1
|
Zero AM, Paris MT, Rice CL. Differential effects of stimulation frequency on isometric and concentric isotonic contractile function in human quadriceps. J Appl Physiol (1985) 2024; 137:111-124. [PMID: 38841755 DOI: 10.1152/japplphysiol.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Electrically evoked contractions are used to assess the relationship between frequency input and contractile output to characterize inherent muscle function, and these have been done mostly with isometric contractions (i.e., no joint rotation). The purpose was to compare the electrically stimulated frequency and contractile function relationship during isometric (i.e., torque) with isotonic (i.e., concentric torque, angular velocity, and mechanical power) contractions. The knee extensors of 16 (5 female) young recreationally active participants were stimulated (∼1-2.5 s) at 14 frequencies from 1 to 100 Hz. This was done during four conditions, which were isometric and isotonic at loads of 0 (unloaded), 7.5%, and 15% isometric maximal voluntary contraction (MVC), and repeated on separate days. Comparisons across contractile parameters were made as a % of 100 Hz. Independent of the load, the mechanical power-frequency relationship was rightward shifted compared with isometric torque-frequency, concentric torque-frequency, and velocity-frequency relationships (all P ≤ 0.04). With increasing load (0%-15% MVC), the isotonic concentric torque-frequency relationship was shifted leftward systematically from 15 to 30 Hz (all P ≤ 0.04). Conversely, the same changes in load caused a rightward shift in the velocity-frequency relationship from 1 to 40 Hz (all P ≤ 0.03). Velocity was leftward shifted of concentric torque in the unloaded isotonic condition from 10 to 25 Hz (all P ≤ 0.03), but concentric torque was leftward shifted of velocity at 15% MVC isotonic condition from 10 to 50 Hz (all P ≤ 0.03). Therefore, isometric torque is not a surrogate to evaluate dynamic contractile function. Interpretations of evoked contractile function differ depending on contraction type, load, and frequency, which should be considered relative to the specific task.NEW & NOTEWORTHY In whole human muscle, we showed that the electrically stimulated power-frequency relationship was rightward shifted of the stimulated isometric torque-frequency relationship independent of isotonic load, indicating that higher stimulation frequencies are needed to achieve tetanus. Therefore, interpretations of evoked contractile function differ depending on contraction type (isometric vs. dynamic), load, and frequency. And thus, isometric measures may not be appropriate as a surrogate assessment when evaluating dynamic isotonic contractile function.
Collapse
Affiliation(s)
- Alexander M Zero
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Michael T Paris
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Faculty of Health, School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| | - Charles L Rice
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Aksöz EA, Luder MA, Laubacher M, Riener R, Binder-Macleod SA, Hunt KJ. Stochastically modulated inter-pulse intervals to increase the efficiency of functional electrical stimulation cycling. J Rehabil Assist Technol Eng 2018; 5:2055668318767364. [PMID: 31191935 PMCID: PMC6453100 DOI: 10.1177/2055668318767364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/07/2018] [Indexed: 11/30/2022] Open
Abstract
Introduction Functional electrical stimulation cycling has various health benefits, but
the mechanical power output and efficiency are very low compared to
volitional muscle activation. Stimulation with variable frequency showed
significantly higher power output values in experiments with a knee
dynamometer. The aim of the present work was to compare stochastic
modulation of inter-pulse interval to constant inter-pulse interval
stimulation during functional electrical stimulation cycling. Methods Seventeen able-bodied subjects participated (n = 17).
Quadriceps and hamstring muscle groups were stimulated with two activation
patterns: P1-constant frequency, P2-stochastic inter-pulse interval. Power
output was measured on functional electrical stimulation ergometer. Results Overall, mean power output with the stochastically modulated pattern P2 was
lower than with P1 (12.57 ± 3.74 W vs. 11.44 ± 3.81 W, P1 vs. P2,
p = 0.022), but no significant differences during the
first 30 s and the last 30 s were observed. Conclusions This study showed that stimulation strategies that use randomized modulation
of inter-pulse intervals can negatively affect power output generation
during functional electrical stimulation cycling. To minimise voluntary
contractions, power measurement and assessment should be focused on the
periods where only the quadriceps are stimulated.
Collapse
Affiliation(s)
- E A Aksöz
- Department of Engineering and Information Technology, Division of Mechanical Engineering, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland.,Department of Health Sciences and Technology, Sensory Motor Systems Lab, ETH Zürich, Zürich, Switzerland
| | - M A Luder
- Department of Engineering and Information Technology, Division of Mechanical Engineering, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland
| | - M Laubacher
- Department of Engineering and Information Technology, Division of Mechanical Engineering, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland.,Department of Health Sciences and Technology, Sensory Motor Systems Lab, ETH Zürich, Zürich, Switzerland
| | - R Riener
- Department of Health Sciences and Technology, Sensory Motor Systems Lab, ETH Zürich, Zürich, Switzerland
| | | | - K J Hunt
- Department of Engineering and Information Technology, Division of Mechanical Engineering, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland
| |
Collapse
|
3
|
Sharma N, Kirsch NA, Alibeji NA, Dixon WE. A Non-Linear Control Method to Compensate for Muscle Fatigue during Neuromuscular Electrical Stimulation. Front Robot AI 2017. [DOI: 10.3389/frobt.2017.00068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Laubacher M, Aksöz AE, Riener R, Binder-Macleod S, Hunt KJ. Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task. Eur J Appl Physiol 2017; 117:1787-1798. [PMID: 28674921 PMCID: PMC5556133 DOI: 10.1007/s00421-017-3675-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/28/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE The low power output and fatigue resistance during functional electrical stimulation (FES) limits its use for functional applications. The aim of this study was to compare the power output and fatigue properties of spatially distributed sequential stimulation (SDSS) against conventional single electrode stimulation (SES) in an isokinetic knee extension task simulating knee movement during recumbent cycling. METHODS M. vastus lateralis and m. vastus medialis of eight able-bodied subjects were stimulated for 6 min on both legs with both setups. In the SES setup, target muscles were each stimulated by a pair of electrodes. In SDSS, four small electrodes replaced the SES active electrodes, but reference electrodes were the same. Torque was measured during knee extension movement by a dynamometer at an angular velocity of 110°/s. Mean power (P mean) was calculated from stimulated extensions for the first 10 extensions, the final 20 extensions and overall. Fatigue is presented as an index, calculated as the decrease with respect to initial power. RESULTS P mean was significantly higher for SDSS than for SES in the final phase (9.9 ± 4.0 vs. 7.4 ± 4.3 W, p = 0.035) and overall (11.5 ± 4.0 vs. 9.2 ± 4.5 W, p = 0.037). With SDSS, the reduction in P mean was significantly smaller compared to SES (from 14.9 to 9.9 vs. 14.6 to 7.4 W, p = 0.024). The absolute mean pulse width was substantially lower with SDSS (62.5 vs. 90.0 µs). CONCLUSION Although less stimulation was applied, SDSS showed a significantly higher mean power output than SES. SDSS also had improved fatigue resistance when compared to conventional stimulation. The SDSS approach may provide substantial performance benefits for cyclical FES applications.
Collapse
Affiliation(s)
- Marco Laubacher
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland.
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Anil Efe Aksöz
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Kenneth J Hunt
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
| |
Collapse
|
5
|
Aksöz EA, Laubacher M, Binder-Macleod S, Hunt KJ. Effect of Stochastic Modulation of Inter-Pulse Interval During Stimulated Isokinetic Leg Extension. Eur J Transl Myol 2016; 26:6160. [PMID: 27990242 PMCID: PMC5128975 DOI: 10.4081/ejtm.2016.6160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recumbent cycling exercise achieved by functional electrical stimulation (FES) of the paralyzed leg muscles is effective for cardiopulmonary and musculoskeletal conditioning after spinal cord injury, but its full potential has not yet been realized. Mechanical power output and efficiency is very low and endurance is limited due to early onset of muscle fatigue. The aim of this work was to compare stochastic modulation of the inter-pulse interval (IPI) to constant-frequency stimulation during an isokinetic leg extension task similar to FES-cycling. Seven able-bodied subjects participated: both quadriceps muscles were stimulated (n = 14) with two activation patterns (P1-constant frequency, P2-stochastic IPI). There was significantly higher power output with P2 during the first 30 s (p = 0.0092), the last 30 s (p = 0.018) and overall (p = 0.0057), but there was no overall effect on fatiguability when stimulation frequency was randomly modulated.
Collapse
Affiliation(s)
- Efe Anil Aksöz
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland; Sensory Motor Systems Lab, ETH Zurich, Zürich, Switzerland
| | - Marco Laubacher
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland; Sensory Motor Systems Lab, ETH Zurich, Zürich, Switzerland
| | | | - Kenneth J Hunt
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences , Burgdorf, Switzerland
| |
Collapse
|
6
|
Laubacher M, Aksöz EA, Binder-Macleod S, Hunt KJ. Comparison of Proximally Versus Distally Placed Spatially Distributed Sequential Stimulation Electrodes in a Dynamic Knee Extension Task. Eur J Transl Myol 2016; 26:6016. [PMID: 27478563 PMCID: PMC4942706 DOI: 10.4081/ejtm.2016.6016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Spatially distributed sequential stimulation (SDSS) has demonstrated substantial power output and fatigue benefits compared to single electrode stimulation (SES) in the application of functional electrical stimulation (FES). This asymmetric electrode setup brings new possibilities but also new questions since precise placement of the electrodes is one critical factor for good muscle activation. The aim of this study was to compare the power output, fatigue and activation properties of proximally versus distally placed SDSS electrodes in an isokinetic knee extension task simulating knee movement during recumbent cycling. M. vastus lateralis and medialis of seven able-bodied subjects were stimulated with rectangular bi-phasic pulses of constant amplitude of 40 mA and at an SDSS frequency of 35 Hz for 6 min on both legs with both setups (i.e. n=14). Torque was measured during knee-extension movement by a dynamometer at an angular velocity of 110 deg/s. Mean power, peak power and activation time were calculated and compared for the initial and final stimulation phases, together with an overall fatigue index. Power output values (Pmean, Ppeak) were scaled to a standardised reference input pulse width of 100 μs (Pmean,s, Ppeak,s). The initial evaluation phase showed no significant differences between the two setups for all outcome measures. Ppeak and Ppeak,s were both significantly higher in the final phase for the distal setup (25.4 ± 8.1 W vs. 28.2 ± 6.2 W, p=0.0062 and 34.8 ± 9.5 W vs. 38.9 ± 6.7 W, p=0.021, respectively). With distal SDSS, there was modest evidence of higher Pmean and Pmean,s (p=0.071, p=0.14, respectively) but of longer activation time (p=0.096). The rate of fatigue was similar for both setups. For practical FES applications, distal placement of the SDSS electrodes is preferable.
Collapse
Affiliation(s)
- Marco Laubacher
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland; Sensory Motor Systems Lab, ETH Zurich, Zürich, Switzerland
| | - Efe A Aksöz
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Burgdorf, Switzerland; Sensory Motor Systems Lab, ETH Zurich, Zürich, Switzerland
| | - Stuart Binder-Macleod
- Department of Physical Therapy, University of Delaware , Newark, United States of America
| | - Kenneth J Hunt
- Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences , Burgdorf, Switzerland
| |
Collapse
|
7
|
Koutsou AD, Moreno JC, del Ama AJ, Rocon E, Pons JL. Advances in selective activation of muscles for non-invasive motor neuroprostheses. J Neuroeng Rehabil 2016; 13:56. [PMID: 27296478 PMCID: PMC4907085 DOI: 10.1186/s12984-016-0165-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/07/2016] [Indexed: 11/10/2022] Open
Abstract
Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments.
Collapse
Affiliation(s)
- Aikaterini D. Koutsou
- />Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Juan C. Moreno
- />Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | | | - Eduardo Rocon
- />Neural and Cognitive Engineering group, Centro de Automática y Robótica, CAR, Spanish National Research Council, CSIC-UPM, Madrid, Spain
| | - José L. Pons
- />Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council, Madrid, Spain
| |
Collapse
|
8
|
Wang Q, Sharma N, Johnson M, Gregory CM, Dixon WE. Adaptive Inverse optimal neuromuscular electrical stimulation. IEEE TRANSACTIONS ON CYBERNETICS 2013; 43:1710-1718. [PMID: 23757569 DOI: 10.1109/tsmcb.2012.2228259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neuromuscular electrical stimulation (NMES) is a prescribed treatment for various neuromuscular disorders, where an electrical stimulus is provided to elicit a muscle contraction. Barriers to the development of NMES controllers exist because the muscle response to an electrical stimulation is nonlinear and the muscle model is uncertain. Efforts in this paper focus on the development of an adaptive inverse optimal NMES controller. The controller yields desired limb trajectory tracking while simultaneously minimizing a cost functional that is positive in the error states and stimulation input. The development of this framework allows tradeoffs to be made between tracking performance and control effort by putting different penalties on error states and control input, depending on the clinical goal or functional task. The controller is examined through a Lyapunov-based analysis. Experiments on able-bodied individuals are provided to demonstrate the performance of the developed controller.
Collapse
|
9
|
Marion MS, Wexler AS, Hull ML. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration. J Neuroeng Rehabil 2013; 10:13. [PMID: 23374142 PMCID: PMC3626903 DOI: 10.1186/1743-0003-10-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/23/2013] [Indexed: 11/10/2022] Open
Abstract
Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions.
Collapse
Affiliation(s)
- M Susan Marion
- Biomedical Engineering Program, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
10
|
Doucet BM, Griffin L. Variable stimulation patterns in younger and older thenar muscle. J Electromyogr Kinesiol 2012; 22:215-22. [PMID: 22226372 DOI: 10.1016/j.jelekin.2011.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) is typically used with older adults receiving rehabilitation therapies, but little is known about the stimulation patterns that maximize force output and minimize fatigue in this population. The purpose of this study was to apply variable patterns of stimulation to the thenar muscles of the hand in younger and older adults to determine if force production and neuromuscular fatigue effects were similar. Three submaximal stimulation patterns were administered: A 20Hz constant frequency pattern, a pattern that increased from 20 to 40Hz, and a pattern that incorporated two closely spaced (5ms) doublet pulses. The doublet stimulation produced significantly higher average forces and force-time integrals (FTIs) than the constant frequency and increasing frequency patterns in both age groups. Additionally, older adults showed less fatigue than the younger group during isometric contractions performed after the fatiguing stimulation patterns. These results suggest that variable pulse NMES patterns enhance force production in the hand in both younger and older individuals better than constant frequency patterns, which are typically used in clinical applications. Also, greater fatigue resistance to electrical stimulation protocols may exist in the older population; this is critical information for the design and application of NMES rehabilitation regimens used with older adults.
Collapse
Affiliation(s)
- Barbara M Doucet
- Department of Rehabilitation Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | | |
Collapse
|
11
|
Marion MS, Wexler AS, Hull ML. Predicting fatigue during electrically stimulated non-isometric contractions. Muscle Nerve 2010; 41:857-67. [PMID: 20229581 DOI: 10.1002/mus.21603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mathematical prediction of power loss during electrically stimulated contractions is of value to those trying to minimize fatigue and to those trying to decipher the relative contributions of force and velocity. Our objectives were to: (1) develop a model of non-isometric fatigue for electrical stimulation-induced, open-chain, repeated extensions of the leg at the knee; and (2) experimentally validate the model. A computer-controlled stimulator sent electrical pulses to surface electrodes on the thighs of 17 able-bodied subjects. Isometric and non-isometric non-fatiguing and fatiguing leg extension torque and/or angle at the knee were measured. Two existing mathematical models, one of non-isometric force and the other of isometric fatigue, were combined to develop the non-isometric force-fatigue model. Angular velocity and 3 new parameters were added to the isometric fatigue model. The new parameters are functions of parameters within the force model, and therefore additional measurements from the subject are not needed. More than 60% of the variability in the measurements was explained by the new force-fatigue model. This model can help scientists investigate the etiology of non-isometric fatigue and help engineers to improve the task performance of functional electrical stimulation systems.
Collapse
Affiliation(s)
- M Susan Marion
- Biomedical Engineering Program, Bainer Hall, University of California, One Shields Avenue, Davis, California 95616, USA.
| | | | | |
Collapse
|
12
|
Repetetive hindlimb movement using intermittent adaptive neuromuscular electrical stimulation in an incomplete spinal cord injury rodent model. Exp Neurol 2010; 223:623-33. [PMID: 20206164 DOI: 10.1016/j.expneurol.2010.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/19/2010] [Accepted: 02/20/2010] [Indexed: 01/10/2023]
Abstract
The long-term objective of this work is to understand the mechanisms by which electrical stimulation based movement therapies may harness neural plasticity to accelerate and enhance sensorimotor recovery after incomplete spinal cord injury (iSCI). An adaptive neuromuscular electrical stimulation (aNMES) paradigm was implemented in adult Long Evans rats with thoracic contusion injury (T8 vertebral level, 155+/-2 Kdyne). In lengthy sessions with lightly anesthetized animals, hip flexor and extensor muscles were stimulated using an aNMES control system in order to generate desired hip movements. The aNMES control system, which used a pattern generator/pattern shaper structure, adjusted pulse amplitude to modulate muscle force in order to control hip movement. An intermittent stimulation paradigm was used (5-cycles/set; 20-second rest between sets; 100 sets). In each cycle, hip rotation caused the foot plantar surface to contact a stationary brush for appropriately timed cutaneous input. Sessions were repeated over several days while the animals recovered from injury. Results indicated that aNMES automatically and reliably tracked the desired hip trajectory with low error and maintained range of motion with only gradual increase in stimulation during the long sessions. Intermittent aNMES thus accounted for the numerous factors that can influence the response to NMES: electrode stability, excitability of spinal neural circuitry, non-linear muscle recruitment, fatigue, spinal reflexes due to cutaneous input, and the endogenous recovery of the animals. This novel aNMES application in the iSCI rodent model can thus be used in chronic stimulation studies to investigate the mechanisms of neuroplasticity targeted by NMES-based repetitive movement therapy.
Collapse
|
13
|
Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther 2010; 90:55-66. [PMID: 19926681 PMCID: PMC2802826 DOI: 10.2522/ptj.20090140] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Foot drop is a common gait impairment after stroke. Functional electrical stimulation (FES) of the ankle dorsiflexor muscles during the swing phase of gait can help correct foot drop. Compared with constant-frequency trains (CFTs), which typically are used during FES, novel stimulation patterns called variable-frequency trains (VFTs) have been shown to enhance isometric and nonisometric muscle performance. However, VFTs have never been used for FES during gait. OBJECTIVE The purpose of this study was to compare knee and ankle kinematics during the swing phase of gait when FES was delivered to the ankle dorsiflexor muscles using VFTs versus CFTs. DESIGN A repeated-measures design was used in this study. PARTICIPANTS Thirteen individuals with hemiparesis following stroke (9 men, 4 women; age=46-72 years) participated in the study. METHODS Participants completed 20- to 40-second bouts of walking at their self-selected walking speeds. Three walking conditions were compared: walking without FES, walking with dorsiflexor muscle FES using CFTs, and walking with dorsiflexor FES using VFTs. RESULTS Functional electrical stimulation using both CFTs and VFTs improved ankle dorsiflexion angles during the swing phase of gait compared with walking without FES (X+/-SE=-2.9 degrees +/- 1.2 degrees). Greater ankle dorsiflexion in the swing phase was generated during walking with FES using VFTs (X+/-SE=2.1 degrees +/- 1.5 degrees) versus CFTs (X+/-SE=0.3+/-1.3 degrees). Surprisingly, dorsiflexor FES resulted in reduced knee flexion during the swing phase and reduced ankle plantar flexion at toe-off. CONCLUSIONS The findings suggest that novel FES systems capable of delivering VFTs during gait can produce enhanced correction of foot drop compared with traditional FES systems that deliver CFTs. The results also suggest that the timing of delivery of FES during gait is critical and merits further investigation.
Collapse
|
14
|
Jung R, Belanger A, Kanchiku T, Fairchild M, Abbas JJ. Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion. J Neural Eng 2009; 6:055010. [PMID: 19721184 DOI: 10.1088/1741-2560/6/5/055010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mechanisms underlying the effects of neuromuscular electrical stimulation (NMES) induced repetitive limb movement therapy after incomplete spinal cord injury (iSCI) are unknown. This study establishes the capability of using therapeutic NMES in rodents with iSCI and evaluates its ability to promote recovery of interlimb control during locomotion. Ten adult female Long Evans rats received thoracic spinal contusion injuries (T9; 156 +/- 9.52 Kdyne). 7 days post-recovery, 6/10 animals received NMES therapy for 15 min/day for 5 days, via electrodes implanted bilaterally into hip flexors and extensors. Six intact animals served as controls. Motor function was evaluated using the BBB locomotor scale for the first 6 days and on 14th day post-injury. 3D kinematic analysis of treadmill walking was performed on day 14 post-injury. Rodents receiving NMES therapy exhibited improved interlimb coordination in control of the hip joint, which was the specific NMES target. Symmetry indices improved significantly in the therapy group. Additionally, injured rodents receiving therapy more consistently displayed a high percentage of 1:1 coordinated steps, and more consistently achieved proper hindlimb touchdown timing. These results suggest that NMES techniques could provide an effective therapeutic tool for neuromotor treatment following iSCI.
Collapse
Affiliation(s)
- R Jung
- Center for Adaptive Neural Systems, Arizona State University, Tempe, 85287-4404, USA.
| | | | | | | | | |
Collapse
|
15
|
Gregory CM, Bickel CS, Sharma N, Dixon WE. Comparing the force- and excursion- frequency relationships in human skeletal muscle. Muscle Nerve 2008; 38:1627-9. [DOI: 10.1002/mus.21161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Doucet BM, Griffin L. Maximal versus submaximal intensity stimulation with variable patterns. Muscle Nerve 2008; 37:770-7. [DOI: 10.1002/mus.20992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|