1
|
Characterization of Maternal Circulating MicroRNAs in Obese Pregnancies and Gestational Diabetes Mellitus. Antioxidants (Basel) 2023; 12:antiox12020515. [PMID: 36830073 PMCID: PMC9952647 DOI: 10.3390/antiox12020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Maternal obesity (MO) is expanding worldwide, contributing to the onset of Gestational Diabetes Mellitus (GDM). MO and GDM are associated with adverse maternal and foetal outcomes, with short- and long-term complications. Growing evidence suggests that MO and GDM are characterized by epigenetic alterations contributing to the pathogenesis of metabolic diseases. In this pilot study, plasma microRNAs (miRNAs) of obese pregnant women with/without GDM were profiled at delivery. Nineteen women with spontaneous singleton pregnancies delivering by elective Caesarean section were enrolled: seven normal-weight (NW), six obese without comorbidities (OB/GDM(-)), and six obese with GDM (OB/GDM(+)). miRNA profiling with miRCURY LNA PCR Panel allowed the analysis of the 179 most expressed circulating miRNAs in humans. Data acquisition and statistics (GeneGlobe and SPSS software) and Pathway Enrichment Analysis (PEA) were performed. Data analysis highlighted patterns of significantly differentially expressed miRNAs between groups: OB/GDM(-) vs. NW: n = 4 miRNAs, OB/GDM(+) vs. NW: n = 1, and OB/GDM(+) vs. OB/GDM(-): n = 14. For each comparison, PEA revealed pathways associated with oxidative stress and inflammation, as well as with nutrients and hormones metabolism. Indeed, miRNAs analysis may help to shed light on the complex epigenetic network regulating metabolic pathways in both the mother and the foeto-placental unit. Future investigations are needed to deepen the pregnancy epigenetic landscape in MO and GDM.
Collapse
|
2
|
Pebley K, Farage G, Hare ME, Bursac Z, Andres A, Chowdhury SMR, Talcott GW, Krukowski RA. Changes in self-reported and accelerometer-measured physical activity among pregnant TRICARE Beneficiaries. BMC Public Health 2022; 22:2029. [PMID: 36336697 PMCID: PMC9638321 DOI: 10.1186/s12889-022-14457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Background Physical activity is recommended for all pregnant individuals and can prevent excessive gestational weight gain. However, physical activity has not been assessed among military personnel and other TRICARE beneficiaries, who experience unique military lifestyles. The current study assessed physical activity among pregnant TRICARE beneficiaries, both active duty and non-active duty, as measured by accelerometry and self-report data to examine potential predictors of physical activity engagement in the third trimester, and if self-report data was consistent with accelerometry data. We expected having a lower BMI, being active-duty, and having higher baseline physical activity engagement to be associated with higher physical activity at 32-weeks. We also hypothesized that accelerometry data would show lower physical activity levels than the self-reported measure. Methods Participants were 430 TRICARE adult beneficiaries (204 Active Duty; 226 non-Active Duty) in San Antonio, TX who were part of a randomized controlled parent study that implemented a stepped-care behavioral intervention. Participants were recruited if they were less than 12-weeks gestation and did not have health conditions precluding dietary or physical activity changes (e.g., uncontrolled cardiovascular conditions) or would contribute to weight changes. Participants completed self-report measures and wore an Actical Activity Monitor accelerometer on their wrist to collect physical activity data at baseline and 32-weeks gestation. Results Based on the accelerometer data, 99% of participants were meeting moderate physical activity guidelines recommending 150 min of moderate activity per week at baseline, and 96% were meeting this recommendation at 32-weeks. Based on self-report data, 88% of participants at baseline and 92% at 32-weeks met moderate physical activity recommendations. Linear regression and zero-inflated negative binomial models indicated that baseline physical activity engagement predicted moderate physical activity later in pregnancy above and beyond BMI and military status. Surprisingly, self-reported data, but not accelerometer data, showed that higher baseline activity was associated with decreased vigorous activity at 32-weeks gestation. Additionally, self-report and accelerometry data had small correlations at baseline, but not at 32-weeks. Conclusions Future intervention efforts may benefit from intervening with individuals with lower pre-pregnancy activity levels, as those who are active seem to continue this habit. Trial Registration The trial is registered on clinicaltrials.gov (NCT 03057808).
Collapse
Affiliation(s)
- Kinsey Pebley
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Gregory Farage
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Marion E Hare
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zoran Bursac
- Department of Biostatistics, Florida International University, Miami, Florida, USA
| | - Aline Andres
- University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | | | - G Wayne Talcott
- Wilford Hall Ambulatory Surgical Center, San Antonio, Texas, USA.,Department of Public Health Sciences, University of Virginia, University of Virginia Cancer Center, PO Box 800765, Charlottesville, Virginia, 22903, USA
| | - Rebecca A Krukowski
- Department of Public Health Sciences, University of Virginia, University of Virginia Cancer Center, PO Box 800765, Charlottesville, Virginia, 22903, USA.
| |
Collapse
|
3
|
Allman BR, Spray BJ, Lan RS, Andres A, Børsheim E. Circulating long-chain acylcarnitine concentrations are not affected by exercise training in pregnant women with obesity. J Appl Physiol (1985) 2022; 132:470-476. [PMID: 34989648 PMCID: PMC8816616 DOI: 10.1152/japplphysiol.00712.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study was to determine the effect of exercise during pregnancy in sedentary women with obesity on longitudinal changes in long-chain acylcarnitine (LC-AC) concentrations. We hypothesized that exercise training would significantly decrease circulating LC-ACs throughout gestation compared with a nonexercise control group. Pregnant women with obesity considered otherwise healthy [n = 80, means ± SD; body mass index (BMI): 36.9 ± 5.7 kg/m2] were randomized into an exercise (n = 40, aerobic/resistance 3 times/wk, ∼13th gestation week until birth) or a nonexercise control (n = 40) group. At gestation week 12.2 ± 0.5 and 36.0 ± 0.4, a submaximal exercise test was conducted, and indirect calorimetry was used to measure relative resting energy expenditure (REE), as well as respiratory exchange ratio (RER) at rest. Fasting blood samples were collected and analyzed for LC-AC concentrations. Fitness improved with prenatal exercise training; however, exercise training did not affect circulating LC-AC. When groups were collapsed, LC-ACs decreased during gestation (combined groups, P < 0.001), whereas REE (kcal/kg/day, P = 0.008) increased. However, average REE relative to fat-free mass (FFM) (kcal/kg FFM/day) and RER did not change. There was an inverse relationship between the change in RER and all LC-ACs (except C18:2) throughout gestation (C14: r = -0.26, P = 0.04; C16: r = -0.27, P = 0.03; C18:1: r = -0.28, P = 0.02). In summary, a moderate-intensity exercise intervention during pregnancy in women with obesity did not alter LC-ACs concentrations versus control, indicating that the balance between long-chain fatty acid availability and oxidation neither improved nor worsened with an exercise intervention.NEW & NOTEWORTHY This research showed that a moderate-intensity prenatal exercise program, consisting of aerobic and resistance training, did not negatively impact normal alterations in substrate supply and demand for the mother and the offspring throughout gestation. Findings provide support for metabolic safety of exercise during pregnancy.
Collapse
Affiliation(s)
- Brittany R. Allman
- 1Arkansas Children’s Nutrition Center, Little Rock, Arkansas,2Arkansas Children’s Research Institute, Little Rock, Arkansas,3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Renny S. Lan
- 1Arkansas Children’s Nutrition Center, Little Rock, Arkansas,3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aline Andres
- 1Arkansas Children’s Nutrition Center, Little Rock, Arkansas,2Arkansas Children’s Research Institute, Little Rock, Arkansas,3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Elisabet Børsheim
- 1Arkansas Children’s Nutrition Center, Little Rock, Arkansas,2Arkansas Children’s Research Institute, Little Rock, Arkansas,3Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas,4Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
4
|
Ten Have GAM, Engelen MPKJ, Deutz NEP. In-vivo production of branched-chain amino acids, branched-chain keto acids, and β-hydroxy β-methylbutyric acid. Curr Opin Clin Nutr Metab Care 2022; 25:43-49. [PMID: 34798641 DOI: 10.1097/mco.0000000000000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The branched-chain amino acids (BCAA), branched-chain keto acids (BCKA), and β-hydroxy β-methylbutyric acid (HMB) have regained interest as food ingredients in health and disease. To support nutritional strategies, it is critical to gain insight into the whole body and transorgan kinetics of these components. We, therefore, reviewed the most recent literature in this field on in vivo analysis of BCAA, BCKA, and HMB kinetics in health and disease. RECENT FINDINGS With a new comprehensive metabolic flux analysis BCAA, BCKA, and HMB whole body production, interconversion and disposal rates can be measured simultaneously. Recent studies have provided us with a better understanding of whole-body and transorgan kinetics under postabsorptive, postprandial, hibernating, and lactating conditions. In human pathophysiological conditions like COPD, obesity, and diabetes, the added value of BCAA kinetic measurements over the commonly used concentration measurements only, is discussed. SUMMARY This article highlights the importance of implementing BCAA, BCKA, and HMB kinetic studies to further advance the field by gaining more mechanistic insights and providing direction to the development of new targeted (nutritional) strategies.
Collapse
Affiliation(s)
- Gabriella A M Ten Have
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
5
|
Rossmeislová L, Gojda J, Smolková K. Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators? Cancer Metastasis Rev 2021; 40:1115-1139. [PMID: 34962613 DOI: 10.1007/s10555-021-10016-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
Abstract
Branched-chain amino acids (BCAA) are essential amino acids utilized in anabolic and catabolic metabolism. While extensively studied in obesity and diabetes, recent evidence suggests an important role for BCAA metabolism in cancer. Elevated plasma levels of BCAA are associated with an increased risk of developing pancreatic cancer, namely pancreatic ductal adenocarcinoma (PDAC), a tumor with one of the highest 1-year mortality rates. The dreadful prognosis for PDAC patients could be attributable also to the early and frequent development of cancer cachexia, a fatal host metabolic reprogramming leading to muscle and adipose wasting. We propose that BCAA dysmetabolism is a unifying component of several pathological conditions, i.e., obesity, insulin resistance, and PDAC. These conditions are mutually dependent since PDAC ranks among cancers tightly associated with obesity and insulin resistance. It is also well-established that PDAC itself can trigger insulin resistance and new-onset diabetes. However, the exact link between BCAA metabolism, development of PDAC, and tissue wasting is still unclear. Although tissue-specific intracellular and systemic metabolism of BCAA is being intensively studied, unresolved questions related to PDAC and cancer cachexia remain, namely, whether elevated circulating BCAA contribute to PDAC etiology, what is the biological background of BCAA elevation, and what is the role of adipose tissue relative to BCAA metabolism during cancer cachexia. To cover those issues, we provide our view on BCAA metabolism at the intracellular, tissue, and whole-body level, with special emphasis on different metabolic links to BCAA intermediates and the role of insulin in substrate handling.
Collapse
Affiliation(s)
- Lenka Rossmeislová
- Department of Pathophysiology, Center for Research On Nutrition, Metabolism, and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research On Obesity, Third Faculty of Medicine, Prague, Czech Republic
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research On Obesity, Third Faculty of Medicine, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital and Third Faculty of Medicine, Prague, Czech Republic
| | - Katarína Smolková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|