1
|
Abstract
This article will discuss in detail the pathophysiology of asthma from the point of view of lung mechanics. In particular, we will explain how asthma is more than just airflow limitation resulting from airway narrowing but in fact involves multiple consequences of airway narrowing, including ventilation heterogeneity, airway closure, and airway hyperresponsiveness. In addition, the relationship between the airway and surrounding lung parenchyma is thought to be critically important in asthma, especially as related to the response to deep inspiration. Furthermore, dynamic changes in lung mechanics over time may yield important information about asthma stability, as well as potentially provide a window into future disease control. All of these features of mechanical properties of the lung in asthma will be explained by providing evidence from multiple investigative methods, including not only traditional pulmonary function testing but also more sophisticated techniques such as forced oscillation, multiple breath nitrogen washout, and different imaging modalities. Throughout the article, we will link the lung mechanical features of asthma to clinical manifestations of asthma symptoms, severity, and control. © 2020 American Physiological Society. Compr Physiol 10:975-1007, 2020.
Collapse
Affiliation(s)
- David A Kaminsky
- University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Lui JK, Lutchen KR. The role of heterogeneity in asthma: a structure-to-function perspective. Clin Transl Med 2017; 6:29. [PMID: 28776171 PMCID: PMC5543015 DOI: 10.1186/s40169-017-0159-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
A number of methods have evolved through the years in probing the dysfunction that impacts mechanics and ventilation in asthma. What has been consistently found is the notion of heterogeneity that is not only captured in the frequency dependence of lung mechanics measurements but also rendered on imaging as patchy diffuse areas of ventilation defects. The degree of heterogeneity has been linked to airway hyperresponsiveness, a hallmark feature of asthma. How these heterogeneous constriction patterns lead to functional impairment in asthma have only been recently explored using computational airway tree models. By synthesizing measurements of lung mechanics and advances in imaging, computational airway tree models serve as a powerful engine to accelerate our understanding of the physiologic changes that occur in asthma. This review will be focused on the current state of investigational work on the role of heterogeneity in asthma, specifically exploring the structural and functional relationships.
Collapse
Affiliation(s)
- Justin K. Lui
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Kenneth R. Lutchen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| |
Collapse
|
3
|
Gazzola M, Lortie K, Henry C, Mailhot-Larouche S, Chapman DG, Couture C, Seow CY, Paré PD, King GG, Boulet LP, Bossé Y. Airway smooth muscle tone increases airway responsiveness in healthy young adults. Am J Physiol Lung Cell Mol Physiol 2016; 312:L348-L357. [PMID: 27941076 DOI: 10.1152/ajplung.00400.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022] Open
Abstract
Force adaptation, a process whereby sustained spasmogenic activation (viz., tone) of airway smooth muscle (ASM) increases its contractile capacity, has been reported in isolated ASM tissues in vitro, as well as in mice in vivo. The objective of the present study was to assess the effect of tone on airway responsiveness in humans. Ten healthy volunteers underwent methacholine challenge on two occasions. One challenge consisted of six serial doses of saline followed by a single high dose of methacholine. The other consisted of six low doses of methacholine 5 min apart followed by a higher dose. The cumulative dose was identical for both challenges. After both methacholine challenges, subjects took a deep inspiration (DI) to total lung capacity as another way to probe ASM mechanics. Responses to methacholine and the DI were measured using a multifrequency forced oscillation technique. Compared with a single high dose, the challenge preceded by tone led to an elevated response measured by respiratory system resistance (Rrs) and reactance at 5 Hz. However, there was no difference in the increase in Rrs at 19 Hz, suggesting a predominant effect on smaller airways. Increased tone also reduced the efficacy of DI, measured by an attenuated maximal dilation during the DI and an increased renarrowing post-DI. We conclude that ASM tone increases small airway responsiveness to inhaled methacholine and reduces the effectiveness of DI in healthy humans. This suggests that force adaptation may contribute to airway hyperresponsiveness and the reduced bronchodilatory effect of DI in asthma.
Collapse
Affiliation(s)
- Morgan Gazzola
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Samuel Mailhot-Larouche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - David G Chapman
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Christian Couture
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Chun Y Seow
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Peter D Paré
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Gregory G King
- Woolcock Institute of Medical Research, Sydney, Australia.,University of Sydney, Sydney, Australia; and.,Cooperative Research Centre for Asthma, Sydney, Australia
| | - Louis-Philippe Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada;
| |
Collapse
|
4
|
Wong WD, Wang L, Paré PD, Seow CY. Bronchodilatory effect of deep inspiration in freshly isolated sheep lungs. Am J Physiol Lung Cell Mol Physiol 2016; 312:L178-L185. [PMID: 27913423 DOI: 10.1152/ajplung.00321.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022] Open
Abstract
Taking a big breath is known to reverse bronchoconstriction induced by bronchochallenge in healthy subjects; this bronchodilatory effect of deep inspiration (DI) is diminished in asthmatics. The mechanism underlying the DI effect is not clear. Observations from experiments using isolated airway smooth muscle (ASM) preparations and airway segments suggest that straining of ASM due to DI could lead to bronchodilation, possibly due to strain-induced reduction in ASM contractility. However, factors external to the lung cannot be excluded as potential causes for the DI effect. Neural reflex initiated by stretch receptors in the lung are known to inhibit the broncho-motor tone and enhance vasodilatation; the former directly reduces airway resistance, and the latter facilitates removal of contractile agonists through the bronchial circulation. If the DI effect is solely mediated by factors extrinsic to the lung, the DI effect would be absent in isolated, nonperfused lungs. Here we examined the DI effect in freshly isolated, nonperfused sheep lungs. We found that imposition of DI on isolated lungs resulted in significant bronchodilation, that this DI effect was present only after the lungs were challenged with a contractile agonist (acetylcholine or histamine), and that the effect was independent of the difference in lung volume observed pre- and post-DI. We conclude that a significant portion of the bronchodilatory DI effect stems from factors internal to the lung related to the activation of ASM.
Collapse
Affiliation(s)
- William D Wong
- The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lu Wang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter D Paré
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; and .,The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Klansky A, Irvin C, Morrison-Taylor A, Ahlstrand S, Labrie D, Haverkamp HC. No effect of elevated operating lung volumes on airway function during variable workrate exercise in asthmatic humans. J Appl Physiol (1985) 2016; 121:89-100. [PMID: 27150833 DOI: 10.1152/japplphysiol.00538.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 05/02/2016] [Indexed: 11/22/2022] Open
Abstract
In asthmatic adults, airway caliber fluctuates during variable intensity exercise such that bronchodilation (BD) occurs with increased workrate whereas bronchoconstriction (BC) occurs with decreased workrate. We hypothesized that increased lung mechanical stretch would prevent BC during such variable workrate exercise. Ten asthmatic and ten nonasthmatic subjects completed two exercise trials on a cycle ergometer. Both trials included a 28-min exercise bout consisting of alternating four min periods at workloads equal to 40 % (Low) and 70% (High) peak power output. During one trial, subjects breathed spontaneously throughout exercise (SVT), such that tidal volume (VT) and end-inspiratory lung volume (EILV) were increased by 0.5 and 0.6 liters during the high compared with the low workload in nonasthmatic and asthmatic subjects, respectively. During the second trial (MVT), VT and EILV were maintained constant when transitioning from the high to the low workload. Forced exhalations from total lung capacity were performed during each exercise workload. In asthmatic subjects, forced expiratory volume 1.0 s (FEV1.0) increased and decreased with the increases and decreases in workrate during both SVT (Low, 3.3 ± 0.3 liters; High, 3.6 ± 0.2 liters; P < 0.05) and MVT (Low, 3.3 ± 0.3 liters; High, 3.5 ± 0.2 liters; P < 0.05). Thus increased lung stretch during MVT did not prevent decreases in airway caliber when workload was reduced. We conclude that neural factors controlling airway smooth muscle (ASM) contractile activity during whole body exercise are more robust determinants of airway caliber than the ability of lung stretch to alter ASM actin-myosin binding and contraction.
Collapse
Affiliation(s)
- Andrew Klansky
- Johnson State College, Department of Environmental and Health Sciences, Johnson, Vermont; and
| | - Charlie Irvin
- University of Vermont, Vermont Lung Center, Burlington, Vermont
| | - Adriane Morrison-Taylor
- Johnson State College, Department of Environmental and Health Sciences, Johnson, Vermont; and
| | - Sarah Ahlstrand
- Johnson State College, Department of Environmental and Health Sciences, Johnson, Vermont; and
| | - Danielle Labrie
- Johnson State College, Department of Environmental and Health Sciences, Johnson, Vermont; and
| | | |
Collapse
|
6
|
V Wasilewski N, Fisher T, Turcotte SE, Fisher JT, Lougheed MD. Bronchodilating effect of deep inspirations in asthma and chronic cough. J Appl Physiol (1985) 2016; 120:1018-28. [PMID: 26940655 DOI: 10.1152/japplphysiol.00737.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/01/2016] [Indexed: 01/15/2023] Open
Abstract
The pathophysiologic processes distinguishing classic asthma (CA), cough-variant asthma (CVA), and methacholine (MCh)-induced cough but normal airway sensitivity (COUGH) are inadequately understood and may be a result of differences in the ability to bronchodilate following a deep inspiration (DI). The purpose of this study was to compare the bronchodilating effect of DIs in individuals with CA, CVA, and COUGH using high-dose MCh. Individuals aged 18-65 yr with CA or suspected CVA completed high-dose MCh testing to a maximum change in forced expiratory volume in 1 s (FEV1) of 50% from baseline (MAX). Impulse oscillometry (IOS) measurements and partial and maximal-flow volume curves (used to calculate a DI index) were recorded at baseline and at each dose of MCh. Body plethysmography was performed at baseline and MAX. Twenty-eight subjects [25 women, 39.8 ± 11.9 yr (means ± SD)] were studied (n = 11 CA, n = 10 CVA, and n = 7 COUGH). At MAX, the percent change in FEV1 was greater in subjects with CA compared with those with CVA (P < 0.001) and COUGH (P < 0.001), and the percent change in forced vital capacity was greater in those with CA than with COUGH (P = 0.017). Subjects with CA and CVA developed dynamic hyperinflation and gas trapping. In subjects with CA and CVA, all IOS parameters were significantly increased from baseline to MAX, except for central respiratory resistance (R20). In individuals with COUGH, total respiratory resistance, R20, and resonant frequency were significantly increased from baseline. At MAX, the DI index was positive in all groups, suggesting preserved bronchodilation (CA, 0.67 ± 0.97; CVA, 0.51 ± 0.73; COUGH, 0.01 ± 0.36; P = 0.211). We conclude that the bronchodilating effect of DIs is preserved in individuals with CA, CVA, and borderline with COUGH; however, hyperinflation and gas trapping are avoided in subjects with COUGH alone.
Collapse
Affiliation(s)
- Nastasia V Wasilewski
- Department of Medicine, Kingston General Hospital and Queen's University, Kingston, Ontario, Canada; and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Thomas Fisher
- Department of Medicine, Kingston General Hospital and Queen's University, Kingston, Ontario, Canada; and
| | - Scott E Turcotte
- Department of Medicine, Kingston General Hospital and Queen's University, Kingston, Ontario, Canada; and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - John T Fisher
- Department of Medicine, Kingston General Hospital and Queen's University, Kingston, Ontario, Canada; and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - M Diane Lougheed
- Department of Medicine, Kingston General Hospital and Queen's University, Kingston, Ontario, Canada; and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Chapman DG, Pascoe CD, Lee-Gosselin A, Couture C, Seow CY, Paré PD, Salome CM, King GG, Bossé Y. Smooth Muscle in the Maintenance of Increased Airway Resistance Elicited by Methacholine in Humans. Am J Respir Crit Care Med 2014; 190:879-85. [DOI: 10.1164/rccm.201403-0502oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Al-Alwan A, Bates JHT, Chapman DG, Kaminsky DA, DeSarno MJ, Irvin CG, Dixon AE. The nonallergic asthma of obesity. A matter of distal lung compliance. Am J Respir Crit Care Med 2014; 189:1494-502. [PMID: 24821412 DOI: 10.1164/rccm.201401-0178oc] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE The pathogenesis of asthma in obesity is poorly understood, but may be related to breathing at low lung volumes. OBJECTIVES To determine if lung function in obese patients with asthma and control subjects would respond differently to weight loss. METHODS Lung function was evaluated by conventional clinical tests and by impulse oscillometry in female late-onset, nonallergic patients with asthma and control subjects before, and 12 months after, bariatric surgery. MEASUREMENTS AND MAIN RESULTS Patients with asthma (n = 10) had significantly lower FEV1 (79.8 ± 10.6 vs. 95.5 ± 7.0%) and FVC (82.4 ± 13.2 vs. 93.7 ± 8.9%) compared with control subjects (n = 13). There were no significant differences in FRC or TLC at baseline. Twelve months after surgery, control subjects had significant increases in FEV1 (95.5 ± 7.0 to 100.7 ± 5.9), FVC (93.6 ± 8.9 to 98.6 ± 8.3%), FRC (45.4 ± 18.5 to 62.1 ± 15.3%), and TLC (84.8 ± 15.0 to 103.1 ± 15.3%), whereas patients with asthma had improvement only in FEV1 (79.8 ± 10.6 to 87.2 ± 11.5). Control subjects and patients with asthma had a significantly different change in respiratory system resistance with weight loss: control subjects exhibited a uniform decrease in respiratory system resistance at all frequencies, whereas patients with asthma exhibited a decrease in frequency dependence of resistance. Fits of a mathematical model of lung mechanics to these impedance spectra suggest that the lung periphery was more collapsed by obesity in patients with asthma compared with control subjects. CONCLUSIONS Weight loss decompresses the lung in both obese control subjects and patients with asthma, but the more pronounced effects of weight loss on lung elastance suggest that the distal lung is inherently more collapsible in people with asthma.
Collapse
|
9
|
Lutchen KR. Airway smooth muscle stretch and airway hyperresponsiveness in asthma: have we chased the wrong horse? J Appl Physiol (1985) 2013; 116:1113-5. [PMID: 24265278 DOI: 10.1152/japplphysiol.00968.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Risk factors for airway hyperresponsiveness in severely obese women. Respir Physiol Neurobiol 2013; 186:137-45. [PMID: 23376152 DOI: 10.1016/j.resp.2013.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/07/2013] [Accepted: 01/11/2013] [Indexed: 12/12/2022]
Abstract
Obesity affects airway diameter and tidal ventilation pattern, which could perturb smooth muscle function. The objective was to assess the pathophysiology of airway hyperresponsiveness in obesity while controlling for gastro-oesophageal reflux disease. Obese women (n=118, mean±SD BMI 46.1±6.8kg/m(-2)) underwent pulmonary function testing (including tidal ventilation monitoring and methacholine challenge) and oesogastro-duodenal fibroscopy. Fifty-seven women (48%, 95% CI: 39-57%) exhibited hyperresponsiveness (dose-response slope ≥2.39% decrease/μmol) that was independently and positively correlated with predicted % FRC, Raw0.5 and negatively correlated with sigh frequency during tidal ventilation. Obese women had an increased breathing frequency but a similar sigh frequency than healthy lean women (n=30). Twenty-two obese women (19%, 95% CI: 12-26%) were classified as asthmatics (hyperresponsiveness and suggestive symptoms) without confounding effect of gastro-oesophageal reflux disease. In conclusion, in women referred for bariatric surgery, unloading of bronchial smooth muscle (reduced airway calibre and sigh frequency) is associated with hyperresponsiveness.
Collapse
|
11
|
The importance of synergy between deep inspirations and fluidization in reversing airway closure. PLoS One 2012; 7:e48552. [PMID: 23144901 PMCID: PMC3493561 DOI: 10.1371/journal.pone.0048552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022] Open
Abstract
Deep inspirations (DIs) and airway smooth muscle fluidization are two widely studied phenomena in asthma research, particularly for their ability (or inability) to counteract severe airway constriction. For example, DIs have been shown effectively to reverse airway constriction in normal subjects, but this is impaired in asthmatics. Fluidization is a connected phenomenon, wherein the ability of airway smooth muscle (ASM, which surrounds and constricts the airways) to exert force is decreased by applied strain. A maneuver which sufficiently strains the ASM, then, such as a DI, is thought to reduce the force generating capacity of the muscle via fluidization and hence reverse or prevent airway constriction. Understanding these two phenomena is considered key to understanding the pathophysiology of asthma and airway hyper-responsiveness, and while both have been extensively studied, the mechanism by which DIs fail in asthmatics remains elusive. Here we show for the first time the synergistic interaction between DIs and fluidization which allows the combination to provide near complete reversal of airway closure where neither is effective alone. This relies not just on the traditional model of airway bistability between open and closed states, but also the critical addition of previously-unknown oscillatory and chaotic dynamics. It also allows us to explore the types of subtle change which can cause this interaction to fail, and thus could provide the missing link to explain DI failure in asthmatics.
Collapse
|
12
|
Abstract
Noninvasive physiological measurements are reviewed that have been reported in the literature with the specific aim being to study the small airways in lung disease. This has mostly involved at-the-mouth noninvasive measurement of flow, pressure or inert gas concentration, with the intent of deriving one or more indices that are representative of small airway structure and function. While these measurements have remained relatively low-tech, the effort and sophistication increasingly reside with the interpretation of such indices. When aspiring to derive information at the mouth about structural and mechanical processes occurring several airway generations away in a complex cyclically changing cul-de-sac structure, conceptual or semi-quantitative lung models can be valuable. Two assumptions that are central to small airway structure-function measurement are that of an average airway change at a given peripheral lung generation and of a parallel heterogeneity in airway changes. While these are complementary pieces of information, they can affect certain small airways tests in confounding ways. We critically analyzed the various small airway tests under review, while contending that negative outcomes of these tests are probably a true reflection of the fact that no change occurred in the small airways. Utmost care has been taken to not favor one technique over another, given that most current small airways tests still have room for improvement in terms of rendering their content more specific to the small airways. One way to achieve this could consist of the coupling of signals collected at the mouth to spatial information gathered from imaging in the same patient.
Collapse
Affiliation(s)
- Sylvia Verbanck
- Respiratory Division, University Hospital UZ Brussel, Brussels, Belgium.
| |
Collapse
|