1
|
Gobbi A, Antonelli A, Dellaca R, Pellegrino GM, Pellegrino R, Fredberg JJ, Solway J, Brusasco V. Effects of increasing tidal volume and end-expiratory lung volume on induced bronchoconstriction in healthy humans. Respir Res 2024; 25:298. [PMID: 39113017 PMCID: PMC11304934 DOI: 10.1186/s12931-024-02909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/07/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Increasing functional residual capacity (FRC) or tidal volume (VT) reduces airway resistance and attenuates the response to bronchoconstrictor stimuli in animals and humans. What is unknown is which one of the above mechanisms is more effective in modulating airway caliber and whether their combination yields additive or synergistic effects. To address this question, we investigated the effects of increased FRC and increased VT in attenuating the bronchoconstriction induced by inhaled methacholine (MCh) in healthy humans. METHODS Nineteen healthy volunteers were challenged with a single-dose of MCh and forced oscillation was used to measure inspiratory resistance at 5 and 19 Hz (R5 and R19), their difference (R5-19), and reactance at 5 Hz (X5) during spontaneous breathing and during imposed breathing patterns with increased FRC, or VT, or both. Importantly, in our experimental design we held the product of VT and breathing frequency (BF), i.e, minute ventilation (VE) fixed so as to better isolate the effects of changes in VT alone. RESULTS Tripling VT from baseline FRC significantly attenuated the effects of MCh on R5, R19, R5-19 and X5. Doubling VT while halving BF had insignificant effects. Increasing FRC by either one or two VT significantly attenuated the effects of MCh on R5, R19, R5-19 and X5. Increasing both VT and FRC had additive effects on R5, R19, R5-19 and X5, but the effect of increasing FRC was more consistent than increasing VT thus suggesting larger bronchodilation. When compared at iso-volume, there were no differences among breathing patterns with the exception of when VT was three times larger than during spontaneous breathing. CONCLUSIONS These data show that increasing FRC and VT can attenuate induced bronchoconstriction in healthy humans by additive effects that are mainly related to an increase of mean operational lung volume. We suggest that static stretching as with increasing FRC is more effective than tidal stretching at constant VE, possibly through a combination of effects on airway geometry and airway smooth muscle dynamics.
Collapse
Affiliation(s)
- Alessandro Gobbi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, 20133, Italy
- Restech Srl, Milano, 20124, Italy
| | - Andrea Antonelli
- Allergologia e Fisiopatologia Respiratoria, ASO S. Croce e Carle, 12100, Cuneo, Italy
| | - Raffaele Dellaca
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, 20133, Italy.
| | - Giulia M Pellegrino
- Casa di Cura del Policlinico, Dipartimento di Scienze Neuroriabilitative, Milano, Italy
| | | | - Jeffrey J Fredberg
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Vito Brusasco
- Dipartimento di Medicina Sperimentale, Università di Genova, 16132, Genova, Italy
| |
Collapse
|
2
|
Tan YH, Wang KCW, Chin IL, Sanderson RW, Li J, Kennedy BF, Noble PB, Choi YS. Stiffness Mediated-Mechanosensation of Airway Smooth Muscle Cells on Linear Stiffness Gradient Hydrogels. Adv Healthc Mater 2024; 13:e2304254. [PMID: 38593989 DOI: 10.1002/adhm.202304254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
In obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), the extracellular matrix (ECM) protein amount and composition of the airway smooth muscle (ASM) is often remodelled, likely altering tissue stiffness. The underlying mechanism of how human ASM cell (hASMC) mechanosenses the aberrant microenvironment is not well understood. Physiological stiffnesses of the ASM were measured by uniaxial compression tester using porcine ASM layers under 0, 5 and 10% longitudinal stretch above in situ length. Linear stiffness gradient hydrogels (230 kPa range) were fabricated and functionalized with ECM proteins, collagen I (ColI), fibronectin (Fn) and laminin (Ln), to recapitulate the above-measured range of stiffnesses. Overall, hASMC mechanosensation exhibited a clear correlation with the underlying hydrogel stiffness. Cell size, nuclear size and contractile marker alpha-smooth muscle actin (αSMA) expression showed a strong correlation to substrate stiffness. Mechanosensation, assessed by Lamin-A intensity and nuc/cyto YAP, exhibited stiffness-mediated behaviour only on ColI and Fn-coated hydrogels. Inhibition studies using blebbistatin or Y27632 attenuated most mechanotransduction-derived cell morphological responses, αSMA and Lamin-A expression and nuc/cyto YAP (blebbistatin only). This study highlights the interplay and complexities between stiffness and ECM protein type on hASMC mechanosensation, relevant to airway remodelling in obstructive airway diseases.
Collapse
Affiliation(s)
- Yong Hwee Tan
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Torun, 87-100, Poland
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Boucher M, Henry C, Khadangi F, Dufour-Mailhot A, Tremblay-Pitre S, Fereydoonzad L, Brunet D, Robichaud A, Bossé Y. Effects of airway smooth muscle contraction and inflammation on lung tissue compliance. Am J Physiol Lung Cell Mol Physiol 2021; 322:L294-L304. [PMID: 34936511 DOI: 10.1152/ajplung.00384.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are renewed interests in using the parameter K of Salazar-Knowles' equation to assess lung tissue compliance. K either decreases or increases when the lung's parenchyma stiffens or loosens, respectively. However, whether K is affected by other common features of respiratory diseases, such as inflammation and airway smooth muscle (ASM) contraction, is unknown. Herein, male C57BL/6 mice were treated intranasally with either saline or lipopolysaccharide (LPS) at 1 mg/Kg to induce pulmonary inflammation. They were then subjected to either a multiple or a single-dose challenge with methacholine to activate ASM to different degrees. A quasi-static pressure-driven partial pressure-volume maneuver was performed before and after methacholine. The Salazar-Knowles' equation was then fitted to the deflation limb of the P-V loop to obtain K, as well as the parameter A, an estimate of lung volume (inspiratory capacity). The fitted curve was also used to derive the quasi-static elastance (Est) at 5 cmH2O. The results demonstrate that LPS and both methacholine challenges increased Est. LPS also decreased A, but did not affect K. In contradistinction, methacholine decreased both A and K in the multiple-dose challenge, while it decreased K but not A in the single-dose challenge. These results suggest that LPS increases Est by reducing the open lung volume (A) and without affecting tissue compliance (K), while methacholine increases Est by decreasing tissue compliance with or without affecting lung volume. We conclude that lung tissue compliance, assessed using the parameter K of Salazar-Knowles' equation, is insensitive to inflammation but sensitive to ASM contraction.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Canada
| | - Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Canada
| | - Sophie Tremblay-Pitre
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Canada
| | | | - David Brunet
- SCIREQ - Scientific Respiratory Equipment Inc., Montreal, Canada
| | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Canada
| |
Collapse
|
4
|
Abstract
This article will discuss in detail the pathophysiology of asthma from the point of view of lung mechanics. In particular, we will explain how asthma is more than just airflow limitation resulting from airway narrowing but in fact involves multiple consequences of airway narrowing, including ventilation heterogeneity, airway closure, and airway hyperresponsiveness. In addition, the relationship between the airway and surrounding lung parenchyma is thought to be critically important in asthma, especially as related to the response to deep inspiration. Furthermore, dynamic changes in lung mechanics over time may yield important information about asthma stability, as well as potentially provide a window into future disease control. All of these features of mechanical properties of the lung in asthma will be explained by providing evidence from multiple investigative methods, including not only traditional pulmonary function testing but also more sophisticated techniques such as forced oscillation, multiple breath nitrogen washout, and different imaging modalities. Throughout the article, we will link the lung mechanical features of asthma to clinical manifestations of asthma symptoms, severity, and control. © 2020 American Physiological Society. Compr Physiol 10:975-1007, 2020.
Collapse
Affiliation(s)
- David A Kaminsky
- University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Wang KCW, Chang AY, Pillow JJ, Suki B, Noble PB. Transition From Phasic to Tonic Contractility in Airway Smooth Muscle After Birth: An Experimental and Computational Modeling Study. ACTA ACUST UNITED AC 2019; 2. [PMID: 31001605 DOI: 10.1115/1.4042312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fetal airway smooth muscle (ASM) exhibits phasic contractile behavior, which transitions to a more sustained "tonic" contraction after birth. The timing and underlying mechanisms of ASM transition from a phasic to a tonic contractile phenotype are yet to be established. We characterized phasic ASM contraction in preterm (128 day gestation), term (~150 day gestation), 1-4 month, 1 yr, and adult sheep (5yr). Spontaneous phasic activity was measured in bronchial segments as amplitude, frequency, and intensity. The mechanism of phasic ASM contraction was investigated further with a computational model of ASM force development and lumen narrowing. The computational model comprised a two-dimensional cylindrical geometry of a network of contractile units and the activation of neighboring cells was dependent on the strength of coupling between cells. As expected, phasic contractions were most prominent in fetal airways and decreased with advancing age, to a level similar to the level in the 1-4 month lambs. Computational predictions demonstrated phasic contraction through the generation of a wave of activation events, the magnitude of which is determined by the number of active cells and the strength of cell-cell interactions. Decreases in phasic contraction with advancing age were simulated by reducing cell-cell coupling. Results show that phasic activity is suppressed rapidly after birth, then sustained at a lower intensity from the preweaning phase until adulthood in an ovine developmental model. Cell-cell coupling is proposed as a key determinant of phasic ASM contraction and if reduced could explain the observed maturational changes.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Amy Y Chang
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - J Jane Pillow
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
6
|
Lutchen KR, Paré PD, Seow CY. Hyperresponsiveness: Relating the Intact Airway to the Whole Lung. Physiology (Bethesda) 2018; 32:322-331. [PMID: 28615315 DOI: 10.1152/physiol.00008.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
We relate changes of the airway wall to the response of the intact airway and the whole lung. We address how mechanical conditions and specific structural changes for an airway contribute to hyperresponsiveness resistant to deep inspiration. This review conveys that the origins of hyperresponsiveness do not devolve into an abnormality at single structural level but require examination of the complex interplay of all the parts.
Collapse
Affiliation(s)
- Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Peter D Paré
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Chun Y Seow
- Centre for Heart Lung Innovation-St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Cairncross A, Noble PB, McFawn PK. Hyperinflation of bronchi in vitro impairs bronchodilation to simulated breathing and increases sensitivity to contractile activation. Respirology 2018; 23:750-755. [DOI: 10.1111/resp.13271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Alvenia Cairncross
- School of Human Sciences; The University of Western Australia; Perth WA Australia
| | - Peter B. Noble
- School of Human Sciences; The University of Western Australia; Perth WA Australia
- Centre for Neonatal Research and Education; School of Paediatrics and Child Health; Perth WA Australia
| | - Peter K. McFawn
- School of Human Sciences; The University of Western Australia; Perth WA Australia
| |
Collapse
|
8
|
Rampadarath AK, Donovan GM. A Distribution-Moment Approximation for Coupled Dynamics of the Airway Wall and Airway Smooth Muscle. Biophys J 2018; 114:493-501. [PMID: 29401446 PMCID: PMC5984954 DOI: 10.1016/j.bpj.2017.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/05/2017] [Accepted: 11/15/2017] [Indexed: 01/27/2023] Open
Abstract
Asthma is fundamentally a disease of airway constriction. Due to a variety of experimental challenges, the dynamics of airways are poorly understood. Of specific interest is the narrowing of the airway due to forces produced by the airway smooth muscle wrapped around each airway. The interaction between the muscle and the airway wall is crucial for the airway constriction that occurs during an asthma attack. Although cross-bridge theory is a well-studied representation of complex smooth muscle dynamics, and these dynamics can be coupled to the airway wall, this comes at significant computational cost-even for isolated airways. Because many phenomena of interest in pulmonary physiology cannot be adequately understood by studying isolated airways, this presents a significant limitation. We present a distribution-moment approximation of this coupled system and study the validity of the approximation throughout the physiological range. We show that the distribution-moment approximation is valid in most conditions, and we explore the region of breakdown. These results show that in many situations, the distribution-moment approximation is a viable option that provides an orders-of-magnitude reduction in computational complexity; not only is this valuable for isolated airway studies, but it moreover offers the prospect that rich ASM dynamics might be incorporated into interacting airway models where previously this was precluded by computational cost.
Collapse
Affiliation(s)
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Adams DC, Hariri LP, Miller AJ, Wang Y, Cho JL, Villiger M, Holz JA, Szabari MV, Hamilos DL, Scott Harris R, Griffith JW, Bouma BE, Luster AD, Medoff BD, Suter MJ. Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo. Sci Transl Med 2017; 8:359ra131. [PMID: 27708064 DOI: 10.1126/scitranslmed.aag1424] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/19/2016] [Indexed: 12/30/2022]
Abstract
The inability to visualize airway smooth muscle (ASM) cells in vivo is a major obstacle in understanding their role in normal physiology and diseases. At present, there is no imaging modality available to assess ASM in vivo. Confocal endomicroscopy lacks the penetration depth and field of view, and conventional optical coherence tomography (OCT) does not have sufficient contrast to differentiate ASM from surrounding tissues. We have developed a birefringence microscopy platform that leverages the micro-organization of tissue to add further dimension to traditional OCT. We have used this technology to validate ASM measurements in ex vivo swine and canine studies, visualize and characterize volumetric representations of ASM in vivo, and quantify and predict ASM contractile force as a function of optical retardation. We provide in vivo images and volumetric assessments of ASM in living humans and document structural disease variations in subjects with mild asthma. The opportunity to link inflammatory responses to ASM responses and to link ASM responses to clinical responses and outcomes could lead to an increased understanding of diseases of the airway and, ultimately, to improved patient outcomes.
Collapse
Affiliation(s)
- David C Adams
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lida P Hariri
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alyssa J Miller
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yan Wang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Josalyn L Cho
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jasmin A Holz
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Margit V Szabari
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel L Hamilos
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - R Scott Harris
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jason W Griffith
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Brett E Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Melissa J Suter
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Le Guen M, Grassin-Delyle S, Naline E, Buenestado A, Brollo M, Longchampt E, Kleinmann P, Devillier P, Faisy C. The impact of low-frequency, low-force cyclic stretching of human bronchi on airway responsiveness. Respir Res 2016; 17:151. [PMID: 27842540 PMCID: PMC5109770 DOI: 10.1186/s12931-016-0464-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In vivo, the airways are constantly subjected to oscillatory strain (due to tidal breathing during spontaneous respiration) and (in the event of mechanical ventilation) positive pressure. This exposure is especially problematic for the cartilage-free bronchial tree. The effects of cyclic stretching (other than high-force stretching) have not been extensively characterized. Hence, the objective of the present study was to investigate the functional and transcriptional response of human bronchi to repetitive mechanical stress caused by low-frequency, low-force cyclic stretching. METHODS After preparation and equilibration in an organ bath, human bronchial rings from 66 thoracic surgery patients were stretched in 1-min cycles of elongation and relaxation over a 60-min period. For each segment, the maximal tension corresponded to 80% of the reference contraction (the response to 3 mM acetylcholine). The impact of cyclic stretching (relative to non-stretched controls) was examined by performing functional assessments (epithelium removal and incubation with sodium channel agonists/antagonists or inhibitors of intracellular pathways), biochemical assays of the organ bath fluid (for detecting the release of pro-inflammatory cytokines), and RT-PCR assays of RNA isolated from tissue samples. RESULTS The application of low-force cyclic stretching to human bronchial rings for 60 min resulted in an immediate, significant increase in bronchial basal tone, relative to non-cyclic stretching (4.24 ± 0.16 g vs. 3.28 ± 0.12 g, respectively; p < 0.001). This cyclic stimulus also increased the affinity for acetylcholine (-log EC50: 5.67 ± 0.07 vs. 5.32 ± 0.07, respectively; p p < 0.001). Removal of airway epithelium and pretreatment with the Rho-kinase inhibitor Y27632 and inward-rectifier K+ or L-type Ca2+ channel inhibitors significantly modified the basal tone response. Exposure to L-NAME had opposing effects in all cases. Pro-inflammatory pathways were not involved in the response; cyclic stretching up-regulated the early mRNA expression of MMP9 only, and was not associated with changes in organ bath levels of pro-inflammatory mediators. CONCLUSION Low-frequency, low-force cyclic stretching of whole human bronchi induced a myogenic response rather than activation of the pro-inflammatory signaling pathways mediated by mechanotransduction.
Collapse
Affiliation(s)
- Morgan Le Guen
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France. .,Department of Anesthesiology, Hôpital Foch, Université Versailles - Saint-Quentin, Suresnes, France.
| | - Stanislas Grassin-Delyle
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Amparo Buenestado
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Marion Brollo
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | | | - Philippe Kleinmann
- Department of Thoracic Surgery, Centre Médico-Chirurgical du Val d'Or, Saint-Cloud, France
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Christophe Faisy
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| |
Collapse
|
11
|
Donovan GM. Systems-level airway models of bronchoconstriction. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:459-67. [PMID: 27348217 DOI: 10.1002/wsbm.1349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/23/2016] [Accepted: 05/18/2016] [Indexed: 01/26/2023]
Abstract
Understanding lung and airway behavior presents a number of challenges, both experimental and theoretical, but the potential rewards are great in terms of both potential treatments for disease and interesting biophysical phenomena. This presents an opportunity for modeling to contribute to greater understanding, and here, we focus on modeling efforts that work toward understanding the behavior of airways in vivo, with an emphasis on asthma. We look particularly at those models that address not just isolated airways but many of the important ways in which airways are coupled both with each other and with other structures. This includes both interesting phenomena involving the airways and the layer of airway smooth muscle that surrounds them, and also the emergence of spatial ventilation patterns via dynamic airway interaction. WIREs Syst Biol Med 2016, 8:459-467. doi: 10.1002/wsbm.1349 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Dowie J, Ansell TK, Noble PB, Donovan GM. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips. Respir Physiol Neurobiol 2015; 220:25-32. [PMID: 26376002 DOI: 10.1016/j.resp.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/27/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022]
Abstract
Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway.
Collapse
Affiliation(s)
- Jackson Dowie
- Department of Mathematics, University of Auckland, New Zealand
| | - Thomas K Ansell
- School of Veterinary and Life Sciences, Murdoch University, Australia; School of Anatomy, Physiology and Human Biology, The University of Western Australia, Australia
| | - Peter B Noble
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Australia; Centre for Neonatal Research and Education, The University of Western Australia, Australia
| | | |
Collapse
|
13
|
Bossé Y. The presumptive physiological significance of length adaptation was heretofore compelling . . . at least for a human mind. J Appl Physiol (1985) 2015; 118:507-8. [DOI: 10.1152/japplphysiol.01054.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|