1
|
Burrowes KS, Seal M, Noorababaee L, Pontré B, Dubowitz D, Sá RC, Prisk GK. Vaping causes an acute BMI-dependent change in pulmonary blood flow. Physiol Rep 2024; 12:e70094. [PMID: 39424421 PMCID: PMC11489000 DOI: 10.14814/phy2.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Vaping use has skyrocketed especially among young adults, however there is no consensus on how vaping impacts the lungs. We aimed to determine whether there were changes in lung function acutely after a standard vaping session or if there were differences in lung function metrics between a healthy never-vaping cohort (N = 6; 27.3 ± 3.0 years) and a young asymptomatic vaping cohort (N = 14; 26.4 ± 8.0 years) indicating chronic changes. Pulmonary function measurements and impulse oscillometry were obtained on all participants. Oxygen-enhanced and Arterial Spin Labelling MRI were used to measure specific ventilation and perfusion, respectively, before and after vaping, and in the control cohort at baseline. MRI metrics did not show any significant differences in specific ventilation or perfusion after vaping. Heart rate increased post-vaping (68.1 ± 10.5 to 71.3 ± 8.7, p = 0.020); however, this and other metrics did not show a nicotine dose-dependent effect. There was a significant negative correlation between BMI and change in mean perfusion post-vaping (p = 0.003); those with normal/low BMI showing an increase in perfusion and vice versa for high BMI. This may be due to subjects lying supine during vaping inhalation. Pulmonary function metrics indicative of airways resistance showed significant differences between the vaping and control cohorts indicating early airway changes.
Collapse
Affiliation(s)
- K. S. Burrowes
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - M. Seal
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - L. Noorababaee
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - B. Pontré
- Department of Anatomy and ImagingUniversity of AucklandAucklandNew Zealand
| | | | - R. C. Sá
- Department of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - G. K. Prisk
- Department of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| |
Collapse
|
2
|
Kizhakke Puliyakote AS, Tedjasaputra V, Petersen GM, Sá RC, Hopkins SR. Assessing the pulmonary vascular responsiveness to oxygen with proton MRI. J Appl Physiol (1985) 2024; 136:853-863. [PMID: 38385182 PMCID: PMC11343071 DOI: 10.1152/japplphysiol.00747.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Ventilation-perfusion matching occurs passively and is also actively regulated through hypoxic pulmonary vasoconstriction (HPV). The extent of HPV activity in humans, particularly normal subjects, is uncertain. Current evaluation of HPV assesses changes in ventilation-perfusion relationships/pulmonary vascular resistance with hypoxia and is invasive, or unsuitable for patients because of safety concerns. We used a noninvasive imaging-based approach to quantify the pulmonary vascular response to oxygen as a metric of HPV by measuring perfusion changes between breathing 21% and 30%O2 using arterial spin labeling (ASL) MRI. We hypothesized that the differences between 21% and 30%O2 images reflecting HPV release would be 1) significantly greater than the differences without [Formula: see text] changes (e.g., 21-21% and 30-30%O2) and 2) negatively associated with ventilation-perfusion mismatch. Perfusion was quantified in the right lung in normoxia (baseline), after 15 min of 30% O2 breathing (hyperoxia) and 15 min normoxic recovery (recovery) in healthy subjects (7 M, 7 F; age = 41.4 ± 19.6 yr). Normalized, smoothed, and registered pairs of perfusion images were subtracted and the mean square difference (MSD) was calculated. Separately, regional alveolar ventilation and perfusion were quantified from specific ventilation, proton density, and ASL imaging; the spatial variance of ventilation-perfusion (σ2V̇a/Q̇) distributions was calculated. The O2-responsive MSD was reproducible (R2 = 0.94, P < 0.0001) and greater (0.16 ± 0.06, P < 0.0001) than that from subtracted images collected under the same [Formula: see text] (baseline = 0.09 ± 0.04, hyperoxia = 0.08 ± 0.04, recovery = 0.08 ± 0.03), which were not different from one another (P = 0.2). The O2-responsive MSD was correlated with σ2V̇a/Q̇ (R2 = 0.47, P = 0.007). These data suggest that active HPV optimizes ventilation-perfusion matching in normal subjects. This noninvasive approach could be applied to patients with different disease phenotypes to assess HPV and ventilation-perfusion mismatch.NEW & NOTEWORTHY We developed a new proton MRI method to noninvasively quantify the pulmonary vascular response to oxygen. Using a hyperoxic stimulus to release HPV, we quantified the resulting redistribution of perfusion. The differences between normoxic and hyperoxic images were greater than those between images without [Formula: see text] changes and negatively correlated with ventilation-perfusion mismatch. This suggests that active HPV optimizes ventilation-perfusion matching in normal subjects. This approach is suitable for assessing patients with different disease phenotypes.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Radiology, University of California, San Diego, La Jolla, California, United States
| | - Vincent Tedjasaputra
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Gregory M Petersen
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
| | - Rui Carlos Sá
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Susan R Hopkins
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Radiology, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
3
|
Bayat S, Wild J, Winkler T. Lung functional imaging. Breathe (Sheff) 2023; 19:220272. [PMID: 38020338 PMCID: PMC10644108 DOI: 10.1183/20734735.0272-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary functional imaging modalities such as computed tomography, magnetic resonance imaging and nuclear imaging can quantitatively assess regional lung functional parameters and their distributions. These include ventilation, perfusion, gas exchange at the microvascular level and biomechanical properties, among other variables. This review describes the rationale, strengths and limitations of the various imaging modalities employed for lung functional imaging. It also aims to explain some of the most commonly measured parameters of regional lung function. A brief review of evidence on the role and utility of lung functional imaging in early diagnosis, accurate lung functional characterisation, disease phenotyping and advancing the understanding of disease mechanisms in major respiratory disorders is provided.
Collapse
Affiliation(s)
- Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, STROBE Laboratory, INSERM UA07, Grenoble, France
| | - Jim Wild
- POLARIS, Imaging Group, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Escalona J, Soto D, Oviedo V, Rivas E, Severino N, Kattan E, Andresen M, Bravo S, Basoalto R, Bachmann MC, Wong KY, Pavez N, Bruhn A, Bugedo G, Retamal J. Beta-Lactam Antibiotics Can Be Measured in the Exhaled Breath Condensate in Mechanically Ventilated Patients: A Pilot Study. J Pers Med 2023; 13:1146. [PMID: 37511759 PMCID: PMC10381781 DOI: 10.3390/jpm13071146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Different techniques have been proposed to measure antibiotic levels within the lung parenchyma; however, their use is limited because they are invasive and associated with adverse effects. We explore whether beta-lactam antibiotics could be measured in exhaled breath condensate collected from heat and moisture exchange filters (HMEFs) and correlated with the concentration of antibiotics measured from bronchoalveolar lavage (BAL). We designed an observational study in patients undergoing mechanical ventilation, which required a BAL to confirm or discard the diagnosis of pneumonia. We measured and correlated the concentration of beta-lactam antibiotics in plasma, epithelial lining fluid (ELF), and exhaled breath condensate collected from HMEFs. We studied 12 patients, and we detected the presence of antibiotics in plasma, ELF, and HMEFs from every patient studied. The concentrations of antibiotics were very heterogeneous over the population studied. The mean antibiotic concentration was 293.5 (715) ng/mL in plasma, 12.3 (31) ng/mL in ELF, and 0.5 (0.9) ng/mL in HMEF. We found no significant correlation between the concentration of antibiotics in plasma and ELF (R2 = 0.02, p = 0.64), between plasma and HMEF (R2 = 0.02, p = 0.63), or between ELF and HMEF (R2 = 0.02, p = 0.66). We conclude that beta-lactam antibiotics can be detected and measured from the exhaled breath condensate accumulated in the HMEF from mechanically ventilated patients. However, no correlations were observed between the antibiotic concentrations in HMEF with either plasma or ELF.
Collapse
Affiliation(s)
- José Escalona
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Unidad de Paciente Crítico, Hospital El Salvador, Santiago 8331150, Chile
| | - Dagoberto Soto
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Vanessa Oviedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Elizabeth Rivas
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nicolás Severino
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Programa de Farmacología y Toxicología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Max Andresen
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Sebastián Bravo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Roque Basoalto
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Programa de Medicina Física y Rehabilitación, Red Salud UC-CHRISTUS, Santiago 8331150, Chile
| | - María Consuelo Bachmann
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Nicolás Pavez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción 4030000, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Guillermo Bugedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
5
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
6
|
Winkler T, Kohli P, Kelly VJ, Kehl EG, Witkin AS, Rodriguez-Lopez JM, Hibbert KA, Kone MT, Systrom DM, Waxman AB, Venegas JG, Channick RN, Harris RS. Perfusion imaging heterogeneity during NO inhalation distinguishes pulmonary arterial hypertension (PAH) from healthy subjects and has potential as an imaging biomarker. Respir Res 2022; 23:325. [PMID: 36457013 PMCID: PMC9714016 DOI: 10.1186/s12931-022-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Without aggressive treatment, pulmonary arterial hypertension (PAH) has a 5-year mortality of approximately 40%. A patient's response to vasodilators at diagnosis impacts the therapeutic options and prognosis. We hypothesized that analyzing perfusion images acquired before and during vasodilation could identify characteristic differences between PAH and control subjects. METHODS We studied 5 controls and 4 subjects with PAH using HRCT and 13NN PET imaging of pulmonary perfusion and ventilation. The total spatial heterogeneity of perfusion (CV2Qtotal) and its components in the vertical (CV2Qvgrad) and cranio-caudal (CV2Qzgrad) directions, and the residual heterogeneity (CV2Qr), were assessed at baseline and while breathing oxygen and nitric oxide (O2 + iNO). The length scale spectrum of CV2Qr was determined from 10 to 110 mm, and the response of regional perfusion to O2 + iNO was calculated as the mean of absolute differences. Vertical gradients in perfusion (Qvgrad) were derived from perfusion images, and ventilation-perfusion distributions from images of 13NN washout kinetics. RESULTS O2 + iNO significantly enhanced perfusion distribution differences between PAH and controls, allowing differentiation of PAH subjects from controls. During O2 + iNO, CV2Qvgrad was significantly higher in controls than in PAH (0.08 (0.055-0.10) vs. 6.7 × 10-3 (2 × 10-4-0.02), p < 0.001) with a considerable gap between groups. Qvgrad and CV2Qtotal showed smaller differences: - 7.3 vs. - 2.5, p = 0.002, and 0.12 vs. 0.06, p = 0.01. CV2Qvgrad had the largest effect size among the primary parameters during O2 + iNO. CV2Qr, and its length scale spectrum were similar in PAH and controls. Ventilation-perfusion distributions showed a trend towards a difference between PAH and controls at baseline, but it was not statistically significant. CONCLUSIONS Perfusion imaging during O2 + iNO showed a significant difference in the heterogeneity associated with the vertical gradient in perfusion, distinguishing in this small cohort study PAH subjects from controls.
Collapse
Affiliation(s)
- Tilo Winkler
- grid.38142.3c000000041936754XDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
| | - Puja Kohli
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Vanessa J. Kelly
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Ekaterina G. Kehl
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Alison S. Witkin
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Josanna M. Rodriguez-Lopez
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Kathryn A. Hibbert
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Mamary T. Kone
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - David M. Systrom
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Aaron B. Waxman
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Jose G. Venegas
- grid.38142.3c000000041936754XDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
| | - Richard N. Channick
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - R. Scott Harris
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
7
|
Bayfield KJ, Douglas TA, Rosenow T, Davies JC, Elborn SJ, Mall M, Paproki A, Ratjen F, Sly PD, Smyth AR, Stick S, Wainwright CE, Robinson PD. Time to get serious about the detection and monitoring of early lung disease in cystic fibrosis. Thorax 2021; 76:1255-1265. [PMID: 33927017 DOI: 10.1136/thoraxjnl-2020-216085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Structural and functional defects within the lungs of children with cystic fibrosis (CF) are detectable soon after birth and progress throughout preschool years often without overt clinical signs or symptoms. By school age, most children have structural changes such as bronchiectasis or gas trapping/hypoperfusion and lung function abnormalities that persist into later life. Despite improved survival, gains in forced expiratory volume in one second (FEV1) achieved across successive birth cohorts during childhood have plateaued, and rates of FEV1 decline in adolescence and adulthood have not slowed. This suggests that interventions aimed at preventing lung disease should be targeted to mild disease and commence in early life. Spirometry-based classifications of 'normal' (FEV1≥90% predicted) and 'mild lung disease' (FEV1 70%-89% predicted) are inappropriate, given the failure of spirometry to detect significant structural or functional abnormalities shown by more sensitive imaging and lung function techniques. The state and readiness of two imaging (CT and MRI) and two functional (multiple breath washout and oscillometry) tools for the detection and monitoring of early lung disease in children and adults with CF are discussed in this article.Prospective research programmes and technological advances in these techniques mean that well-designed interventional trials in early lung disease, particularly in young children and infants, are possible. Age appropriate, randomised controlled trials are critical to determine the safety, efficacy and best use of new therapies in young children. Regulatory bodies continue to approve medications in young children based on safety data alone and extrapolation of efficacy results from older age groups. Harnessing the complementary information from structural and functional tools, with measures of inflammation and infection, will significantly advance our understanding of early CF lung disease pathophysiology and responses to therapy. Defining clinical utility for these novel techniques will require effective collaboration across multiple disciplines to address important remaining research questions. Future impact on existing management burden for patients with CF and their family must be considered, assessed and minimised.To address the possible role of these techniques in early lung disease, a meeting of international leaders and experts in the field was convened in August 2019 at the Australiasian Cystic Fibrosis Conference. The meeting entitiled 'Shaping imaging and functional testing for early disease detection of lung disease in Cystic Fibrosis', was attended by representatives across the range of disciplines involved in modern CF care. This document summarises the proceedings, key priorities and important research questions highlighted.
Collapse
Affiliation(s)
- Katie J Bayfield
- Department of Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Tonia A Douglas
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Tim Rosenow
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Stuart J Elborn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marcus Mall
- Department of Pediatric Pulmonology, Immunology, and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Translational Pulmonology, German Center for Lung Research, Berlin, Germany
| | - Anthony Paproki
- The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Felix Ratjen
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queenland, Herston, Queensland, Australia
| | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology. School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, UK
| | - Stephen Stick
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia .,Airway Physiology and Imaging Group, Woolcock Institute of Medical Research, Glebe, New South Wales, Australia.,The Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Kizhakke Puliyakote AS, Elliott AR, Sá RC, Anderson KM, Crotty Alexander LE, Hopkins SR. Vaping disrupts ventilation-perfusion matching in asymptomatic users. J Appl Physiol (1985) 2020; 130:308-317. [PMID: 33180648 DOI: 10.1152/japplphysiol.00709.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inhalation of e-cigarette's aerosols (vaping) has the potential to disrupt pulmonary gas exchange, but the effects in asymptomatic users are unknown. We assessed ventilation-perfusion (V̇A/Q̇) mismatch in asymptomatic e-cigarette users, using magnetic resonance imaging (MRI). We hypothesized that vaping induces V̇A/Q̇ mismatch through alterations in both ventilation and perfusion distributions. Nine young, asymptomatic "Vapers" with >1-yr vaping history, and no history of cardiopulmonary disease, were imaged supine using proton MRI, to assess the right lung at baseline and immediately after vaping. Seven young "Controls" were imaged at baseline only. Relative dispersion (SD/means) was used to quantify the heterogeneity of the individual ventilation and perfusion distributions. V̇A/Q̇ mismatch was quantified using the second moments of the ventilation and perfusion versus V̇A/Q̇ ratio distributions, log scale, LogSDV̇, and LogSDQ̇, respectively, analogous to the multiple inert gas elimination technique. Spirometry was normal in both groups. Ventilation heterogeneity was similar between groups at baseline (Vapers, 0.43 ± 0.13; Controls, 0.51 ± 0.11; P = 0.13) but increased after vaping (to 0.57 ± 0.17; P = 0.03). Perfusion heterogeneity was greater (P = 0.04) in Vapers at baseline (0.53 ± 0.06) compared with Controls (0.44 ± 0.10) but decreased after vaping (to 0.42 ± 0.07; P = 0.005). Vapers had greater (P = 0.01) V̇A/Q̇ mismatch at baseline compared with Controls (LogSDQ̇ = 0.61 ± 0.12 vs. 0.43 ± 0.12), which was increased after vaping (LogSDQ̇ = 0.73 ± 0.16; P = 0.03). V̇A/Q̇ mismatch is greater in Vapers and worsens after vaping. This suggests subclinical alterations in lung function not detected by spirometry.NEW & NOTEWORTHY This research provides evidence of vaping-induced disruptions in ventilation-perfusion matching in young, healthy, asymptomatic adults with normal spirometry who habitually vape. The changes in ventilation and perfusion distributions, both at baseline and acutely after vaping, and the potential implications on hypoxic vasoconstriction are particularly relevant in understanding the pathogenesis of vaping-induced dysfunction. Our imaging-based approach provides evidence of potential subclinical alterations in lung function below thresholds of detection using spirometry.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | - Ann R Elliott
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Medicine, University of California, San Diego, California
| | - Rui C Sá
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Medicine, University of California, San Diego, California
| | - Kevin M Anderson
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Radiology, University of California, San Diego, California
| | | | - Susan R Hopkins
- Pulmonary Imaging Laboratory, Department of Radiology, UC San Diego Health Sciences, San Diego, California.,Department of Radiology, University of California, San Diego, California.,Department of Medicine, University of California, San Diego, California
| |
Collapse
|
9
|
Woods JC, Wild JM, Wielpütz MO, Clancy JP, Hatabu H, Kauczor HU, van Beek EJ, Altes TA. Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J Magn Reson Imaging 2020; 52:1306-1320. [PMID: 31846139 PMCID: PMC7297663 DOI: 10.1002/jmri.27030] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Pulmonary MRI can now provide high-resolution images that are sensitive to early disease and specific to inflammation in cystic fibrosis (CF) lung disease. With specificity and function limited via computed tomography (CT), there are significant advantages to MRI. Many of the modern MRI techniques can be performed throughout life, and can be employed to understand changes over time, in addition to quantification of treatment response. Proton density and T1 /T2 contrast images can be obtained within a single breath-hold, providing depiction of structural abnormalities and active inflammation. Modern radial and/or spiral ultrashort echo-time (UTE) techniques rival CT in resolution for depiction and quantification of structure, for both airway and parenchymal abnormalities. Contrast perfusion MRI techniques are now utilized routinely to visualize changes in pulmonary and bronchial circulation that routinely occur in CF lung disease, and noncontrast techniques are moving closer to clinical translation. Functional information can be obtained from noncontrast proton images alone, using techniques such as Fourier decomposition. Hyperpolarized-gas MRI, increasingly using 129 Xe, is now becoming more widespread and has been demonstrated to have high sensitivity to early airway obstruction in CF via ventilation MRI. The sensitivity of 129 Xe MRI promises future use in personalized medicine, management of early CF lung disease, and in future clinical trials. By combining structural and functional techniques, with or without hyperpolarized gases, regional structure-function relationships can be obtained, giving insight into the pathophysiology of disease and improved clinical management. This article reviews the modern MRI techniques that can routinely be employed for CF lung disease in nearly any large medical center. Level of Evidence: 4 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Jason C. Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital and University of Cincinnati; Cincinnati OH, USA
| | - Jim M. Wild
- Department of Radiology, University of Sheffield, Sheffield UK
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for lung Research (DZL), Heidelberg, Germany
| | - John P. Clancy
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital and University of Cincinnati; Cincinnati OH, USA
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for lung Research (DZL), Heidelberg, Germany
| | - Edwin J.R. van Beek
- Edinburgh Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Talissa A Altes
- Department of Radiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
10
|
Hopkins SR. Ventilation/Perfusion Relationships and Gas Exchange: Measurement Approaches. Compr Physiol 2020; 10:1155-1205. [PMID: 32941684 DOI: 10.1002/cphy.c180042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ventilation-perfusion ( V ˙ A / Q ˙ ) matching, the regional matching of the flow of fresh gas to flow of deoxygenated capillary blood, is the most important mechanism affecting the efficiency of pulmonary gas exchange. This article discusses the measurement of V ˙ A / Q ˙ matching with three broad classes of techniques: (i) those based in gas exchange, such as the multiple inert gas elimination technique (MIGET); (ii) those derived from imaging techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), computed tomography (CT), and electrical impedance tomography (EIT); and (iii) fluorescent and radiolabeled microspheres. The focus is on the physiological basis of these techniques that provide quantitative information for research purposes rather than qualitative measurements that are used clinically. The fundamental equations of pulmonary gas exchange are first reviewed to lay the foundation for the gas exchange techniques and some of the imaging applications. The physiological considerations for each of the techniques along with advantages and disadvantages are briefly discussed. © 2020 American Physiological Society. Compr Physiol 10:1155-1205, 2020.
Collapse
Affiliation(s)
- Susan R Hopkins
- Departments of Medicine and Radiology, University of California, San Diego, California, USA
| |
Collapse
|
11
|
Elliott AR, Kizhakke Puliyakote AS, Tedjasaputra V, Pazár B, Wagner H, Sá RC, Orr JE, Prisk GK, Wagner PD, Hopkins SR. Ventilation-perfusion heterogeneity measured by the multiple inert gas elimination technique is minimally affected by intermittent breathing of 100% O 2. Physiol Rep 2020; 8:e14488. [PMID: 32638530 PMCID: PMC7340847 DOI: 10.14814/phy2.14488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022] Open
Abstract
Proton magnetic resonance (MR) imaging to quantify regional ventilation-perfusion ( V ˙ A / Q ˙ ) ratios combines specific ventilation imaging (SVI) and separate proton density and perfusion measures into a composite map. Specific ventilation imaging exploits the paramagnetic properties of O2 , which alters the local MR signal intensity, in an FI O2 -dependent manner. Specific ventilation imaging data are acquired during five wash-in/wash-out cycles of breathing 21% O2 alternating with 100% O2 over ~20 min. This technique assumes that alternating FI O2 does not affect V ˙ A / Q ˙ heterogeneity, but this is unproven. We tested the hypothesis that alternating FI O2 exposure increases V ˙ A / Q ˙ mismatch in nine patients with abnormal pulmonary gas exchange and increased V ˙ A / Q ˙ mismatch using the multiple inert gas elimination technique (MIGET).The following data were acquired (a) breathing air (baseline), (b) breathing alternating air/100% O2 during an emulated-SVI protocol (eSVI), and (c) 20 min after ambient air breathing (recovery). MIGET heterogeneity indices of shunt, deadspace, ventilation versus V ˙ A / Q ˙ ratio, LogSD V ˙ , and perfusion versus V ˙ A / Q ˙ ratio, LogSD Q ˙ were calculated. LogSD V ˙ was not different between eSVI and baseline (1.04 ± 0.39 baseline, 1.05 ± 0.38 eSVI, p = .84); but was reduced compared to baseline during recovery (0.97 ± 0.39, p = .04). There was no significant difference in LogSD Q ˙ across conditions (0.81 ± 0.30 baseline, 0.79 ± 0.15 eSVI, 0.79 ± 0.20 recovery; p = .54); Deadspace was not significantly different (p = .54) but shunt showed a borderline increase during eSVI (1.0% ± 1.0 baseline, 2.6% ± 2.9 eSVI; p = .052) likely from altered hypoxic pulmonary vasoconstriction and/or absorption atelectasis. Intermittent breathing of 100% O2 does not substantially alter V ˙ A / Q ˙ matching and if SVI measurements are made after perfusion measurements, any potential effects will be minimized.
Collapse
Affiliation(s)
- Ann R. Elliott
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
| | - Abhilash S. Kizhakke Puliyakote
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCAUSA
| | - Vincent Tedjasaputra
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
| | - Beni Pazár
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCAUSA
| | - Harrieth Wagner
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Rui C. Sá
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
| | - Jeremy E. Orr
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - G. Kim Prisk
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCAUSA
| | - Peter D. Wagner
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Susan R. Hopkins
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- The Pulmonary Imaging LaboratoryUniversity of California San DiegoLa JollaCAUSA
- Department of RadiologyUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
12
|
Cereda M, Xin Y, Goffi A, Herrmann J, Kaczka DW, Kavanagh BP, Perchiazzi G, Yoshida T, Rizi RR. Imaging the Injured Lung: Mechanisms of Action and Clinical Use. Anesthesiology 2019; 131:716-749. [PMID: 30664057 PMCID: PMC6692186 DOI: 10.1097/aln.0000000000002583] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Goffi
- Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, ON, Canada
| | - Jacob Herrmann
- Departments of Anesthesia and Biomedical Engineering, University of Iowa, IA
| | - David W. Kaczka
- Departments of Anesthesia, Radiology, and Biomedical Engineering, University of Iowa, IA
| | | | - Gaetano Perchiazzi
- Hedenstierna Laboratory and Uppsala University Hospital, Uppsala University, Sweden
| | - Takeshi Yoshida
- Hospital for Sick Children, University of Toronto, ON, Canada
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Tedjasaputra V, Sá RC, Anderson KM, Prisk GK, Hopkins SR. Heavy upright exercise increases ventilation-perfusion mismatch in the basal lung: indirect evidence for interstitial pulmonary edema. J Appl Physiol (1985) 2019; 127:473-481. [PMID: 31246558 PMCID: PMC6732434 DOI: 10.1152/japplphysiol.00056.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/22/2022] Open
Abstract
Ventilation-perfusion (V̇a/Q̇) mismatch during exercise may result from interstitial pulmonary edema if increased pulmonary vascular pressure causes fluid efflux into the interstitium. If present, the increased fluid may compress small airways or blood vessels, disrupting V̇a/Q̇ matching, but this is unproven. We hypothesized that V̇a/Q̇ mismatch would be greatest in basal lung following heavy upright exercise, consistent with hydrostatic forces favoring edema accumulation in the gravitationally dependent lung. We applied new tools to reanalyze previously published magnetic resonance imaging data to determine regional V̇a/Q̇ mismatch following 45 min of heavy upright exercise in six athletes (V̇o2max = 61 ± 7 mL·kg-1·min-1). In the supine posture, regional alveolar ventilation and local perfusion were quantified from specific ventilation imaging, proton density, and arterial spin labeling data in a single sagittal slice of the right lung before exercise (PRE), 15 min after exercise (POST), and in recovery 60 min after exercise (REC). Indices of V̇a/Q̇ mismatch [second moments (log scale) of ventilation (LogSDV) and perfusion (LogSDQ) vs. V̇a/Q̇ distributions] were calculated for apical, middle, and basal lung thirds, which represent gravitationally nondependent, middle, and dependent regions, respectively, during upright exercise. LogSDV increased after exercise only in the basal lung (PRE 0.46 ± 0.06, POST 0.57 ± 0.14, REC 0.55 ±0.14, P = 0.01). Similarly, LogSDQ increased only in the basal lung (PRE 0.40 ± 0.06, POST 0.51 ± 0.10, REC 0.44 ± 0.09, P = 0.04). Increased V̇a/Q̇ mismatch in the basal lung after exercise is potentially consistent with interstitial pulmonary edema accumulating in gravitationally dependent lung during exercise.NEW & NOTEWORTHY We reanalyzed previously published MRI data with new tools and found increased ventilation-perfusion mismatch only in the basal lung of athletes following 45 min of cycling exercise. This is consistent with the development of interstitial edema in the gravitationally dependent lung during heavy exercise.
Collapse
Affiliation(s)
- Vincent Tedjasaputra
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California
| | - Rui C Sá
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California
| | - Kevin M Anderson
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California
| | - Susan R Hopkins
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California
- Pulmonary Imaging Laboratory, Department of Radiology, University of California, San Diego School of Medicine, La Jolla, California
| |
Collapse
|
14
|
Petousi N, Talbot NP, Pavord I, Robbins PA. Measuring lung function in airways diseases: current and emerging techniques. Thorax 2019; 74:797-805. [PMID: 31036773 DOI: 10.1136/thoraxjnl-2018-212441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Chronic airways diseases, including asthma, COPD and cystic fibrosis, cause significant morbidity and mortality and are associated with high healthcare expenditure, in the UK and worldwide. For patients with these conditions, improvements in clinical outcomes are likely to depend on the application of precision medicine, that is, the matching of the right treatment to the right patient at the right time. In this context, the identification and targeting of 'treatable traits' is an important priority in airways disease, both to ensure the appropriate use of existing treatments and to facilitate the development of new disease-modifying therapy. This requires not only better understanding of airway pathophysiology but also an enhanced ability to make physiological measurements of disease activity and lung function and, if we are to impact on the natural history of these diseases, reliable measures in early disease. In this article, we outline some of the key challenges faced by the respiratory community in the management of airways diseases, including early diagnosis, disease stratification and monitoring of therapeutic response. In this context, we review the advantages and limitations of routine physiological measurements of respiratory function including spirometry, body plethysmography and diffusing capacity and discuss less widely used methods such as forced oscillometry, inert gas washout and the multiple inert gas elimination technique. Finally, we highlight emerging technologies including imaging methods such as quantitative CT and hyperpolarised gas MRI as well as quantification of lung inhomogeneity using precise in-airway gas analysis and mathematical modelling. These emerging techniques have the potential to enhance existing measures in the assessment of airways diseases, may be particularly valuable in early disease, and should facilitate the efforts to deliver precision respiratory medicine.
Collapse
Affiliation(s)
- Nayia Petousi
- Nuffield Department of Clinical Medicine Division of Experimental Medicine, University of Oxford, Oxford, UK .,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Nick P Talbot
- Nuffield Department of Clinical Medicine Division of Experimental Medicine, University of Oxford, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Ian Pavord
- Nuffield Department of Clinical Medicine Division of Experimental Medicine, University of Oxford, Oxford, UK.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Geier ET, Neuhart I, Theilmann RJ, Prisk GK, Sá RC. Spatial persistence of reduced specific ventilation following methacholine challenge in the healthy human lung. J Appl Physiol (1985) 2018; 124:1222-1232. [PMID: 29420156 PMCID: PMC6008074 DOI: 10.1152/japplphysiol.01032.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/16/2018] [Accepted: 02/01/2018] [Indexed: 11/22/2022] Open
Abstract
Specific ventilation imaging was used to identify regions of the healthy lung (6 supine subjects, ages 21-41 yr, 3 men) that experienced a fall in specific ventilation following inhalation of methacholine. This test was repeated 1 wk later and 3 mo later to test for spatial recurrence. Our data showed that 53% confidence interval (CI; 46%, 59%) of volume elements that constricted during one methacholine challenge did so again in another and that this quantity did not vary with time; 46% CI (28%, 64%) recurred 1 wk later, and 56% CI (51%, 61%) recurred 3 mo later. Previous constriction was a strong predictor for future constriction. Volume elements that constricted during one challenge were 7.7 CI (5.2, 10.2) times more likely than nonconstricted elements to constrict in a second challenge, regardless of whether the second episode was 1 wk [7.7 CI (2.9, 12.4)] or 3 mo [7.7 CI (4.6, 10.8)] later. Furthermore, posterior lung elements were more likely to constrict following methacholine than anterior lung elements (volume fraction 0.43 ± 0.22 posterior vs. 0.10 ± 0.03 anterior; P = 0.005), and basal elements that constricted were more likely than their apical counterparts to do so persistently through all three trials (volume fraction 0.14 ± 0.04 basal vs. 0.04 ± 0.04 apical; P = 0.003). Taken together, this evidence suggests a physiological predisposition toward constriction in some lung elements, especially those located in the posterior and basal lung when the subject is supine. NEW & NOTEWORTHY The spatial pattern of bronchoconstriction following methacholine is persistent over time in healthy individuals, in whom chronic inflammation and airway remodeling are assumed to be absent. This suggests that regional lung inflation and airway structure may play dominant roles in determining the spatial pattern of methacholine bronchoconstriction.
Collapse
Affiliation(s)
- E. T. Geier
- Department of Medicine, University of California San Diego, San Diego, California
| | - I. Neuhart
- The Ohio State University, Columbus, Ohio
| | - R. J. Theilmann
- Department of Medicine, University of California San Diego, San Diego, California
| | - G. K. Prisk
- Department of Medicine, University of California San Diego, San Diego, California
| | - R. C. Sá
- Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
16
|
Kang W, Tawhai MH, Clark AR, Sá RC, Geier ET, Prisk GK, Burrowes KS. In silico modeling of oxygen-enhanced MRI of specific ventilation. Physiol Rep 2018; 6:e13659. [PMID: 29659198 PMCID: PMC5900997 DOI: 10.14814/phy2.13659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 01/22/2023] Open
Abstract
Specific ventilation imaging (SVI) proposes that using oxygen-enhanced 1H MRI to capture signal change as subjects alternatively breathe room air and 100% O2 provides an estimate of specific ventilation distribution in the lung. How well this technique measures SV and the effect of currently adopted approaches of the technique on resulting SV measurement is open for further exploration. We investigated (1) How well does imaging a single sagittal lung slice represent whole lung SV? (2) What is the influence of pulmonary venous blood on the measured MRI signal and resultant SVI measure? and (3) How does inclusion of misaligned images affect SVI measurement? In this study, we utilized two patient-based in silico models of ventilation, perfusion, and gas exchange to address these questions for normal healthy lungs. Simulation results from the two healthy young subjects show that imaging a single slice is generally representative of whole lung SV distribution, with a calculated SV gradient within 90% of that calculated for whole lung distributions. Contribution of O2 from the venous circulation results in overestimation of SV at a regional level where major pulmonary veins cross the imaging plane, resulting in a 10% increase in SV gradient for the imaging slice. A worst-case scenario simulation of image misalignment increased the SV gradient by 11.4% for the imaged slice.
Collapse
Affiliation(s)
- Wendy Kang
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Merryn H. Tawhai
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Alys R. Clark
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Rui C. Sá
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCalifornia
| | - Eric T. Geier
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCalifornia
| | - G. Kim Prisk
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCalifornia
| | - Kelly S. Burrowes
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
- Department of Chemical & Materials EngineeringUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
17
|
Mountain JE, Santer P, O'Neill DP, Smith NMJ, Ciaffoni L, Couper JH, Ritchie GAD, Hancock G, Whiteley JP, Robbins PA. Potential for noninvasive assessment of lung inhomogeneity using highly precise, highly time-resolved measurements of gas exchange. J Appl Physiol (1985) 2017; 124:615-631. [PMID: 29074714 DOI: 10.1152/japplphysiol.00745.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhomogeneity in the lung impairs gas exchange and can be an early marker of lung disease. We hypothesized that highly precise measurements of gas exchange contain sufficient information to quantify many aspects of the inhomogeneity noninvasively. Our aim was to explore whether one parameterization of lung inhomogeneity could both fit such data and provide reliable parameter estimates. A mathematical model of gas exchange in an inhomogeneous lung was developed, containing inhomogeneity parameters for compliance, vascular conductance, and dead space, all relative to lung volume. Inputs were respiratory flow, cardiac output, and the inspiratory and pulmonary arterial gas compositions. Outputs were expiratory and pulmonary venous gas compositions. All values were specified every 10 ms. Some parameters were set to physiologically plausible values. To estimate the remaining unknown parameters and inputs, the model was embedded within a nonlinear estimation routine to minimize the deviations between model and data for CO2, O2, and N2 flows during expiration. Three groups, each of six individuals, were studied: young (20-30 yr); old (70-80 yr); and patients with mild to moderate chronic obstructive pulmonary disease (COPD). Each participant undertook a 15-min measurement protocol six times. For all parameters reflecting inhomogeneity, highly significant differences were found between the three participant groups ( P < 0.001, ANOVA). Intraclass correlation coefficients were 0.96, 0.99, and 0.94 for the parameters reflecting inhomogeneity in deadspace, compliance, and vascular conductance, respectively. We conclude that, for the particular participants selected, highly repeatable estimates for parameters reflecting inhomogeneity could be obtained from noninvasive measurements of respiratory gas exchange. NEW & NOTEWORTHY This study describes a new method, based on highly precise measures of gas exchange, that quantifies three distributions that are intrinsic to the lung. These distributions represent three fundamentally different types of inhomogeneity that together give rise to ventilation-perfusion mismatch and result in impaired gas exchange. The measurement technique has potentially broad clinical applicability because it is simple for both patient and operator, it does not involve ionizing radiation, and it is completely noninvasive.
Collapse
Affiliation(s)
- James E Mountain
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford , United Kingdom.,Department of Computer Science, University of Oxford , Oxford , United Kingdom
| | - Peter Santer
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford , United Kingdom
| | - David P O'Neill
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford , United Kingdom
| | - Nicholas M J Smith
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford , United Kingdom
| | - Luca Ciaffoni
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford , United Kingdom
| | - John H Couper
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford , United Kingdom
| | - Grant A D Ritchie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford , United Kingdom
| | - Gus Hancock
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , Oxford , United Kingdom
| | - Jonathan P Whiteley
- Department of Computer Science, University of Oxford , Oxford , United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford , United Kingdom
| |
Collapse
|
18
|
An in vitro lung model to assess true shunt fraction by multiple inert gas elimination. PLoS One 2017; 12:e0184212. [PMID: 28877216 PMCID: PMC5587330 DOI: 10.1371/journal.pone.0184212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET) has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q) ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I) to construct a novel in vitro lung model (IVLM) for the simulation of predefined V/Q distributions with five gas exchange compartments and (II) to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V) and perfused with human red cell suspension or saline (Q). Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V) was kept constant and reference shunt fractions (IVLM-S) were established by bypassing one or more oxygenators with perfusate flow (Q). The derived shunt fractions (MM-S) were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.
Collapse
|