concentration increases, and its production, appears related to exercise intensity and duration. However, whether histamine contributes to exercise hyperemia and promotes exercise blood flow in an intensity- or duration-dependent pattern is unknown. The purpose of this study was to compare leg blood flow across a range of exercise intensities, before and after prolonged exercise, with and without histamine-receptor antagonism. It was hypothesized that combined oral histamine H1/H2-receptor antagonism would decrease leg blood flow, and the effect would be greater at higher intensities and following prolonged exercise. Sixteen (7F, 9M) volunteers performed single-leg knee-extension exercise after consuming either placebo or combined histamine H1/H2-receptor antagonists (Blockade). Exercise consisted of two graded protocols at 20, 40, 60, and 80% of peak power, separated by 60 min of knee-extension exercise at 60% of peak power. Femoral artery blood flow was measured by ultrasonography. Femoral artery blood flow increased with exercise intensity up to 2,660 ± 97 mL/min at 80% of peak power during Placebo (P < 0.05). Blood flow was further elevated with Blockade to 2,836 ± 124 mL/min (P < 0.05) at 80% peak power (9.1 ± 4.8% higher than placebo). These patterns were not affected by prolonged exercise (P = 0.13). On average, femoral blood flow during prolonged exercise was 12.7 ± 2.8% higher with Blockade vs. Placebo (P < 0.05). Contrary to the hypothesis, these results suggest that histamine receptor antagonism during exercise, regardless of intensity or duration, increases leg blood flow measured by ultrasonography.NEW & NOTEWORTHY Leg blood flow during exercise was increased by taking antihistamines, which block the receptors for histamine, a molecule often associated with inflammatory and immune responses. The elevated blood flow occurred over exercise intensities ranging from 20 to 80% of peak capacity and during exercise of 60 min duration. These results suggest that exercise-induced elevations in histamine concentrations are involved in novel, poorly understood, and perhaps complex ways in the exercise response.
Collapse
Affiliation(s)
- Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Stephen M Ratchford
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - D Walter Wray
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
12
|
Loratadine for Paclitaxel-Induced Myalgias and Arthralgias. Am J Hosp Palliat Care 2020; 37:235-238. [DOI: 10.1177/1049909119864083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Seventy percentage of patients who receive paclitaxel have diffuse, refractory myalgias, and arthralgias. Based on anecdotal reports, this study explored whether loratadine, an antihistamine, palliates these symptoms. Methods: The medical records of postoperative ovarian and patients with endometrial cancer were studied, as these patients are routinely prescribed paclitaxel. Records were screened for patients who received paclitaxel and loratadine concurrently. Results: Forty patients are the focus of this report. Eight had paclitaxel-induced myalgias and arthralgias and then took loratadine; of these, 6 (75%; 95% confidence interval: 35%, 97%) manifested evidence of symptom improvement: “She did experience some migrating generalized body aches and pains…but this has resolved.” Of those already receiving loratadine but with no myalgias and arthralgias, only 11 of 32, or 34% (95% confidence interval: 19%, 53%), developed myalgias and arthralgias (in contrast to the previously reported symptom rate of 70%). No adverse events were clearly attributed to loratadine. Conclusion: These preliminary data support further study of loratadine for paclitaxel-induced myalgias and arthralgias.
Collapse
|
13
|
Brito LC, Ely MR, Sieck DC, Mangum JE, Larson EA, Minson CT, Forjaz CLM, Halliwill JR. Effect of Time of Day on Sustained Postexercise Vasodilation Following Small Muscle-Mass Exercise in Humans. Front Physiol 2019; 10:762. [PMID: 31293439 PMCID: PMC6603126 DOI: 10.3389/fphys.2019.00762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction Previous studies observed diurnal variation in hemodynamic responses during recovery from whole-body exercise, with vasodilation appearing greater after evening versus morning sessions. It is unclear what mechanism(s) underlie this response. Since small muscle-mass exercise can isolate peripheral effects related to postexercise vasodilation, it may provide insight into possible mechanisms behind this diurnal variation. Methods The study was conducted in ten healthy (5F, 5M) young individuals, following single-leg dynamic knee-extension exercise performed in the Morning (7:30–11:30 am) or the Evening (5–9 pm) on two different days, in random order. Arterial pressure (automated auscultation) and leg blood flow (femoral artery Doppler ultrasound) were measured pre-exercise and during 120 min postexercise. Net effect for each session was calculated as percent change in blood flow (or vascular conductance) between the Active Leg and the Inactive Leg. Results Following Morning exercise, blood flow was 34.9 ± 8.9% higher in the Active Leg versus the Inactive Leg (p < 0.05) across recovery. Following Evening exercise, blood flow was 35.0 ± 8.8% higher in the Active Leg versus the Inactive Leg (p < 0.05). Likewise, vascular conductance was higher in the Active Leg versus the Inactive Leg (Morning: +35.1 ± 9.0%, p < 0.05; Evening: +33.2 ± 8.2%, p < 0.05). Morning and Evening blood flow (p = 0.66) and vascular conductance (p = 0.64) did not differ. Conclusion These data suggest previous studies which identified diurnal variations in postexercise vasodilation responses are likely reflecting central rather than peripheral modulation of cardiovascular responses.
Collapse
Affiliation(s)
- Leandro C Brito
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Dylan C Sieck
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Joshua E Mangum
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | | | - Cláudia L M Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
14
|
Ely MR, Sieck DC, Mangum JE, Larson EA, Brito LC, Minson CT, Halliwill JR. Histamine-Receptor Antagonists Slow 10-km Cycling Performance in Competitive Cyclists. Med Sci Sports Exerc 2019; 51:1487-1497. [PMID: 30694974 DOI: 10.1249/mss.0000000000001911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histamine is released within skeletal muscle during exercise. In humans, antihistamines have no effect on speed, power output, or time-to-completion of short-duration high-intensity exercise. In mice, blocking histamine's actions decreases speed and duration of endurance tasks. It is unknown if these opposing outcomes are the result of differences in histamine's actions between species or are related to duration and/or intensity of exercise, as blocking histamine during endurance exercise has not been examined in humans. PURPOSE Determine the effects of histamine-receptor antagonism on cycling time trial performance in humans, with and without a preceding bout of sustained steady-state exercise. METHODS Eleven (3F) competitive cyclists performed six 10-km time trials on separate days. The first two time trials served as familiarization. The next four time trials were performed in randomized-block order, where two were preceded by 120 min of seated rest (rest) and two by 120 min of cycling exercise (Exercise) at 50% V˙O2peak. Within each block, subjects consumed either combined histamine H1 and H2 receptor antagonists (Blockade) or Placebo, before the start of the 120-min Rest/Exercise. RESULTS Blockade had no discernible effects on hemodynamic or metabolic variables during Rest or Exercise. However, Blockade increased time-to-completion of the 10-km time trial compared with Placebo (+10.5 ± 3.7 s, P < 0.05). Slowing from placebo to blockade was not different between rest (+8.7 ± 5.2 s) and Exercise (+12.3 ± 5.8 s, P = 0.716). CONCLUSIONS Exercise-related histaminergic signaling appears inherent to endurance exercise and may play a role in facilitating optimal function during high-intensity endurance exercise.
Collapse
Affiliation(s)
- Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Dylan C Sieck
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Joshua E Mangum
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Leandro C Brito
- School of Physical Education and Sport, University of São Paulo, São Paulo, BRAZIL
| | | | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, OR
| |
Collapse
|
15
|
Lu X, Wang Y, Lu J, You Y, Zhang L, Zhu D, Yao F. Does vibration benefit delayed-onset muscle soreness?: a meta-analysis and systematic review. J Int Med Res 2019; 47:3-18. [PMID: 30526170 PMCID: PMC6384495 DOI: 10.1177/0300060518814999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/30/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Delayed-onset muscle soreness (DOMS) is a symptom of exercise-induced muscle injury that is commonly encountered in athletes and fitness enthusiasts. Vibration is being increasingly used to prevent or treat DOMS. We therefore carried out a meta-analysis to evaluate the effectiveness of vibration in patients with DOMS. METHOD We searched nine databases for randomized controlled trials of vibration in DOMS, from the earliest date available to 30 May 2018. Visual analogue scale (VAS) and creatine kinase (CK) levels were set as outcome measures. RESULTS The review included 10 identified studies with 258 participants. The meta-analysis indicated that vibration significantly improved the VAS at 24, 48, and 72 hours after exercise, and significantly improved CK levels at 24 and 48 hours, but not at 72 hours. CONCLUSION Vibration is a beneficial and useful form of physiotherapy for alleviating DOMS. However, further studies are needed to clarify the role and mechanism of vibration in DOMS.
Collapse
Affiliation(s)
- Xingang Lu
- College of YueYang, Yueyang Hospital of Integrated Chinese and
Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai,
P. R. China
- Department of Traditional Chinese Medicine, Shanghai Key
Laboratory of Clinical Geriatric Medicine, HuaDong Hospital, FuDan University,
Shanghai, P. R. China
| | - Yiru Wang
- LongHua Hospital, Shanghai University of Traditional Chinese
Medicine, Shanghai, P. R. China
| | - Jun Lu
- Department of Orthopedics, BaoShan Hospital of Integrated
Traditional Chinese and Western Medicine, Shanghai University of Traditional
Chinese Medicine, Shanghai, P. R. China
| | - Yanli You
- Department of Traditional Chinese Medicine, ChangHai Hospital,
Second Military Medical University, P. R. China
| | - Lingling Zhang
- Department of Traditional Chinese Medicine, First People’s
Hospital of Taicang, JiangSu, P. R. China
| | - Danyang Zhu
- Department of Traditional Chinese Medicine, TongRen Hospital,
School of Medicine, Shanghai JiaoTong University, Shanghai, P. R. China
| | - Fei Yao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University
of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
16
|
Vasconcelos AB, Nampo FK, Molina JC, Silva MB, Oliveira AS, de Angelis TR, Hasuda AL, Camargo EA, Ramos SP. Modulation of exercise-induced muscular damage and hyperalgesia by different 630 nm doses of light-emitting diode therapy (LEDT) in rats. Lasers Med Sci 2018; 34:749-758. [PMID: 30328526 DOI: 10.1007/s10103-018-2655-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/30/2018] [Indexed: 11/29/2022]
Abstract
We compared the acute effects of different doses of 630 nm light-emitting diode therapy (LEDT) on skeletal muscle inflammation and hyperalgesia in rats submitted to exercise-induced muscle damage (EIMD). Wistar rats were divided into five experimental groups (n = 5-8/group): sedentary control (CON); exercise + passive recovery (PR); and exercise + LEDT (1.2 J/cm2, 1.8 J; 4.2 J/cm2, 6.3 J; 10.0 J/cm2, 15 J). After 100 min of swimming, the rats in the LEDT groups were exposed to phototherapy on the triceps surae muscle. For mechanical hyperalgesia evaluation, paw withdrawal threshold was assessed before and 24 h after swimming. Immediately after hyperalgesia tests, blood samples were collected to analyze creatine kinase (CK) activity and the soleus muscle was removed for histological and tumor necrosis factor (TNF)-α immunohistological analyses. In all LEDT groups, plasma CK activity was reduced to levels similar to those measured in the CON group. Paw withdrawal threshold decreased in the PR group (- 11.9 ± 1.9 g) when compared to the CON group (2.2 ± 1.5 g; p < 0.01) and it was attenuated in the group LEDT 4.2 J/cm2 (- 3.3 ± 2.4 g, p < 0.05). Less leukocyte infiltration and edema and fewer necrotic areas were found in histological sections of soleus muscle in LEDT (4.2 J/cm2) and LEDT (10.0 J/cm2) groups compared to the PR group. Also, LEDT (4.2 J/cm2) and LEDT (10.0 J/cm2) groups showed less immunostaining for TNF-α in macrophages or areas with necrosis of muscle fibers compared to the PR group. LEDT (4.2 J/cm2, 6.3 J)-reduced muscle inflammation and nociception in animals submitted to EIMD.
Collapse
Affiliation(s)
- Alan B Vasconcelos
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil
| | - Fernando K Nampo
- Latin American Institute of Life and Natural Sciences, Federal University of Latin American Integration, Foz do Iguaçu, PR, Brazil
| | - Júlio C Molina
- Department of Histology, State University of Londrina, Londrina, PR, Brazil
| | - Miriam B Silva
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil
| | - Alan S Oliveira
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil
| | | | - Amanda L Hasuda
- Department of Histology, State University of Londrina, Londrina, PR, Brazil
| | - Enilton A Camargo
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil.
| | - Solange P Ramos
- Department of Histology, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
17
|
Romero SA, Moralez G, Jaffery MF, Huang M, Crandall CG. Vasodilator function is impaired in burn injury survivors. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1054-R1060. [PMID: 30256680 DOI: 10.1152/ajpregu.00188.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of severe burn injury on vascular health is unknown. We tested the hypothesis that, compared with nonburn control subjects, vasodilator function would be reduced and that pulse-wave velocity (a measure of arterial stiffness) would be increased in individuals with prior burn injuries, the extent of which would be associated with the magnitude of body surface area having sustained a severe burn. Pulse-wave velocity and macrovascular (flow-mediated dilation) and microvascular (reactive hyperemia) dilator functions were assessed in 14 nonburned control subjects and 32 age-matched subjects with well-healed burn injuries. Fifteen subjects with burn injuries covering 17-40% of body surface area were assigned to a moderate burn injury group, and 17 subjects with burn injuries covering >40% of body surface area were assigned to a high burn injury group. Pulse-wave velocity [ P = 0.3 (central) and P = 0.3 (peripheral)] did not differ between the three groups. Macrovascular dilator function was reduced in the moderate ( P = 0.07) and high ( P < 0.05) burn injury groups compared with the control group. Likewise, peak vascular conductance during postocclusive reactive hyperemia differed from the moderate burn injury group ( P = 0.08 vs. control) and the high burn injury group ( P < 0.05 vs. control). These data suggest that vasodilator function is impaired in well-healed burn injury survivors, with the extent of impairment not dependent on the magnitude of body surface area having sustained a severe burn injury.
Collapse
Affiliation(s)
- Steven A Romero
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas.,University of North Texas Health Science Center, Ft. Worth, Texas
| | - Gilbert Moralez
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas
| | - Manall F Jaffery
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas
| | - Mu Huang
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas
| | - Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital , Dallas, Texas
| |
Collapse
|
18
|
Abstract
In humans, histamine is a molecular transducer of physical activity responses, and antihistamines modify more than 25% of the genes responding to exercise. Although the upstream signal that results in release of histamine within exercising skeletal muscle remains to be identified, it is likely a fundamental exercise response and not an allergic reaction.
Collapse
|
19
|
Romero SA, Gagnon D, Adams AN, Moralez G, Kouda K, Jaffery MF, Cramer MN, Crandall CG. Folic acid ingestion improves skeletal muscle blood flow during graded handgrip and plantar flexion exercise in aged humans. Am J Physiol Heart Circ Physiol 2017; 313:H658-H666. [PMID: 28667051 DOI: 10.1152/ajpheart.00234.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
Skeletal muscle blood flow is attenuated in aged humans performing dynamic exercise, which is due, in part, to impaired local vasodilatory mechanisms. Recent evidence suggests that folic acid improves cutaneous vasodilation during localized and whole body heating through nitric oxide-dependent mechanisms. However, it is unclear whether folic acid improves vasodilation in other vascular beds during conditions of increased metabolism (i.e., exercise). The purpose of this study was to test the hypothesis that folic acid ingestion improves skeletal muscle blood flow in aged adults performing graded handgrip and plantar flexion exercise via increased vascular conductance. Nine healthy, aged adults (two men and seven women; age: 68 ± 5 yr) performed graded handgrip and plantar flexion exercise before (control), 2 h after (acute, 5 mg), and after 6 wk (chronic, 5 mg/day) folic acid ingestion. Forearm (brachial artery) and leg (superficial femoral artery) blood velocity and diameter were measured via Duplex ultrasonography and used to calculate blood flow. Acute and chronic folic acid ingestion increased serum folate (both P < 0.05 vs. control). During handgrip exercise, acute and chronic folic acid ingestion increased forearm blood flow (both conditions P < 0.05 vs. control) and vascular conductance (both P < 0.05 vs. control). During plantar flexion exercise, acute and chronic folic acid ingestion increased leg blood flow (both P < 0.05 vs. control), but only acute folic acid ingestion increased vascular conductance (P < 0.05 vs. control). Taken together, folic acid ingestion increases blood flow to active skeletal muscle primarily via improved local vasodilation in aged adults.NEW & NOTEWORTHY Our findings demonstrate that folic acid ingestion improves blood flow via enhanced vascular conductance in the exercising skeletal muscle of aged humans. These findings provide evidence for the therapeutic use of folic acid to improve skeletal muscle blood flow, and perhaps exercise and functional capacity, in human primary aging.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/folic-acid-and-exercise-hyperemia-in-aging/.
Collapse
Affiliation(s)
- Steven A Romero
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Daniel Gagnon
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada.,Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada; and
| | - Amy N Adams
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Gilbert Moralez
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Ken Kouda
- Wakayama Medical University, Wakayama, Japan
| | - Manall F Jaffery
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Matthew N Cramer
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas;
| |
Collapse
|
20
|
Romero SA, Minson CT, Halliwill JR. The cardiovascular system after exercise. J Appl Physiol (1985) 2017; 122:925-932. [PMID: 28153943 DOI: 10.1152/japplphysiol.00802.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
Recovery from exercise refers to the time period between the end of a bout of exercise and the subsequent return to a resting or recovered state. It also refers to specific physiological processes or states occurring after exercise that are distinct from the physiology of either the exercising or the resting states. In this context, recovery of the cardiovascular system after exercise occurs across a period of minutes to hours, during which many characteristics of the system, even how it is controlled, change over time. Some of these changes may be necessary for long-term adaptation to exercise training, yet some can lead to cardiovascular instability during recovery. Furthermore, some of these changes may provide insight into when the cardiovascular system has recovered from prior training and is physiologically ready for additional training stress. This review focuses on the most consistently observed hemodynamic adjustments and the underlying causes that drive cardiovascular recovery and will highlight how they differ following resistance and aerobic exercise. Primary emphasis will be placed on the hypotensive effect of aerobic and resistance exercise and associated mechanisms that have clinical relevance, but if left unchecked, can progress to symptomatic hypotension and syncope. Finally, we focus on the practical application of this information to strategies to maximize the benefits of cardiovascular recovery, or minimize the vulnerabilities of this state. We will explore appropriate field measures, and discuss to what extent these can guide an athlete's training.
Collapse
Affiliation(s)
- Steven A Romero
- University of Texas Southwestern Medical Center, Dallas, Texas.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas; and
| | | | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|