1
|
The physical exercise-induced oxidative/inflammatory response in peripheral blood mononuclear cells: Signaling cellular energetic stress situations. Life Sci 2023; 321:121440. [PMID: 36921686 DOI: 10.1016/j.lfs.2023.121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 03/14/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a variety of specialized immune cells produced in the bone marrow from hematopoietic stem cells (HSCs) that work together to protect our bodies from harmful pathogens. From a metabolic point of view, these cells can serve as sentinel tissue source for distinguishing multiple types of whole-body physiological perturbations. The significant interaction of PBMCs with systemic physiology makes these cells an attractive target for several interventions such as physical exercise. Analyses of oxidative/inflammatory and metabolic markers of PBMCs obtained from unhealthy and healthy humans have been used in monitoring immune response in different exercise conditions. It is already a common consensus that regular practice of physical exercise, that is planned, structured, and repetitive, influences personal health by altering the metabolic state and the immune system. However, the role of distinct metabolic processes responsible for maintaining metabolic balance during physical exercise in PBMCs is not fully understood. Furthermore, a complete dose-response analysis between different exercise protocols and biomarkers capable of predicting physical performance needs to be better elucidated. The absence of published reviews on this topic compromises the understanding of the crosstalk between the metabolic adaptations of PBMCs and exercise-induced changes in the immune system. Given the above, this review highlights the main findings in the literature involving the responses of PBMCs in the inflammatory/oxidative stress induced by physical exercise. The present review also highlights how distinct phenotypes and functional diversity of PBMCs make these cells an accessible alternative for assessing exercise-induced metabolic adaptations.
Collapse
|
2
|
Cui J, Tang W, Wang W, Yi L, Teng F, Xu F, Li M, Ma M, Dong J. Acteoside alleviates asthma by modulating ROS-responsive NF-κB/MAPK signaling pathway. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
3
|
Exercise Cuts Both Ways with ROS in Remodifying Innate and Adaptive Responses: Rewiring the Redox Mechanism of the Immune System during Exercise. Antioxidants (Basel) 2021; 10:antiox10111846. [PMID: 34829717 PMCID: PMC8615250 DOI: 10.3390/antiox10111846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nearly all cellular functions depend on redox reactions, including those of immune cells. However, how redox reactions are rearranged to induce an immune response to the entry of pathogens into the host is a complex process. Understanding this scenario will facilitate identification of the roles of specific types of reactive oxygen species (ROS) in the immune system. Although the detrimental effect of ROS could support the innate immune system, the adaptive immune system also requires a low level of ROS in order to stimulate various molecular functions. The requirements and functions of ROS vary in different cells, including immune cells. Thus, it is difficult to understand the specific ROS types and their targeting functions. Incomplete transfer of electrons to a specific target, along with failure of the antioxidant response, could result in oxidative-damage-related diseases, and oxidative damage is a common phenomenon in most immune disorders. Exercise is a noninvasive means of regulating ROS levels and antioxidant responses. Several studies have shown that exercise alone boosts immune functions independent of redox reactions. Here, we summarize how ROS target various signaling pathways of the immune system and its functions, along with the possible role of exercise in interfering with immune system signaling.
Collapse
|
4
|
Yang L, Wang Z, Zou C, Mi Y, Tang H, Wu X. Ubiquitin-specific protease 49 attenuates IL-1β-induced rat primary chondrocyte apoptosis by facilitating Axin deubiquitination and subsequent Wnt/β-catenin signaling cascade inhibition. Mol Cell Biochem 2020; 474:263-275. [PMID: 32737772 DOI: 10.1007/s11010-020-03850-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is an age-related chronic joint degenerative disease. Interleukin 1 beta (IL-1β) is considered a marker for the progression of OA. In this study, we found that Ubiquitin-Specific Peptidase 49 (USP49) was significantly less expressed in OA patients compared with healthy individuals. Treating primary rat chondrocytes with different concentrations of IL-1β resulted in decreased Usp49 expression, while Usp49 overexpression could attenuate IL-1β-induced chondrocyte apoptosis by promoting Axin deubiquitination. The deubiquitination of Axin led to the accumulation of the protein, which in turn resulted in β-catenin degradation and Wnt/β-catenin signaling cascade inhibition. Interestingly, we also found that [6]-gingerol, an anti-OA drug, could upregulate the protein level of Usp49 and suppress the Wnt/β-catenin signaling cascade in primary rat chondrocytes. Taken together, our study not only demonstrates that Usp49 can negatively regulate the progression of OA by inhibiting the Wnt/β-catenin signaling cascade, but also elucidates the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lanbo Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhanchao Wang
- Knee Injury Center, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopaedic Hospital), Luoyang, 471000, Henan, China
| | - Chunyu Zou
- Knee Injury Center, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopaedic Hospital), Luoyang, 471000, Henan, China
| | - Yufei Mi
- Knee Injury Center, Luoyang Orthopedic Hospital of Henan Province (Henan Provincial Orthopaedic Hospital), Luoyang, 471000, Henan, China
| | - Hengtao Tang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Identification of Urinary Biomarkers for Exercise-Induced Immunosuppression by iTRAQ Proteomics. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3030793. [PMID: 32047808 PMCID: PMC7003279 DOI: 10.1155/2020/3030793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Purpose To identify noninvasive immune biomarkers of exercise-induced immunosuppression using the iTRAQ proteomics technique. Methods Fifteen healthy males were recruited and subjected to a four-week incremental treadmill running training program. After each week of training, WBC counts and CD4+ and CD8+ lymphocytes were measured to monitor the immune function status. iTRAQ proteomics technology was used to identify differential proteins and their characteristics in urine. Results Our data showed that the WBC counts, CD4+ lymphocytes, and CD4+/CD8+ ratio decreased by more than 10% after four weeks of training, suggesting exercise-induced immunosuppression. A total of 1854 proteins were identified in urine during the incremental running using the iTRAQ technology. Compared with the urine before training, there were 89, 52, 77, and 148 proteins significantly upregulated and 66, 27, 68, and 114 proteins significantly downregulated after each week, respectively. Among them, four upregulated proteins, SEMG-1, PIP, PDGFRL, and NDPK, increased their abundance with the increased exercise intensity. Bioinformatics analysis indicates that these proteins are involved in stress response and immune function. Conclusion Four weeks of incremental treadmill running induced immunosuppression in healthy males. By using iTRAQ proteomics, four proteins in the urine, SEMG-1, PIP, PDGFRL, and NDPK, were found to increase incrementally with the increased exercise intensity, which have the potential to be used as noninvasive immune biomarkers of exercise-induced immunosuppression.
Collapse
|
6
|
Von Ah Morano AE, Dorneles GP, Peres A, Lira FS. The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. J Cell Physiol 2019; 235:3169-3188. [PMID: 31565806 DOI: 10.1002/jcp.29228] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Immune cells are bioenergetically expensive during activation, which requires tightly regulated control of metabolic pathways. Both low and high glycemic conditions can modulate immune function. States of undernourishment depress the immune system, and in the same way, excessive intake of nutrients, such as an obesity state, compromise its functioning. Multicellular organisms depend on two mechanisms to survive: the regulation and ability to store energy to prevent starvation and the ability to fight against infection. Synergic interactions between metabolism and immunity affect many systems underpinning human health. In a chronic way, the breakdown of glycemic homeostasis in the body can influence cells of the immune system and consequently contribute to the onset of diseases such as type II diabetes, obesity, Alzheimer's, and fat and lean mass loss. On the contrary, exercise, recognized as a primary strategy to control hyperglycemic disorders, also induces a coordinated immune-neuro-endocrine response that acutely modulates cardiovascular, respiratory, and muscle functions and the immune response to exercise is widely dependent on the intensity and volume that may affect an immunodepressive state. These altered immune responses induced by exercise are modulated through the "stress hormones" adrenaline and cortisol, which are a threat to leukocyte metabolism. In this context, carbohydrates appear to have a positive acute response as a strategy to prevent depression of the immune system by maintaining plasma glucose concentrations to meet the energy demand from all systems involved during strenuous exercises. Therefore, herein, we discuss the mechanisms through which exercise may promotes changes on glycemic homeostasis in the metabolism and how it affects immune cell functions under higher or lower glucose conditions.
Collapse
Affiliation(s)
- Ana E Von Ah Morano
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Gilson P Dorneles
- Department of Basic Health Sciences, Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Department of Basic Health Sciences, Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| |
Collapse
|
7
|
Henriques I, Lopes-Pacheco M, Padilha GA, Marques PS, Magalhães RF, Antunes MA, Morales MM, Rocha NN, Silva PL, Xisto DG, Rocco PRM. Moderate Aerobic Training Improves Cardiorespiratory Parameters in Elastase-Induced Emphysema. Front Physiol 2016; 7:329. [PMID: 27536247 PMCID: PMC4971418 DOI: 10.3389/fphys.2016.00329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Aim: We investigated the therapeutic effects of aerobic training on lung mechanics, inflammation, morphometry and biological markers associated with inflammation, and endothelial cell damage, as well as cardiac function in a model of elastase-induced emphysema. Methods: Eighty-four BALB/c mice were randomly allocated to receive saline (control, C) or 0.1 IU porcine pancreatic elastase (emphysema, ELA) intratracheally once weekly for 4 weeks. After the end of administration period, once cardiorespiratory impairment associated with emphysema was confirmed, each group was further randomized into sedentary (S) and trained (T) subgroups. Trained mice ran on a motorized treadmill, at moderate intensity, 30 min/day, 3 times/week for 4 weeks. Results: Four weeks after the first instillation, ELA animals, compared to C, showed: (1) reduced static lung elastance (Est,L) and levels of vascular endothelial growth factor (VEGF) in lung tissue, (2) increased elastic and collagen fiber content, dynamic elastance (E, in vitro), alveolar hyperinflation, and levels of interleukin-1β and tumor necrosis factor (TNF)-α, and (3) increased right ventricular diastolic area (RVA). Four weeks after aerobic training, ELA-T group, compared to ELA-S, was associated with reduced lung hyperinflation, elastic and collagen fiber content, TNF-α levels, and RVA, as well as increased Est,L, E, and levels of VEGF. Conclusion: Four weeks of regular and moderate intensity aerobic training modulated lung inflammation and remodeling, thus improving pulmonary function, and reduced RVA and pulmonary arterial hypertension in this animal model of elastase-induced emphysema.
Collapse
Affiliation(s)
- Isabela Henriques
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Gisele A Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Patrícia S Marques
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Raquel F Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Department of Physiology, Fluminense Federal UniversityNiterói, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Débora G Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Webb R, Thompson JES, Ruffino JS, Davies NA, Watkeys L, Hooper S, Jones PM, Walters G, Clayton D, Thomas AW, Morris K, Llewellyn DH, Ward M, Wyatt-Williams J, McDonnell BJ. Evaluation of cardiovascular risk-lowering health benefits accruing from laboratory-based, community-based and exercise-referral exercise programmes. BMJ Open Sport Exerc Med 2016; 2:e000089. [PMID: 27900165 PMCID: PMC5117059 DOI: 10.1136/bmjsem-2015-000089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 11/28/2022] Open
Abstract
Background To evaluate the ability of community-based exercise programmes to facilitate public participation in exercise and hence improved cardiovascular health, we assessed the respective impacts of: a continuously monitored exercise programme based within our university (study 1); a Valleys Regional Park-facilitated community-based outdoor exercise programme (study 2); a Wales National Exercise Referral Scheme-delivered exercise-referral programme (study 3). Methods Biomolecular (monocytic PPARγ target gene expression), vascular haemodynamic (central/peripheral blood pressure, arterial stiffness), clinical (insulin sensitivity, blood lipids) and anthropometric (body mass index, waist circumference, heart rate) parameters were investigated using RT-PCR, applanation tonometry, chemical analysis and standard anthropometric techniques. Results In studies 1–3, 22/28, 32/65 and 11/14 participants adhered to their respective exercise programmes, and underwent significant increases in physical activity levels. Importantly, beneficial effects similar to those seen in our previous studies (eg, modulations in expression of monocytic PPARγ target genes, decreases in blood pressure/arterial stiffness, improvements in blood lipids/insulin sensitivity) were observed (albeit to slightly differing extents) only in participants who adhered to their respective exercise programmes. While study 1 achieved more intense exercise and more pronounced beneficial effects, significant cardiovascular risk-lowering health benefits related to biomolecular markers, blood pressure, arterial stiffness and blood lipids were achieved via community/referral-based delivery modes in studies 2 and 3. Conclusions Because cardiovascular health benefits were observed in all 3 studies, we conclude that the majority of benefits previously reported in laboratory-based studies can also be achieved in community-based/exercise-referral settings. These findings may be of use in guiding policymakers with regard to introduction and/or continued implementation of community/referral-based exercise programmes.
Collapse
Affiliation(s)
- R Webb
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - J E S Thompson
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - J-S Ruffino
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - N A Davies
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - L Watkeys
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - S Hooper
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - P M Jones
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - G Walters
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - D Clayton
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - A W Thomas
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - K Morris
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - D H Llewellyn
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| | - M Ward
- Blaengad Ltd , Wales , UK
| | - J Wyatt-Williams
- Department of Public Health Wales , Hayden Ellis Building , Cardiff , UK
| | - B J McDonnell
- Department of Biomedical Sciences , Cardiff Metropolitan University , Cardiff , UK
| |
Collapse
|
9
|
Tuttle JA, Castle PC, Metcalfe AJ, Midgley AW, Taylor L, Lewis MP. Downhill running and exercise in hot environments increase leukocyte Hsp72 (HSPA1A) and Hsp90α (HSPC1) gene transcripts. J Appl Physiol (1985) 2015; 118:996-1005. [PMID: 25722377 DOI: 10.1152/japplphysiol.00387.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 02/18/2015] [Indexed: 12/15/2022] Open
Abstract
Stressors within humans and other species activate Hsp72 and Hsp90α mRNA transcription, although it is unclear which environmental temperature or treadmill gradient induces the largest increase. To determine the optimal stressor for priming the Hsp system, physically active but not heat-acclimated participants (19.8 ± 1.9 and 20.9 ± 3.6 yr) exercised at lactate threshold in either temperate (20°C, 50% relative humidity; RH) or hot (30°C, 50% RH) environmental conditions. Within each condition, participants completed a flat running (temperate flat or hot flat) and a downhill running (temperate downhill or hot downhill) experimental trial in a randomized counterbalanced order separated by at least 7 days. Venous blood samples were taken immediately before (basal), immediately after exercise, and 3 and 24 h postexercise. RNA was extracted from leukocytes and RT-quantitative PCR conducted to determine Hsp72 and Hsp90α mRNA relative expression. Leukocyte Hsp72 mRNA was increased immediately after exercise following downhill running (1.9 ± 0.9-fold) compared with flat running (1.3 ± 0.4-fold; P = 0.001) and in hot (1.9 ± 0.6-fold) compared with temperate conditions (1.1 ± 0.5-fold; P = 0.003). Leukocyte Hsp90α mRNA increased immediately after exercise following downhill running (1.4 ± 0.8-fold) compared with flat running (0.9 ± 0.6-fold; P = 0.002) and in hot (1.6 ± 1.0-fold) compared with temperate conditions (0.9 ± 0.6-fold; P = 0.003). Downhill running and exercise in hot conditions induced the largest stimuli for leukocyte Hsp72 and Hsp90α mRNA increases.
Collapse
Affiliation(s)
- James A Tuttle
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom;
| | - Paul C Castle
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom
| | - Alan J Metcalfe
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom; School of Exercise and Health Sciences, Edith Cowan University, Perth, Australia
| | - Adrian W Midgley
- Department of Sport and Physical Activity, Edgehill University, Ormskirk, United Kingdom; and
| | - Lee Taylor
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
10
|
Davies NA, Watkeys L, Butcher L, Potter S, Hughes MG, Moir H, Morris K, Thomas AW, Webb R. The contributions of oxidative stress, oxidised lipoproteins and AMPK towards exercise-associated PPARγ signalling within human monocytic cells. Free Radic Res 2014; 49:45-56. [DOI: 10.3109/10715762.2014.978311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Kudaeva OT, Kolesnikova OP, Sukhenko TG, Kozlov VA. Effect of Regular Physical Training on Hemopoiesis in Experimental Animals. Bull Exp Biol Med 2012; 153:217-21. [DOI: 10.1007/s10517-012-1680-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Song P, Zou MH. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic Biol Med 2012; 52:1607-19. [PMID: 22357101 PMCID: PMC3341493 DOI: 10.1016/j.freeradbiomed.2012.01.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of ROS/RNS have been demonstrated in cardiovascular diseases owing to increased production or decreased scavenging, which have been considered common pathways for the initiation and progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and cytokines via different signaling cascades control the expression and activity of these enzymes and of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is regulated in cardiovascular systems remain poorly characterized. Investigations by us and others suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems. In this review, we summarize our current understanding of how AMPK functions as a physiological repressor of NAD(P)H oxidase.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- To whom correspondence should be addressed: Ming-Hui Zou, M.D., Ph.D., Department of Medicine, University of Oklahoma Health Science Center, 941 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA, Phone: 405-271-3974, Fax: 405-271-3973,
| |
Collapse
|
13
|
Thomas AW, Davies NA, Moir H, Watkeys L, Ruffino JS, Isa SA, Butcher LR, Hughes MG, Morris K, Webb R. Exercise-associated generation of PPARγ ligands activates PPARγ signaling events and upregulates genes related to lipid metabolism. J Appl Physiol (1985) 2012; 112:806-15. [DOI: 10.1152/japplphysiol.00864.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to test the hypotheses that exercise is associated with generation of peroxisome proliferator-activated receptor-γ (PPARγ) ligands in the plasma and that this may activate PPARγ signaling within circulating monocytes, thus providing a mechanism to underpin the exercise-induced antiatherogenic benefits observed in previous studies. A cohort of healthy individuals undertook an 8-wk exercise-training program; samples were obtained before (Pre) and after (Post) standardized submaximal exercise bouts (45 min of cycling at 70% of maximal O2 uptake, determined at baseline) at weeks 0, 4, and 8. Addition of plasma samples to PPARγ response element (PPRE)-luciferase reporter gene assays showed increased PPARγ activity following standardized exercise bouts (Post/Pre = 1.23 ± 0.10 at week 0, P < 0.05), suggesting that PPARγ ligands were generated during exercise. However, increases in PPARγ/PPRE-luciferase activity in response to the same standardized exercise bout were blunted during the training program (Post/Pre = 1.18 ± 0.14 and 1.10 ± 0.10 at weeks 4 and 8, respectively, P > 0.05 for both), suggesting that the relative intensity of the exercise may affect PPARγ ligand generation. In untrained individuals, specific transient increases in monocyte expression of PPARγ-regulated genes were observed within 1.5–3 h of exercise (1.7 ± 0.4, 2.6 ± 0.4, and 1.4 ± 0.1 fold for CD36, liver X receptor-α, and ATP-binding cassette subfamily A member 1, respectively, P < 0.05), with expression returning to basal levels within 24 h. In contrast, by the end of the exercise program, expression at the protein level of PPARγ target genes had undergone sustained increases that were not associated with an individual exercise bout (e.g., week 8 Pre/ week 0 Pre = 2.79 ± 0.61 for CD36, P < 0.05). Exercise is known to upregulate PPARγ-controlled genes to induce beneficial effects in skeletal muscle (e.g., mitochondrial biogenesis and aerobic respiration). We suggest that parallel exercise-induced benefits may occur in monocytes, as monocyte PPARγ activation has been linked to beneficial antidiabetic effects (e.g., exercise-induced upregulation of monocytic PPARγ-controlled genes is associated with reverse cholesterol transport and anti-inflammatory effects). Thus, exercise-triggered monocyte PPARγ activation may constitute an additional rationale for prescribing exercise to type 2 diabetes patients.
Collapse
Affiliation(s)
| | | | - H. Moir
- Cardiff School of Health Sciences and
| | | | | | - S. A. Isa
- Cardiff School of Health Sciences and
| | | | - M. G. Hughes
- Cardiff School of Sport, University of Wales Institute Cardiff, Cardiff, United Kingdom
| | - K. Morris
- Cardiff School of Health Sciences and
| | - R. Webb
- Cardiff School of Health Sciences and
| |
Collapse
|
14
|
Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 2010; 285:37503-12. [PMID: 20861022 DOI: 10.1074/jbc.m110.136796] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|