1
|
Freeberg KA, McCarty NP, Chonchol M, Seals DR, Craighead DH. Oxidative stress suppresses internal carotid artery dilation to hypercapnia in healthy older adults. J Appl Physiol (1985) 2025; 138:536-545. [PMID: 39819040 DOI: 10.1152/japplphysiol.00322.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Cerebrovascular disease and dementia risk increases with age, and lifetime risk is greater in women. Cerebrovascular dysfunction likely precedes cerebrovascular disease and dementia but the mechanisms are incompletely understood. We hypothesized that oxidative stress mediates cerebrovascular dysfunction with human aging. Internal carotid artery dilation (ICACO2 dilation) and middle cerebral artery cerebrovascular reactivity (MCA CVRCO2) in response to hypercapnia (5% CO2) were measured in 20 young [10 F/10 M; age 23 ± 3 yr (means ± SD)] and 21 older (11 F/10 M; age 69 ± 9 yr) adults during intravenous infusions of saline (control) and vitamin C (acutely reduced oxidative stress condition). ICACO2 dilation increased in response to vitamin C infusion in older adults (saline = 4.3 ± 2.4%; vitamin C = 6.7 ± 3.3%) but was unchanged in young adults (saline = 6.1 ± 2.7%; vitamin C = 5.5 ± 1.9%) (group × condition: P = 0.004). MCA CVRCO2 was not different in response to vitamin C in either group (group × condition: P = 0.341). However, when separated by sex, older female participants exhibited increased MCA CVRCO2 with vitamin C (saline = 0.85 ± 0.79 cm/s/mmHg; vitamin C = 1.33 ± 1.01 cm/s/mmHg) compared with older male participants (saline = 1.21 ± 0.57 cm/s/mmHg; vitamin C = 0.99 ± 0.47 cm/s/mmHg) (sex × condition: P = 0.011). Oxidative stress selectively impairs cerebrovascular function in older adults in an artery- and sex-specific manner.NEW & NOTEWORTHY This study is the first to report oxidative stress-mediated suppression of cerebrovascular reactivity to hypercapnia in the internal carotid artery in older compared with young adults. Overall, these in vivo findings identify oxidative stress as an important pathophysiological contributor to cerebrovascular aging in humans, highlighting the need to identify novel interventions that can reduce oxidative stress in the aging population.
Collapse
Affiliation(s)
- Kaitlin A Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Narissa P McCarty
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
2
|
Smail OJ, Clarke DJ, Al‐Alem Q, Wallis W, Barker AR, Smirl JD, Bond B. Resistance exercise acutely elevates dynamic cerebral autoregulation gain. Physiol Rep 2023; 11:e15676. [PMID: 37100594 PMCID: PMC10132945 DOI: 10.14814/phy2.15676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Dynamic cerebral autoregulation (dCA) describes the regulation of cerebral blood flow (CBF) in response to fluctuations in systemic blood pressure (BP). Heavy resistance exercise is known to induce large transient elevations in BP, which are translated into perturbations of CBF, and may alter dCA in the immediate aftermath. This study aimed to better quantify the time course of any acute alterations in dCA after resistance exercise. Following familiarisation to all procedures, 22 (14 male) healthy young adults (22 ± 2 years) completed an experimental trial and resting control trial, in a counterbalanced order. Repeated squat-stand manoeuvres (SSM) at 0.05 and 0.10 Hz were used to quantify dCA before, and 10 and 45 min after four sets of ten repetition back squats at 70% of one repetition maximum, or time matched seated rest (control). Diastolic, mean and systolic dCA were quantified by transfer function analysis of BP (finger plethysmography) and middle cerebral artery blood velocity (transcranial Doppler ultrasound). Mean gain (p = 0.02; d = 0.36) systolic gain (p = 0.01; d = 0.55), mean normalised gain (p = 0.02; d = 0.28) and systolic normalised gain (p = 0.01; d = 0.67) were significantly elevated above baseline during 0.10 Hz SSM 10-min post resistance exercise. This alteration was not present 45 min post-exercise, and dCA indices were never altered during SSM at 0.05 Hz. dCA metrics were acutely altered 10 min post resistance exercise at the 0.10 Hz frequency only, which indicate changes in the sympathetic regulation of CBF. These alterations recovered 45 min post-exercise.
Collapse
Affiliation(s)
- Oliver J. Smail
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Daniel J. Clarke
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Qais Al‐Alem
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - William Wallis
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
| | - Alan R. Barker
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
- Children's Health and Exercise Research CentreUniversity of ExeterExeterUK
| | - Jonathan D. Smirl
- Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Reach InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
- Cerebrovascular Concussion LabUniversity of CalgaryCalgaryAlbertaCanada
| | - Bert Bond
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT), Public Health and Sport SciencesUniversity of ExeterExeterUK
- Children's Health and Exercise Research CentreUniversity of ExeterExeterUK
| |
Collapse
|
3
|
Sakamoto R, Sato K, Ogoh S, Kamoda T, Neki T, Katayose M, Iwamoto E. Dynamic resistance exercise-induced pressor response does not alter hypercapnia-induced cerebral vasodilation in young adults. Eur J Appl Physiol 2023; 123:781-796. [PMID: 36454281 DOI: 10.1007/s00421-022-05096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
Excessive arterial pressure elevation induced by resistance exercise (RE) attenuates peripheral vasodilatory function, but its effect on cerebrovascular function is unknown. We aimed to evaluate the effect of different pressor responses to RE on hypercapnia-induced vasodilation of the internal carotid artery (ICA), an index of cerebrovascular function. To manipulate pressor responses to RE, 15 healthy young adults (11M/4F) performed two RE: high intensity with low repetitions (HL) and low intensity with high repetitions (LH) dynamic knee extension. ICA dilation, induced by 3 min of hypercapnia, was measured before and 10 min after RE using Doppler ultrasound. HL exercise elicited a greater pressor response than LH exercise. In relaxation phases of RE, ICA blood velocity increased in both HL and LH trials. However, ICA shear rate did not significantly increase in either trial (P = 0.06). Consequently, neither exercise altered post-exercise hypercapnia-induced ICA dilation (HL, 3.9 ± 1.9% to 5.1 ± 1.7%; LH, 4.6 ± 1.4% to 4.8 ± 1.8%; P > 0.05 for all). When viewed individually, the changes in ICA shear rate were positively correlated with changes in end-tidal partial pressure of carbon dioxide (PETCO2) (r = 0.46, P < 0.01) than with mean arterial pressure (r = 0.32, P = 0.02). These findings suggest that the effects of RE-induced pressor response on cerebrovascular function may be different from peripheral arteries. An increase in PETCO2 during the relaxation phase may play a more crucial role than elevated pressure in increasing cerebral shear during dynamic RE.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kohei Sato
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Tatsuki Kamoda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan.
| |
Collapse
|
4
|
Carr JMJR, Howe CA, Gibbons TD, Tymko MM, Steele AR, Vizcardo-Galindo GA, Tremblay JC, Ainslie PN. Cerebral endothelium-dependent function and reactivity to hypercapnia: the role of α 1-adrenoreceptors. J Appl Physiol (1985) 2022; 133:1356-1367. [PMID: 36326471 DOI: 10.1152/japplphysiol.00400.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We assessed hypercapnic cerebrovascular reactivity (CVR) and endothelium-dependent function [cerebral shear-mediated dilation (cSMD)] in the internal carotid artery (ICA) with and without systemic α1-adrenoreceptor blockade via Prazosin. We hypothesized that CVR would be reduced, whereas cSMD would remain unchanged, after Prazosin administration when compared with placebo. In 15 healthy adults (3 female, 26 ± 4 years), we conducted ICA duplex ultrasound during CVR [target +10 mmHg partial pressure of end-tidal carbon dioxide ([Formula: see text]) above baseline, 5 min] and cSMD (+9 mmHg [Formula: see text] above baseline, 30 s) using dynamic end-tidal forcing with and without α1-adrenergic blockade (Prazosin; 0.05 mg/kg) in a placebo-controlled, double-blind, and randomized design. The CVR in the ICA was not different between placebo and Prazosin (P = 0.578). During CVR, the reactivities of mean arterial pressure and cerebrovascular conductance to hypercapnia were also not different between conditions (P = 0.921 and P = 0.664, respectively). During Prazosin, cSMD was lower (1.1 ± 2.0% vs 3.8 ± 3.0%; P = 0.032); however, these data should be interpreted with caution due to the elevated baseline diameter (+1.3 ± 3.6%; condition: P = 0.0498) and lower shear rate (-14.5 ± 23.0%; condition: P < 0.001). Therefore, lower cSMD post α1-adrenoreceptor blockade might not indicate a reduction in cerebral endothelial function per se, but rather, that α1-adrenoreceptors contribute to resting cerebral vascular restraint at the level of the ICA.NEW & NOTEWORTHY We assessed steady-state hypercapnic cerebrovascular reactivity and cerebral endothelium-dependent function, with and without α1-adrenergic blockade (Prazosin), in a placebo-controlled, double-blind, and randomized study, to assess the contribution of α1-adrenergic receptors to cerebrovascular CO2 regulation. After administration of Prazosin, cerebrovascular reactivity to CO2 was not different compared with placebo despite lower blood flow, whereas cerebral endothelium-dependent function was reduced, likely due to elevated baseline internal carotid arterial diameter. These findings suggest that α1-adrenoreceptor activity does not influence cerebral blood flow regulation to CO2 and cerebral endothelial function.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew R Steele
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
5
|
Amin SB, Hansen AB, Mugele H, Simpson LL, Marume K, Moore JP, Cornwell WK, Lawley JS. High intensity exercise and passive hot water immersion cause similar post intervention changes in peripheral and cerebral shear. J Appl Physiol (1985) 2022; 133:390-402. [PMID: 35708700 DOI: 10.1152/japplphysiol.00780.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Passive hot water immersion (PHWI) provides a peripheral vasculature shear stimulus comparable to low intensity exercise within the active skeletal muscle, whereas moderate and high intensity exercise elicit substantially greater shear rates in the peripheral vasculature, likely conferring greater vascular benefits. Few studies have compared post intervention shear rates in the peripheral and cerebral vasculature following high intensity exercise and PHWI, especially considering that the post intervention recovery period represents a key window in which adaptation occurs. Therefore, we aimed to compare shear rates in the internal carotid artery (ICA), vertebral artery (VA) and common femoral artery (CFA) between high intensity exercise and PHWI for up to 80 minutes post intervention. Fifteen healthy (27 ± 4 years), moderately trained individuals underwent three-time matched interventions in a randomised order which included 30 minutes of whole-body immersion in a 42°C hot bath, 30 minutes of treadmill running and 5x4 minute high intensity intervals (HIIE). There were no differences in ICA (P= 0.4643) and VA (P=0.1940) shear rates between PHWI and exercise (both continuous and HIIE) post intervention. All three interventions elicited comparable increases in CFA shear rate post intervention (P=0.0671), however, CFA shear rate was slightly higher 40 minutes post threshold running (P=0.0464) and, slightly higher, although not statically for HIIE (P=0.0565) compared with PHWI. Our results suggest that time and core temperature matched high intensity exercise and PHWI elicit limited changes in cerebral shear and comparable increases in peripheral vasculature shear rates when measured for up to 80 minutes post intervention.
Collapse
Affiliation(s)
- Sachin B Amin
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | | | - Hendrik Mugele
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Lydia L Simpson
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Kyohei Marume
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - William K Cornwell
- Department of Medicine - Cardiology, University of Colorado Anschutz Medical Campus, Aurora CO, United States.,Clinical and Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora CO, United States
| | - Justin S Lawley
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| |
Collapse
|
6
|
Breaking through the barrier: Modelling and exploiting the physical microenvironment to enhance drug transport and efficacy. Adv Drug Deliv Rev 2022; 184:114183. [PMID: 35278523 DOI: 10.1016/j.addr.2022.114183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/03/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Pharmaceutical compounds are the main pillar in the treatment of various illnesses. To administer these drugs in the therapeutic setting, multiple routes of administration have been defined, including ingestion, inhalation, and injection. After administration, drugs need to find their way to the intended target for high effectiveness, and this penetration is greatly dependent on obstacles the drugs encounter along their path. Key hurdles include the physical barriers that are present within the body and knowledge of those is indispensable for progress in the development of drugs with increased therapeutic efficacy. In this review, we examine several important physical barriers, such as the blood-brain barrier, the gut-mucosal barrier, and the extracellular matrix barrier, and evaluate their influence on drug transport and efficacy. We explore various in vitro model systems that aid in understanding how parameters within the barrier model affect drug transfer and therapeutic effect. We conclude that physical barriers in the body restrict the quantity of drugs that can pass through, mainly as a consequence of the barrier architecture. In addition, the specific physical properties of the tissue can trigger intracellular changes, altering cell behavior in response to drugs. Though the barriers negatively influence drug distribution, physical stimulation of the surrounding environment may also be exploited as a mechanism to control drug release. This drug delivery approach is explored in this review as a potential alternative to the conventional ways of delivering therapeutics.
Collapse
|
7
|
Tallon CM, Smith KJ, Nowak-Flück D, Koziol AV, Rieger MG, Lutes LD, Green DJ, Tremblay MS, Ainslie PN, McManus AM. The influence of sex and maturation on carotid and vertebral artery hemodynamics and associations with free-living (in)activity in 6-17-year-olds. J Appl Physiol (1985) 2021; 131:1575-1583. [PMID: 34617820 DOI: 10.1152/japplphysiol.00537.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We explored the influence of sex and maturation on resting cervical artery hemodynamics (common carotid artery, CCA; internal carotid artery, ICA; and vertebral artery, VA), free-living physical activity, and sedentary behavior in children 6-17 yr of age. In addition, we investigated the relationship between physical activity, sedentary behavior, and cervical artery hemodynamics. Seventy-eight children and adolescents, girls (n = 42; mean age, 11.4 ± 2.5 yr) and boys (n = 36; mean age, 11.0 ± 2.6 yr), completed anthropometric measures, duplex ultrasound assessment of the cervical arteries, and wore an activPAL accelerometer to assess physical activity (indexed by steps/day) and sedentary behavior for 7 days. The ICA and VA diameters were similar between prepubertal and pubertal groups, as was volumetric blood flow (Q); however, the CCA diameter was significantly larger in the pubertal group (P < 0.05). Boys were found to have larger diameters in all cervical arteries than girls, as well as higher QCCA, QICA, and global cerebral blood flow (P < 0.05). The pubertal group was more sedentary (100 min/day more; P < 0.05) and took 3,500 fewer steps/day than the prepubertal group (P < 0.05). Shear rate (SR) and Q of the cervical arteries showed no relationship to physical activity or prolonged bouts of sedentary behavior; however, a significant negative relationship was apparent between total sedentary time and internal carotid artery shear rate (ICASR) after covarying for steps/day and maturation (P < 0.05). These findings provide novel insight into the potential influence sedentary behavior may have on cerebrovascular blood flow in healthy girls and boys.NEW & NOTEWORTHY Cerebral blood flow is known to change with age; however, assessing these age-related changes is complex and requires consideration of pubertal status. This, to our knowledge, is the first study to investigate the influence of sex and maturation on resting cervical artery hemodynamics and subsequently explore associations with physical activity and sedentary behavior in healthy children and adolescents. Our findings suggest that habitual sedentary behavior may influence cervical artery hemodynamics in youth, independent of physical activity, maturation, and sex.
Collapse
Affiliation(s)
- Christine M Tallon
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Kurt J Smith
- Cerebrovascular Health, Exercise, and Environmental Research Sciences Laboratory, School of Exercise Science and Physical Health Education, University of Victoria, Victoria, British Columbia, Canada
| | - Daniela Nowak-Flück
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alyssa V Koziol
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mathew G Rieger
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Lesley D Lutes
- Department of Psychology, Centre for Obesity and Well-Being Research Excellence, University of British Columbia, Kelowna, British Columbia, Canada
| | - Daniel J Green
- School of Human Science (Sport and Exercise Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Mark S Tremblay
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ali M McManus
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
8
|
Carr J, Tremblay JC, Ives SJ, Lyall GK, Baldwin MM, Birch KM, Lee KD, Papadedes DW, King TJ, Gibbons TD, Thomas KN, Hanson BE, Bock JM, Casey DP, Ruediger SL, Bailey TG, Amin SB, Hansen AB, Lawley JS, Williams JS, Cheng JL, MacDonald MJ. Commentaries on Viewpoint: Differential impact of shear rate in the cerebral and systemic circulation: implications for endothelial function. J Appl Physiol (1985) 2021; 130:1155-1160. [PMID: 33877934 DOI: 10.1152/japplphysiol.00045.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jay Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia–Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Joshua C. Tremblay
- Centre for Heart, Lung and Vascular Health, University of British Columbia–Okanagan Campus, School of Health and Exercise Sciences, Kelowna, British Columbia, Canada
| | - Stephen J. Ives
- Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York
| | - Gemma K. Lyall
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Molly M. Baldwin
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Karen M. Birch
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Kaitlyn D. Lee
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Trevor J. King
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Travis D. Gibbons
- Department of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Kate N. Thomas
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Brady E. Hanson
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joshua M. Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Darren P. Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Stefanie L. Ruediger
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre of Research on Exercise, Physical Activity and Health, The University of Queensland, Queensland, Australia
| | - Tom G. Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre of Research on Exercise, Physical Activity and Health, The University of Queensland, Queensland, Australia,School of Nursing, Midwifery and Social Work, The University of Queensland, Queensland, Australia
| | - Sachin B. Amin
- Institute for Sport Science, Division of Physiology, Innsbruck University, Innsbruck, Austria
| | - Alexander B. Hansen
- Institute for Sport Science, Division of Physiology, Innsbruck University, Innsbruck, Austria
| | - Justin S. Lawley
- Institute for Sport Science, Division of Physiology, Innsbruck University, Innsbruck, Austria
| | - Jennifer S. Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jem L. Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J. MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Carr JMJR, Caldwell HG, Ainslie PN. Cerebral blood flow, cerebrovascular reactivity and their influence on ventilatory sensitivity. Exp Physiol 2021; 106:1425-1448. [PMID: 33932955 DOI: 10.1113/ep089446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Cerebrovascular reactivity to CO2 , which is a principal factor in determining ventilatory responses to CO2 through the role reactivity plays in determining cerebral extra- and intracellular pH. What advances does it highlight? Recent animal evidence suggests central chemoreceptor vasculature may demonstrate regionally heterogeneous cerebrovascular reactivity to CO2 , potentially as a protective mechanism against excessive CO2 washout from the central chemoreceptors, thereby allowing ventilation to reflect the systemic acid-base balance needs (respiratory changes in P aC O 2 ) rather than solely the cerebral needs. Ventilation per se does not influence cerebrovascular reactivity independent of changes in P aC O 2 . ABSTRACT Alveolar ventilation and cerebral blood flow are both predominantly regulated by arterial blood gases, especially arterial P C O 2 , and so are intricately entwined. In this review, the fundamental mechanisms underlying cerebrovascular reactivity and central chemoreceptor control of breathing are covered. We discuss the interaction of cerebral blood flow and its reactivity with the control of ventilation and ventilatory responsiveness to changes in P C O 2 , as well as the lack of influence of ventilation itself on cerebrovascular reactivity. We briefly summarize the effects of arterial hypoxaemia on the relationship between ventilatory and cerebrovascular response to both P C O 2 and P O 2 . We then highlight key methodological considerations regarding the interaction of reactivity and ventilatory sensitivity, including the following: regional heterogeneity of cerebrovascular reactivity; a pharmacological approach for the reduction of cerebral blood flow; reactivity assessment techniques; the influence of mean arterial blood pressure; and sex-related differences. Finally, we discuss ventilatory and cerebrovascular control in the context of high altitude and congestive heart failure. Future research directions and pertinent questions of interest are highlighted throughout.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| |
Collapse
|
10
|
Ruediger SL, Koep JL, Keating SE, Pizzey FK, Coombes JS, Bailey TG. Effect of menopause on cerebral artery blood flow velocity and cerebrovascular reactivity: Systematic review and meta-analysis. Maturitas 2021; 148:24-32. [PMID: 34024348 DOI: 10.1016/j.maturitas.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Menopause and its associated decline in oestrogen is linked to chronic conditions like cardiovascular disease and osteoporosis, which may be difficult to disentangle from the effects of ageing. Further, post-menopausal women are at increased risk of cerebrovascular disease, linked to declines in cerebral blood flow (CBF) and cerebrovascular reactivity (CVR), yet the direct understanding of the impact of the menopause on cerebrovascular function is unclear. The aim of this systematic review and meta-analysis was to examine the literature investigating CBF and CVR in pre- compared with post-menopausal women METHODS: Five databases were searched for studies assessing CBF or CVR in pre- and post-menopausal women. Meta-analysis examined the effect of menopausal status on middle cerebral artery velocity (MCAv), and GRADE-assessed evidence certainty RESULTS: Nine studies (n=504) included cerebrovascular outcomes. Six studies (n=239) reported negligible differences in MCAv between pre- and post-menopausal women [2.11cm/s (95% CI: -8.94 to 4.73, p=0.54)], but with a "low" certainty of evidence. MCAv was lower in post-menopausal women in two studies, when MCAv was adjusted for blood pressure. CVR was lower in post- compared with pre-menopausal women in two of three studies, but high-quality evidence is lacking. Across outcomes, study methodology and reporting criteria for menopause were inconsistent CONCLUSIONS: MCAv was similar in post- compared with pre-menopausal women. Methodological differences in characterising menopause and inconsistent reporting of cerebrovascular outcomes make comparisons difficult. Comprehensive assessments of cerebrovascular function of the intra- and extracranial arteries to determine the physiological implications of menopause on CBF with healthy ageing is warranted.
Collapse
Affiliation(s)
- Stefanie L Ruediger
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jodie L Koep
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia; Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Shelley E Keating
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Faith K Pizzey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia; School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Ogoh S, Bailey DM. Differential impact of shear rate in the cerebral and systemic circulation: implications for endothelial function. J Appl Physiol (1985) 2021; 130:1152-1154. [DOI: 10.1152/japplphysiol.00735.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Saitama, Japan
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, United Kingdom
| | - Damian M. Bailey
- Neurovascular Research Laboratory, University of South Wales, Pontypridd, United Kingdom
| |
Collapse
|
12
|
Iwamoto E, Sakamoto R, Tsuchida W, Yamazaki K, Kamoda T, Neki T, Katayose M, Casey DP. Effects of menstrual cycle and menopause on internal carotid artery shear-mediated dilation in women. Am J Physiol Heart Circ Physiol 2020; 320:H679-H689. [PMID: 33306444 DOI: 10.1152/ajpheart.00810.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study aimed to elucidate the effects of change in estrogen during the menstrual cycle and menopause on shear-mediated dilation of the internal carotid artery (ICA), a potential index of cerebrovascular endothelial function. Shear-mediated dilation of the ICA and serum estradiol were measured in 11 premenopausal (Pre-M, 21 ± 1 yr), 13 perimenopausal (Peri-M, 49 ± 2 yr), and 10 postmenopausal (Post-M, 65 ± 7 yr) women. Measurements were made twice within the Pre-M group at their early follicular (EF, lower estradiol) and late follicular (LF, higher estradiol) phases. Shear-mediated dilation was induced by 3 min of hypercapnia (target PETCO2 + 10 mmHg from individual baseline) and was calculated as the percent rise in peak diameter relative to baseline diameter. ICA diameter and blood velocity were simultaneously measured by Doppler ultrasound. In Pre-M, shear-mediated dilation was higher during the LF phase than during the EF phase (P < 0.01). Comparing all groups, shear-mediated dilation was reduced across the menopausal transition (P < 0.01), and Pre-M during the LF phase showed the highest value (8.9 ± 1.4%) compared with other groups (Pre-M in EF, 6.4 ± 1.1%; Peri-M, 5.5 ± 1.3%; Post-M, 5.2 ± 1.9%, P < 0.05 for all). Shear-mediated dilation was positively correlated with serum estradiol even after adjustment of age (P < 0.01, r = 0.55, age-adjusted; P = 0.02, r = 0.35). Collectively, these data indicate that controlling the menstrual cycle phase is necessary for the cross-sectional assessments of shear-mediated dilation of the ICA in premenopausal women. Moreover, current findings suggest that a decline in cerebrovascular endothelial function may be partly related to the reduced circulating estrogen levels in peri- and postmenopausal women.NEW & NOTEWORTHY The present study evaluated the effects of the menstrual cycle and menopause stages on the shear-mediated dilation of the ICA, a potential index of cerebrovascular endothelial function, in pre-, peri-, and postmenopausal women. Shear-mediated dilation of the ICA was increased from the low- to high-estradiol phases in naturally cycling premenopausal women and was reduced with advancing menopause stages. Furthermore, lower estradiol was associated with reduced shear-mediated dilation of the ICA, independent of age.
Collapse
Affiliation(s)
- Erika Iwamoto
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Rintaro Sakamoto
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Wakako Tsuchida
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Kagawa, Japan
| | - Kotomi Yamazaki
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Tatsuki Kamoda
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
13
|
Lehmann N, Villringer A, Taubert M. Intrinsic Connectivity Changes Mediate the Beneficial Effect of Cardiovascular Exercise on Sustained Visual Attention. Cereb Cortex Commun 2020; 1:tgaa075. [PMID: 34296135 PMCID: PMC8152900 DOI: 10.1093/texcom/tgaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular exercise (CE) is an evidence-based healthy lifestyle strategy. Yet, little is known about its effects on brain and cognition in young adults. Furthermore, evidence supporting a causal path linking CE to human cognitive performance via neuroplasticity is currently lacking. To understand the brain networks that mediate the CE-cognition relationship, we conducted a longitudinal, controlled trial with healthy human participants to compare the effects of a 2-week CE intervention against a non-CE control group on cognitive performance. Concomitantly, we used structural and functional magnetic resonance imaging to investigate the neural mechanisms mediating between CE and cognition. On the behavioral level, we found that CE improved sustained attention, but not processing speed or short-term memory. Using graph theoretical measures and statistical mediation analysis, we found that a localized increase in eigenvector centrality in the left middle frontal gyrus, probably reflecting changes within an attention-related network, conveyed the effect of CE on cognition. Finally, we found CE-induced changes in white matter microstructure that correlated with intrinsic connectivity changes (intermodal correlation). These results suggest that CE is a promising intervention strategy to improve sustained attention via brain plasticity in young, healthy adults.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Sport Science, Faculty of Human Sciences, Institute III, Otto von Guericke University, Magdeburg 39104, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Mind and Brain Institute, Charité and Humboldt University, Berlin 10117, Germany
| | - Marco Taubert
- Department of Sport Science, Faculty of Human Sciences, Institute III, Otto von Guericke University, Magdeburg 39104, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
14
|
Carr JMJR, Hoiland RL, Caldwell HG, Coombs GB, Howe CA, Tremblay JC, Green DJ, Ainslie PN. Internal carotid and brachial artery shear‐dependent vasodilator function in young healthy humans. J Physiol 2020; 598:5333-5350. [DOI: 10.1113/jp280369] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jay M. J. R. Carr
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Ryan L. Hoiland
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
- Department of Anesthesiology Pharmacology and Therapeutics Vancouver General Hospital University of British Columbia Vancouver British Columbia Canada
| | - Hannah G. Caldwell
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Geoff B. Coombs
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Connor A. Howe
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Joshua C. Tremblay
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Daniel J. Green
- School of Human Sciences (Sport and Exercise Sciences) The University of Western Australia Crawley Western Australia Australia
| | - Philip N. Ainslie
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| |
Collapse
|