1
|
Cuadra C, De Boef A, Luong S, Wolf SL, Nichols TR, Lyle MA. Reduced inhibition from quadriceps onto soleus after acute quadriceps fatigue suggests Golgi tendon organ contribution to heteronymous inhibition. Eur J Neurosci 2024; 60:4317-4331. [PMID: 38853295 PMCID: PMC11304518 DOI: 10.1111/ejn.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Heteronymous inhibition between lower limb muscles is primarily attributed to recurrent inhibitory circuits in humans but could also arise from Golgi tendon organs (GTOs). Distinguishing between recurrent inhibition and mechanical activation of GTOs is challenging because their heteronymous effects are both elicited by stimulation of nerves or a muscle above motor threshold. Here, the unique influence of mechanically activated GTOs was examined by comparing the magnitude of heteronymous inhibition from quadriceps (Q) muscle stimulation onto ongoing soleus electromyographic at five Q stimulation intensities (1.5-2.5× motor threshold) before and after an acute bout of stimulation-induced Q fatigue. Fatigue was used to decrease Q stimulation evoked force (i.e., decreased GTO activation) despite using the same pre-fatigue stimulation currents (i.e., same antidromic recurrent inhibition input). Thus, a decrease in heteronymous inhibition after Q fatigue and a linear relation between stimulation-evoked torque and inhibition both before and after fatigue would support mechanical activation of GTOs as a source of inhibition. A reduction in evoked torque but no change in inhibition would support recurrent inhibition. After fatigue, Q stimulation-evoked knee torque, heteronymous inhibition magnitude and inhibition duration were significantly decreased for all stimulation intensities. In addition, heteronymous inhibition magnitude was linearly related to twitch-evoked knee torque before and after fatigue. These findings support mechanical activation of GTOs as a source of heteronymous inhibition along with recurrent inhibition. The unique patterns of heteronymous inhibition before and after fatigue across participants suggest the relative contribution of GTOs, and recurrent inhibition may vary across persons.
Collapse
Affiliation(s)
- Cristian Cuadra
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Adam De Boef
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sarah Luong
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| | - Steven L Wolf
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, USA
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mark A Lyle
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Amann M, Sidhu SK, McNeil CJ, Gandevia SC. Critical considerations of the contribution of the corticomotoneuronal pathway to central fatigue. J Physiol 2022; 600:5203-5214. [PMID: 36326193 PMCID: PMC9772161 DOI: 10.1113/jp282564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Neural drive originating in higher brain areas reaches exercising limb muscles through the corticospinal-motoneuronal pathway, which links the motor cortex and spinal motoneurones. The properties of this pathway have frequently been observed to change during fatiguing exercise in ways that could influence the development of central fatigue (i.e. the progressive reduction in voluntary muscle activation). However, based on differences in motor cortical and motoneuronal excitability between exercise modalities (e.g. single-joint vs. locomotor exercise), there is no characteristic response that allows for a categorical conclusion about the effect of these changes on functional impairments and performance limitations. Despite the lack of uniformity in findings during fatigue, there is strong evidence for marked 'inhibition' of motoneurones as a direct result of voluntary drive. Endogenous forms of neuromodulation, such as via serotonin released from neurones, can directly affect motoneuronal output and central fatigue. Exogenous forms of neuromodulation, such as brain stimulation, may achieve a similar effect, although the evidence is weak. Non-invasive transcranial direct current stimulation can cause transient or long-lasting changes in cortical excitability; however, variable results across studies cast doubt on its claimed capacity to enhance performance. Furthermore, with these studies, it is difficult to establish a cause-and-effect relationship between brain responsiveness and exercise performance. This review briefly summarizes changes in the corticomotoneuronal pathway during various types of exercise, and considers the relevance of these changes for the development of central fatigue, as well as the potential of non-invasive brain stimulation to enhance motor cortical excitability, motoneuronal output and, ultimately, exercise performance.
Collapse
Affiliation(s)
- Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Simranjit K. Sidhu
- School of Biomedicine, The University of Adelaide, South Australia, Australia
| | - Chris J McNeil
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Simon C Gandevia
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Laginestra FG, Cavicchia A, Vanegas-Lopez JE, Barbi C, Martignon C, Giuriato G, Pedrinolla A, Amann M, Hureau TJ, Venturelli M. Prior Involvement of Central Motor Drive Does Not Impact Performance and Neuromuscular Fatigue in a Subsequent Endurance Task. Med Sci Sports Exerc 2022; 54:1751-1760. [PMID: 35612382 PMCID: PMC9481724 DOI: 10.1249/mss.0000000000002965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study evaluated whether central motor drive during fatiguing exercise plays a role in determining performance and the development of neuromuscular fatigue during a subsequent endurance task. METHODS On separate days, 10 males completed three constant-load (80% peak power output), single-leg knee-extension trials to task failure in a randomized fashion. One trial was performed without preexisting quadriceps fatigue (CON), and two trials were performed with preexisting quadriceps fatigue induced either by voluntary (VOL; involving central motor drive) or electrically evoked (EVO; without central motor drive) quadriceps contractions (~20% maximal voluntary contraction (MVC)). Neuromuscular fatigue was assessed via pre-post changes in MVC, voluntary activation (VA), and quadriceps potentiated twitch force ( Qtw,pot ). Cardiorespiratory responses and rating of perceived exertion were also collected throughout the sessions. The two prefatiguing protocols were matched for peripheral fatigue and stopped when Qtw,pot declined by ~35%. RESULTS Time to exhaustion was shorter in EVO (4.3 ± 1.3 min) and VOL (4.7 ± 1.5 min) compared with CON (10.8 ± 3.6 min, P < 0.01) with no difference between EVO and VOL. ΔMVC (EVO: -47% ± 8%, VOL: -45% ± 8%, CON: -53% ± 8%), Δ Qtw,pot (EVO: -65% ± 7%, VOL: -59% ± 14%, CON: -64% ± 9%), and ΔVA (EVO: -9% ± 7%, VOL: -8% ± 5%, CON: -7% ± 5%) at the end of the dynamic task were not different between conditions (all P > 0.05). Compared with EVO (10.6 ± 1.7) and CON (6.8 ± 0.8), rating of perceived exertion was higher ( P = 0.05) at the beginning of VOL (12.2 ± 1.0). CONCLUSIONS These results suggest that central motor drive involvement during prior exercise plays a negligible role on the subsequent endurance performance. Therefore, our findings indicate that peripheral fatigue-mediated impairments are the primary determinants of high-intensity single-leg endurance performance.
Collapse
Affiliation(s)
| | - Alessandro Cavicchia
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Jennifer E. Vanegas-Lopez
- Faculty of Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, University of Strasbourg, FRANCE
| | - Chiara Barbi
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Camilla Martignon
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Gaia Giuriato
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Anna Pedrinolla
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| | - Markus Amann
- Department of Anaesthesiology, University of Utah, Salt Lake City, Utah
| | - Thomas J. Hureau
- Faculty of Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, University of Strasbourg, FRANCE
| | - Massimo Venturelli
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, ITALY
| |
Collapse
|
4
|
Vila‐Villar A, Naya‐Fernández M, Madrid A, Madinabeitia‐Mancebo E, Robles‐García V, Cudeiro J, Arias P. Exploring the role of the left
DLPFC
in fatigue during unresisted rhythmic movements. Psychophysiology 2022; 59:e14078. [PMID: 35428988 PMCID: PMC9539568 DOI: 10.1111/psyp.14078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/20/2021] [Accepted: 03/30/2022] [Indexed: 01/17/2023]
Abstract
Understanding central fatigue during motor activities is important in neuroscience and different medical fields. The central mechanisms of motor fatigue are known in depth for isometric muscle contractions; however, current knowledge about rhythmic movements and central fatigue is rather scarce. In this study, we explored the role of an executive area (left dorsolateral prefrontal cortex [DLPFC]) in fatigue development during rhythmic movement execution, finger tapping (FT) at the maximal rate, and fatigue after effects on the stability of rhythmic patterns. Participants (n = 19) performed six sets of unresisted FT (with a 3 min rest in‐between). Each set included four interleaved 30 s repetitions of self‐selected (two repetitions) and maximal rate FT (two repetitions) without rest in‐between. Left DLPFC involvement in the task was perturbed by transcranial static magnetic stimulation (tSMS) in two sessions (one real and one sham). Moreover, half of the self‐selected FT repetitions were performed concurrently with a demanding cognitive task, the Stroop test. Compared with sham stimulation, real tSMS stimulation prevented waning in tapping frequency at the maximal rate without affecting perceived levels of fatigue. Participants' engagement in the Stroop test just prior to maximal FT reduced the movement amplitude during this mode of execution. Movement variability at self‐selected rates increased during Stroop execution, especially under fatigue previously induced by maximal FT. Our results indicate cognitive‐motor interactions and a prominent role of the prefrontal cortex in fatigue and the motor control of simple repetitive movement patterns. We suggest the need to approach motor fatigue including cognitive perspectives. We show the fundamental role of executive areas in fatigue caused by very simple repetitive movements. Fatigue developed less during the maximal frequency of movement production, while the left DLPFC received magnetic stimulation (in right‐handers). The role of cognitive‐motor interaction in fine motor control was also clear when participants engaged in cognitive tasks. At the clinical level, our work reinforces the need to treat fatigue from a comprehensive perspective.
Collapse
Affiliation(s)
- Aranza Vila‐Villar
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Mariña Naya‐Fernández
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Antonio Madrid
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Elena Madinabeitia‐Mancebo
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Verónica Robles‐García
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| | - Javier Cudeiro
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
- Centro de Estimulación Cerebral de Galicia A Coruña Spain
| | - Pablo Arias
- Department of Physiotherapy, Medicine and Biomedical Sciences and INEF Galicia Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group) and Biomedical Institute of A Coruña (INIBIC) A Coruña Spain
| |
Collapse
|
5
|
O'Bryan SJ, Taylor JL, D'Amico JM, Rouffet DM. Quadriceps Muscle Fatigue Reduces Extension and Flexion Power During Maximal Cycling. Front Sports Act Living 2022; 3:797288. [PMID: 35072064 PMCID: PMC8777021 DOI: 10.3389/fspor.2021.797288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate how quadriceps muscle fatigue affects power production over the extension and flexion phases and muscle activation during maximal cycling. Methods: Ten participants performed 10-s maximal cycling efforts without fatigue and after 120 bilateral maximal concentric contractions of the quadriceps muscles. Extension power, flexion power and electromyographic (EMG) activity were compared between maximal cycling trials. We also investigated the associations between changes in quadriceps force during isometric maximal voluntary contractions (IMVC) and power output (flexion and extension) during maximal cycling, in addition to inter-individual variability in muscle activation and pedal force profiles. Results: Quadriceps IMVC (-52 ± 21%, P = 0.002), voluntary activation (-24 ± 14%, P < 0.001) and resting twitch amplitude (-45 ± 19%, P = 0.002) were reduced following the fatiguing task, whereas vastus lateralis (P = 0.58) and vastus medialis (P = 0.15) M-wave amplitudes were unchanged. The reductions in extension power (-15 ± 8%, P < 0.001) and flexion power (-24 ± 18%, P < 0.001) recorded during maximal cycling with fatigue of the quadriceps were dissociated from the decreases in quadriceps IMVC. Peak EMG decreased across all muscles while inter-individual variability in pedal force and EMG profiles increased during maximal cycling with quadriceps fatigue. Conclusion: Quadriceps fatigue induced by voluntary contractions led to reduced activation of all lower limb muscles, increased inter-individual variability and decreased power production during maximal cycling. Interestingly, power production was further reduced over the flexion phase (24%) than the extension phase (15%), likely due to larger levels of peripheral fatigue developed in RF muscle and/or a higher contribution of the quadriceps muscle to flexion power production compared to extension power during maximal cycling.
Collapse
Affiliation(s)
- Steven J. O'Bryan
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Jessica M. D'Amico
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - David M. Rouffet
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Health and Sport Sciences, University of Louisville, Louisville, KY, United States
| |
Collapse
|
6
|
Gonnelli F, Rejc E, Floreani M, Lazzer S. Effects of NMES-elicited versus voluntary low-level conditioning contractions on explosive knee extensions. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:465-473. [PMID: 36458384 PMCID: PMC9716298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Electrically-induced or voluntary conditioning-contractions (CC) can be used to affect contractile properties of a subsequent explosive contraction (EC). Here, we aimed at comparing the effect of neuromuscular-electrical-stimulation (NMES) vs voluntary CC performed prior to explosive contractions of the knee extensors. METHODS A 10 sec NMES CC (100Hz, 1000μs, 10% MVC), or a voluntary contraction (VOL CC) mimicking the NMES CC, preceded an isometric EC of the knee extensors. Explosive contraction was performed with the goal to reach the target (70% MVC) as quickly as possible. RESULTS All the parameters related with the explosive contractions' muscle-output were similar between protocols (difference ranging from 0.23%, Mean Torque; to 5.8%, Time to Target), except for the Time to Peak Torque, which was lower when preceded by NMES (11.1%, p=0.019). Interestingly, the RTD 0-50 ms_EC was 37.3% higher after the NMES compared with the VOL CC protocol. CONCLUSION Explosive contraction was potentiated by an NMES CC as compared with a voluntary CC. This may be due to a reduction in descending drive following VOL CC, which has been shown to occur even with low-level voluntary efforts. These findings could be used to improve rehabilitation or training protocols that include conditioning contractions.
Collapse
Affiliation(s)
- Federica Gonnelli
- Department of Medicine, University of Udine, Udine, Italy,School of Sport Sciences, University of Udine, Udine, Italy,Corresponding author: Dr Federica Gonnelli, Department of Medicine, University of Udine, P.le M. Kolbe 4, 33100 Udine, Italy E-mail:
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Mirco Floreani
- Department of Medicine, University of Udine, Udine, Italy,School of Sport Sciences, University of Udine, Udine, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy,School of Sport Sciences, University of Udine, Udine, Italy
| |
Collapse
|
7
|
Zero AM, Kirk EA, Rice CL. Firing rate trajectories of human motor units during activity-dependent muscle potentiation. J Appl Physiol (1985) 2021; 132:402-412. [PMID: 34913736 DOI: 10.1152/japplphysiol.00672.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During activity-dependent potentiation (ADP) motor unit firing rates (MUFRs) are lower, however, the mechanism for this response is not known. During increasing torque isometric contractions at low contraction intensities, MUFR trajectories initially accelerate and saturate demonstrating a non-linear response due to the activation of persistent inward currents (PICs) at the motoneuron. The purpose was to assess whether PICs are a factor in the reduction of MUFRs during ADP. To assess this, MUFR trajectories were fit with competing functions of linear regression and a rising exponential (i.e., acceleration and saturation). Using fine-wire electrodes, discrete MU potential trains were recorded in the tibialis anterior during slowly increasing dorsiflexion contractions to 10% of maximal voluntary contraction following both voluntary (post-activation potentiation; PAP) and evoked (post-tetanic potentiation; PTP) contractions. In 8 participants, 25 MUs were recorded across both ADP conditions and compared to the control with no ADP effect. During PAP and PTP, the average MUFRs were 16.4% and 9.2% lower (both P≤ 0.001), respectively. More MUFR trajectories were better fit to the rising exponential during control (16/25) compared to PAP (4/25, P<0.001) and PTP (8/25, P=0.03). The MU samples that had a rising exponential MUFR trajectory during PAP and PTP displayed an ~11% lower initial acceleration compared to control (P<0.05). Thus, synaptic amplification and MUFR saturation due to PIC properties are attenuated during ADP regardless of the type of conditioning contraction. This response may contribute to lower MUFRs and likely occurred because synaptic input is reduced when contractile function is enhanced.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| | - Eric A Kirk
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Laginestra FG, Amann M, Kirmizi E, Giuriato G, Barbi C, Ruzzante F, Pedrinolla A, Martignon C, Tarperi C, Schena F, Venturelli M. Electrically induced quadriceps fatigue in the contralateral leg impairs ipsilateral knee extensors performance. Am J Physiol Regul Integr Comp Physiol 2021; 320:R747-R756. [PMID: 33729017 PMCID: PMC8163605 DOI: 10.1152/ajpregu.00363.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
Muscle fatigue induced by voluntary exercise, which requires central motor drive, causes central fatigue that impairs endurance performance of a different, nonfatigued muscle. This study investigated the impact of quadriceps fatigue induced by electrically induced (no central motor drive) contractions on single-leg knee-extension (KE) performance of the subsequently exercising ipsilateral quadriceps. On two separate occasions, eight males completed constant-load (85% of maximal power-output) KE exercise to exhaustion. In a counterbalanced manner, subjects performed the KE exercise with no pre-existing quadriceps fatigue in the contralateral leg on one day (No-PreF), whereas on the other day, the same KE exercise was repeated following electrically induced quadriceps fatigue in the contralateral leg (PreF). Quadriceps fatigue was assessed by evaluating pre- to postexercise changes in potentiated twitch force (ΔQtw,pot; peripheral fatigue), and voluntary muscle activation (ΔVA; central fatigue). As reflected by the 57 ± 11% reduction in electrically evoked pulse force, the electrically induced fatigue protocol caused significant knee-extensors fatigue. KE endurance time to exhaustion was shorter during PreF compared with No-PreF (4.6 ± 1.2 vs 7.7 ± 2.4 min; P < 0.01). Although ΔQtw,pot was significantly larger in No-PreF compared with PreF (-60% vs -52%, P < 0.05), ΔVA was greater in PreF (-14% vs -10%, P < 0.05). Taken together, electrically induced quadriceps fatigue in the contralateral leg limits KE endurance performance and the development of peripheral fatigue in the ipsilateral leg. These findings support the hypothesis that the crossover effect of central fatigue is mainly mediated by group III/IV muscle afferent feedback and suggest that impairments associated with central motor drive may only play a minor role in this phenomenon.
Collapse
Affiliation(s)
| | - Markus Amann
- Department of Anaesthesiology, University of Utah, Salt Lake City, Utah
| | - Emine Kirmizi
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
- Department of Physiology, Faculty of Medicine, Uludag University, Eskisehir, Turkey
| | - Gaia Giuriato
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Chiara Barbi
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Federico Ruzzante
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Camilla Martignon
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Cantor Tarperi
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, Italy
| |
Collapse
|