1
|
Fang GH, Zhou XL, Ran CL, Jin CX, Bu SY, Chen Y, Gong Y, Hu ZT, Song FB, Luo J, Sun JL. Chronic intermittent hypoxia modulates energy metabolic pathways and improves hypoxia tolerance capacity in golden pompano, Trachinotus blochii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178921. [PMID: 40022974 DOI: 10.1016/j.scitotenv.2025.178921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Hypoxia is one of the most significant abiotic stresses affecting organisms in aquatic environments. However, dissolved oxygen in water is not always at the low concentrations that cause hypoxia, but their levels often fluctuate. Here, golden pompano (Trachinotus blochii) was subjected to low oxygen concentrations for 28 days (intermittent hypoxia, 2 h per day), and their metabolic indexes were systematically evaluated. RNA-seq was used to construct a regulatory network to elucidate the transcriptional regulation of golden pompano metabolism under intermittent hypoxia. We found that the liver lactic acid content, as well as hexokinase and phosphofructokinase activities, were elevated during the first 7 days, suggesting that anaerobic glycolysis was enhanced during the preceding period. In addition, triglyceride, lipoprotein lipase, and carnitine palmitoyltransferase-1 levels were elevated in the liver after 14 days, suggesting that lipid utilization was activated after 14 days. Intermittent hypoxia increased the activity of aspartate aminotransferase and alanine aminotransferase in the liver, decreased total plasma protein and amino acid levels, and enhanced the metabolism of proteins and amino acids. Decreased levels of oxidative stress and LOEcrit (the O2 tension for loss of equilibrium) were observed in golden pompano after 28 days of intermittent hypoxia. Transcriptome analysis showed that the fatty acid metabolism, PPAR signaling pathway, fatty acid degradation, D-amino acid metabolism, and cholesterol metabolism pathway were activated. These results suggest that intermittent hypoxia improves the metabolic activities of golden pompano, increases its hypoxia tolerance, and promotes its adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Geng Hui Fang
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Xiao Li Zhou
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Chun Li Ran
- Guangdong Evergreen Conglomerate Co., Ltd., Key Laboratory of Aquatic Animal Breeding and Culturing in South China Sea, Ministry of Agriculture and Rural Affairs, Zhanjiang 524000, China
| | - Chun Xiu Jin
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Shao Yang Bu
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Yue Chen
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Yong Gong
- Guangdong Evergreen Conglomerate Co., Ltd., Key Laboratory of Aquatic Animal Breeding and Culturing in South China Sea, Ministry of Agriculture and Rural Affairs, Zhanjiang 524000, China
| | - Zeng Tan Hu
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Fei Biao Song
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China
| | - Jian Luo
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| | - Jun Long Sun
- School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Wang MY, Mo XY, Yi MX, Lu HY. Visualization of the relationship between metabolism and lung diseases from the perspective of bibliometric analysis: research trends and future prospects. Front Med (Lausanne) 2024; 11:1443926. [PMID: 39664315 PMCID: PMC11631585 DOI: 10.3389/fmed.2024.1443926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
Background Extensive research has examined the role of metabolism in lung disease development, yet a comprehensive literature review remains absent despite numerous publications. Objective This study aims to visualize and assess the advancements in research on metabolism and its role in lung diseases. Methods Publications from January 1, 1991, to April 30, 2024, related to lung diseases and metabolism were sourced from the Web of Science Core Collection and analyzed using CiteSpace 6.2.R4, VOSviewer 1.6.19, Bibliometrix, R Studio, and various online tools. Results A total of 1,542 studies were collected and processed through these platforms for literature analysis and data visualization. The analysis revealed a sharp increase in annual publications on metabolism and lung diseases, with the United States and China emerging as leading contributors. Current research trends highlight a shift toward investigating metabolic reprogramming of immune cells in the context of lung diseases. Moreover, genes such as TNF, DIF, AKT1, INS, IL-6, CXCL8, IL-1β, TP53, NF-κB1, MTOR, IFNG, TGF-β1, HIF1α, VEGFA, IL-10, NFE2L2, PPARG, AKT, CRP, STAT3, and CD4 have received significant attention in this research domain. Employing a bibliometric approach, this study offers a comprehensive and objective examination of the knowledge landscape, shedding light on the evolving trends in this field. The findings serve as a valuable resource for researchers, offering a clearer perspective on the advancements in metabolism-related lung disease studies.
Collapse
Affiliation(s)
| | | | | | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Cho SG, Kim JH, Lee JE, Choi IJ, Song M, Chuon K, Shim JG, Kang KW, Jung KH. Heliorhodopsin-mediated light-modulation of ABC transporter. Nat Commun 2024; 15:4306. [PMID: 38773114 PMCID: PMC11109279 DOI: 10.1038/s41467-024-48650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Heliorhodopsins (HeRs) have been hypothesized to have widespread functions. Recently, the functions for few HeRs have been revealed; however, the hypothetical functions remain largely unknown. Herein, we investigate light-modulation of heterodimeric multidrug resistance ATP-binding cassette transporters (OmrDE) mediated by Omithinimicrobium cerasi HeR. In this study, we classifiy genes flanking the HeR-encoding genes and identify highly conservative residues for protein-protein interactions. Our results reveal that the interaction between OcHeR and OmrDE shows positive cooperatively sequential binding through thermodynamic parameters. Moreover, light-induced OcHeR upregulates OmrDE drug transportation. Hence, the binding may be crucial to drug resistance in O. cerasi as it survives in a drug-containing habitat. Overall, we unveil a function of HeR as regulatory rhodopsin for multidrug resistance. Our findings suggest potential applications in optogenetic technology.
Collapse
Affiliation(s)
- Shin-Gyu Cho
- Department of Life Science, Sogang University, Seoul, South Korea
- Research Institute for Basic Science, Sogang University, Seoul, South Korea
| | - Ji-Hyun Kim
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Ji-Eun Lee
- Department of Life Science, Sogang University, Seoul, South Korea
| | - In-Jung Choi
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Myungchul Song
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Kimleng Chuon
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Jin-Gon Shim
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Kun-Wook Kang
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, Seoul, South Korea.
| |
Collapse
|
4
|
Buxton RB. Thermodynamic limitations on brain oxygen metabolism: physiological implications. J Physiol 2024; 602:683-712. [PMID: 38349000 DOI: 10.1113/jp284358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.
Collapse
Affiliation(s)
- Richard B Buxton
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
5
|
Gupta T, Najumuddin, Rajendran D, Gujral A, Jangra A. Metabolism configures immune response across multi-systems: Lessons from COVID-19. Adv Biol Regul 2023; 90:100977. [PMID: 37690286 DOI: 10.1016/j.jbior.2023.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
Several studies over the last decade demonstrate the recruitment of immune cells, increased inflammatory cytokines, and chemokine in patients with metabolic diseases, including heart failure, parenchymal inflammation, obesity, tuberculosis, and diabetes mellitus. Metabolic rewiring of immune cells is associated with the severity and prevalence of these diseases. The risk of developing COVID-19/SARS-CoV-2 infection increases in patients with metabolic dysfunction (heart failure, diabetes mellitus, and obesity). Several etiologies, including fatigue, dyspnea, and dizziness, persist even months after COVID-19 infection, commonly known as Post-Acute Sequelae of CoV-2 (PASC) or long COVID. A chronic inflammatory state and metabolic dysfunction are the factors that contribute to long COVID. Here, this study explores the potential link between pathogenic metabolic and immune alterations across different organ systems that could underlie COVID-19 and PASC. These interactions could be utilized for targeted future therapeutic approaches.
Collapse
Affiliation(s)
- Tinku Gupta
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, New Delhi 110062, India
| | - Najumuddin
- Program of Biotechnology, Department of Applied Sciences, Faculty of Engineering, Science and Technology, Hamdard University, Karachi, Pakistan
| | - Dhanya Rajendran
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Akash Gujral
- Department of Medicine, Nyu Grossman School of Medicine, NY, USA
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| |
Collapse
|
6
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
7
|
Chiarelli AM, Germuska M, Chandler H, Stickland R, Patitucci E, Biondetti E, Mascali D, Saxena N, Khot S, Steventon J, Foster C, Rodríguez-Soto AE, Englund E, Murphy K, Tomassini V, Wehrli FW, Wise RG. A flow-diffusion model of oxygen transport for quantitative mapping of cerebral metabolic rate of oxygen (CMRO 2) with single gas calibrated fMRI. J Cereb Blood Flow Metab 2022; 42:1192-1209. [PMID: 35107026 PMCID: PMC9207485 DOI: 10.1177/0271678x221077332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One promising approach for mapping CMRO2 is dual-calibrated functional MRI (dc-fMRI). This method exploits the Fick Principle to combine estimates of CBF from ASL, and OEF derived from BOLD-ASL measurements during arterial O2 and CO2 modulations. Multiple gas modulations are required to decouple OEF and deoxyhemoglobin-sensitive blood volume. We propose an alternative single gas calibrated fMRI framework, integrating a model of oxygen transport, that links blood volume and CBF to OEF and creates a mapping between the maximum BOLD signal, CBF and OEF (and CMRO2). Simulations demonstrated the method's viability within physiological ranges of mitochondrial oxygen pressure, PmO2, and mean capillary transit time. A dc-fMRI experiment, performed on 20 healthy subjects using O2 and CO2 challenges, was used to validate the approach. The validation conveyed expected estimates of model parameters (e.g., low PmO2), with spatially uniform OEF maps (grey matter, GM, OEF spatial standard deviation ≈ 0.13). GM OEF estimates obtained with hypercapnia calibrated fMRI correlated with dc-fMRI (r = 0.65, p = 2·10-3). For 12 subjects, OEF measured with dc-fMRI and the single gas calibration method were correlated with whole-brain OEF derived from phase measures in the superior sagittal sinus (r = 0.58, p = 0.048; r = 0.64, p = 0.025 respectively). Simplified calibrated fMRI using hypercapnia holds promise for clinical application.
Collapse
Affiliation(s)
- Antonio M Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Michael Germuska
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Hannah Chandler
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Rachael Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleonora Patitucci
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Emma Biondetti
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Daniele Mascali
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Neeraj Saxena
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Sharmila Khot
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Jessica Steventon
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Catherine Foster
- Wales Institute of Social and Economic Research and Data (WISERD), School of Social Sciences, Cardiff University, Cardiff, UK
| | - Ana E Rodríguez-Soto
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Erin Englund
- Department of Radiology, University of Colorado, Aurora, Colorado, USA
| | - Kevin Murphy
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK.,MS Centre, Dept of Clinical Neurology, SS. Annunziata University Hospital, Chieti, Italy.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.,Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard G Wise
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Comparison of Lysis and Detachment Sample Preparation Methods for Cultured Triple-Negative Breast Cancer Cells Using UHPLC–HRMS-Based Metabolomics. Metabolites 2022; 12:metabo12020168. [PMID: 35208242 PMCID: PMC8879193 DOI: 10.3390/metabo12020168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of cellular metabolism is now a well-recognized hallmark of cancer. Studies investigating the metabolic features of cancer cells have shed new light onto processes in cancer cell biology and have identified many potential novel treatment options. The advancement of mass spectrometry-based metabolomics has improved the ability to monitor multiple metabolic pathways simultaneously in various experimental settings. However, questions still remain as to how certain steps in the metabolite extraction process affect the metabolic profiles of cancer cells. Here, we use ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC–HRMS) untargeted metabolomics to investigate the effects of different detachment and lysis methods on the types and abundances of metabolites extracted from MDA-MB-231 cells through the use of in-house standards libraries and pathway analysis software. Results indicate that detachment methods (trypsinization vs. scraping) had the greatest effect on metabolic profiles whereas lysis methods (homogenizer beads vs. freeze–thaw cycling) had a lesser, though still significant, effect. No singular method was clearly superior over others, with certain metabolite classes giving higher abundances or lower variation for each detachment–lysis combination. These results indicate the importance of carefully selecting sample preparation methods for cell-based metabolomics to optimize the extraction performance for certain compound classes.
Collapse
|
9
|
Mahan VL. Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Med Gas Res 2021; 11:158-173. [PMID: 34213499 PMCID: PMC8374456 DOI: 10.4103/2045-9912.318862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 11/04/2022] Open
Abstract
Lactate, historically considered a waste product of anerobic metabolism, is a metabolite in whole-body metabolism needed for normal central nervous system (CNS) functions and a potent signaling molecule and hormone in the CNS. Neuronal activity signals normally induce its formation primarily in astrocytes and production is dependent on anerobic and aerobic metabolisms. Functions are dependent on normal dynamic, expansive, and evolving CNS functions. Levels can change under normal physiologic conditions and with CNS pathology. A readily combusted fuel that is sshuttled throughout the body, lactate is used as an energy source and is needed for CNS hemostasis, plasticity, memory, and excitability. Diffusion beyond the neuron active zone impacts activity of neurons and astrocytes in other areas of the brain. Barriergenesis, function of the blood-brain barrier, and buffering between oxidative metabolism and glycolysis and brain metabolism are affected by lactate. Important to neuroprotection, presence or absence is associated with L-lactate and heme oxygenase/carbon monoxide (a gasotransmitter) neuroprotective systems. Effects of carbon monoxide on L-lactate affect neuroprotection - interactions of the gasotransmitter with L-lactate are important to CNS stability, which will be reviewed in this article.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Joshi P, Perni M, Limbocker R, Mannini B, Casford S, Chia S, Habchi J, Labbadia J, Dobson CM, Vendruscolo M. Two human metabolites rescue a C. elegans model of Alzheimer's disease via a cytosolic unfolded protein response. Commun Biol 2021; 4:843. [PMID: 34234268 PMCID: PMC8263720 DOI: 10.1038/s42003-021-02218-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related changes in cellular metabolism can affect brain homeostasis, creating conditions that are permissive to the onset and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Although the roles of metabolites have been extensively studied with regard to cellular signaling pathways, their effects on protein aggregation remain relatively unexplored. By computationally analysing the Human Metabolome Database, we identified two endogenous metabolites, carnosine and kynurenic acid, that inhibit the aggregation of the amyloid beta peptide (Aβ) and rescue a C. elegans model of Alzheimer's disease. We found that these metabolites act by triggering a cytosolic unfolded protein response through the transcription factor HSF-1 and downstream chaperones HSP40/J-proteins DNJ-12 and DNJ-19. These results help rationalise previous observations regarding the possible anti-ageing benefits of these metabolites by providing a mechanism for their action. Taken together, our findings provide a link between metabolite homeostasis and protein homeostasis, which could inspire preventative interventions against neurodegenerative disorders.
Collapse
Affiliation(s)
- Priyanka Joshi
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK ,grid.47840.3f0000 0001 2181 7878Present Address: The California Institute for Quantitative Biosciences (QB3-Berkeley), University of California, Berkeley, CA USA
| | - Michele Perni
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Ryan Limbocker
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK ,grid.419884.80000 0001 2287 2270Present Address: Department of Chemistry and Life Science, United States Military Academy, West Point, NY USA
| | - Benedetta Mannini
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Sam Casford
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Sean Chia
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Johnny Habchi
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Johnathan Labbadia
- grid.83440.3b0000000121901201Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Christopher M. Dobson
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Wilson DF, Matschinsky FM. Metabolic Homeostasis in Life as We Know It: Its Origin and Thermodynamic Basis. Front Physiol 2021; 12:658997. [PMID: 33967829 PMCID: PMC8104125 DOI: 10.3389/fphys.2021.658997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Living organisms require continuous input of energy for their existence. As a result, life as we know it is based on metabolic processes that extract energy from the environment and make it available to support life (energy metabolism). This metabolism is based on, and regulated by, the underlying thermodynamics. This is important because thermodynamic parameters are stable whereas kinetic parameters are highly variable. Thermodynamic control of metabolism is exerted through near equilibrium reactions that determine. (1) the concentrations of metabolic substrates for enzymes that catalyze irreversible steps and (2) the concentrations of small molecules (AMP, ADP, etc.) that regulate the activity of irreversible reactions in metabolic pathways. The result is a robust homeostatic set point (−ΔGATP) with long term (virtually unlimited) stability. The rest of metabolism and its regulation is constrained to maintain this set point. Thermodynamic control is illustrated using the ATP producing part of glycolysis, glyceraldehyde-3-phosphate oxidation to pyruvate. Flux through the irreversible reaction, pyruvate kinase (PK), is primarily determined by the rate of ATP consumption. Change in the rate of ATP consumption causes mismatch between use and production of ATP. The resulting change in [ATP]/[ADP][Pi], through near equilibrium of the reactions preceding PK, alters the concentrations of ADP and phosphoenolpyruvate (PEP), the substrates for PK. The changes in ADP and PEP alter flux through PK appropriately for restoring equality of ATP production and consumption. These reactions appeared in the very earliest lifeforms and are hypothesized to have established the set point for energy metabolism. As evolution included more metabolic functions, additional layers of control were needed to integrate new functions into existing metabolism without changing the homeostatic set point. Addition of gluconeogenesis, for example, resulted in added regulation to PK activity to prevent futile cycling; PK needs to be turned off during gluconeogenesis because flux through the enzyme would waste energy (ATP), subtracting from net glucose synthesis and decreasing overall efficiency.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Buxton RB. The thermodynamics of thinking: connections between neural activity, energy metabolism and blood flow. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190624. [PMID: 33190604 DOI: 10.1098/rstb.2019.0624] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several current functional neuroimaging methods are sensitive to cerebral metabolism and cerebral blood flow (CBF) rather than the underlying neural activity itself. Empirically, the connections between metabolism, flow and neural activity are complex and somewhat counterintuitive: CBF and glycolysis increase more than seems to be needed to provide oxygen and pyruvate for oxidative metabolism, and the oxygen extraction fraction is relatively low in the brain and decreases when oxygen metabolism increases. This work lays a foundation for the idea that this unexpected pattern of physiological changes is consistent with basic thermodynamic considerations related to metabolism. In the context of this thermodynamic framework, the apparent mismatches in metabolic rates and CBF are related to preserving the entropy change of oxidative metabolism, specifically the O2/CO2 ratio in the mitochondria. However, the mechanism supporting this CBF response is likely not owing to feedback from a hypothetical O2 sensor in tissue, but rather is consistent with feed-forward control by signals from both excitatory and inhibitory neural activity. Quantitative predictions of the thermodynamic framework, based on models of O2 and CO2 transport and possible neural drivers of CBF control, are in good agreement with a wide range of experimental data, including responses to neural activation, hypercapnia, hypoxia and high-altitude acclimatization. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Richard B Buxton
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA 92093-0677, USA
| |
Collapse
|
13
|
Michaeloudes C, Bhavsar PK, Mumby S, Xu B, Hui CKM, Chung KF, Adcock IM. Role of Metabolic Reprogramming in Pulmonary Innate Immunity and Its Impact on Lung Diseases. J Innate Immun 2019; 12:31-46. [PMID: 31786568 DOI: 10.1159/000504344] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Lung innate immunity is the first line of defence against inhaled allergens, pathogens and environmental pollutants. Cellular metabolism plays a key role in innate immunity. Catabolic pathways, including glycolysis and fatty acid oxidation (FAO), are interconnected with biosynthetic and redox pathways. Innate immune cell activation and differentiation trigger extensive metabolic changes that are required to support their function. Pro-inflammatory polarisation of macrophages and activation of dendritic cells, mast cells and neutrophils are associated with increased glycolysis and a shift towards the pentose phosphate pathway and fatty acid synthesis. These changes provide the macromolecules required for proliferation and inflammatory mediator production and reactive oxygen species for anti-microbial effects. Conversely, anti-inflammatory macrophages use primarily FAO and oxidative phosphorylation to ensure efficient energy production and redox balance required for prolonged survival. Deregulation of metabolic reprogramming in lung diseases, such as asthma and chronic obstructive pulmonary disease, may contribute to impaired innate immune cell function. Understanding how innate immune cell metabolism is altered in lung disease may lead to identification of new therapeutic targets. This is important as drugs targeting a number of metabolic pathways are already in clinical development for the treatment of other diseases such as cancer.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom,
| | - Pankaj K Bhavsar
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Sharon Mumby
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Bingling Xu
- Respiratory and Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Christopher Kim Ming Hui
- Respiratory and Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kian Fan Chung
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Ian M Adcock
- Experimental Studies and Cell and Molecular Biology, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
14
|
Current Status and Future Prospects of Clinically Exploiting Cancer-specific Metabolism-Why Is Tumor Metabolism Not More Extensively Translated into Clinical Targets and Biomarkers? Int J Mol Sci 2019; 20:ijms20061385. [PMID: 30893889 PMCID: PMC6471292 DOI: 10.3390/ijms20061385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor cells exhibit a specialized metabolism supporting their superior ability for rapid proliferation, migration, and apoptotic evasion. It is reasonable to assume that the specific metabolic needs of the tumor cells can offer an array of therapeutic windows as pharmacological disturbance may derail the biochemical mechanisms necessary for maintaining the tumor characteristics, while being less important for normally proliferating cells. In addition, the specialized metabolism may leave a unique metabolic signature which could be used clinically for diagnostic or prognostic purposes. Quantitative global metabolic profiling (metabolomics) has evolved over the last two decades. However, despite the technology’s present ability to measure 1000s of endogenous metabolites in various clinical or biological specimens, there are essentially no examples of metabolomics investigations being translated into actual utility in the cancer clinic. This review investigates the current efforts of using metabolomics as a tool for translation of tumor metabolism into the clinic and further seeks to outline paths for increasing the momentum of using tumor metabolism as a biomarker and drug target opportunity.
Collapse
|
15
|
Wilson DF, Matschinsky FM. Metabolic homeostasis: oxidative phosphorylation and the metabolic requirements of higher plants and animals. J Appl Physiol (1985) 2018; 125:1183-1192. [DOI: 10.1152/japplphysiol.00352.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A model of oxidative phosphorylation and its regulation is presented, which is consistent with the experimental data on metabolism in higher plants and animals. The variables that provide real-time control of metabolic status are: intramitochondrial [NAD+]/[NADH], energy state ([ATP]/[ADP][Pi]), and local oxygen concentration ([O2]). ATP consumption and respiratory chain enzyme content are tissue specific (liver vs. heart muscle), and the latter is modulated by chronic alterations in ATP consumption (i.e., endurance training etc.). ATP consumption affects the energy state, which increases or decreases as necessary to match synthesis with consumption. [NAD+]/[NADH], local [O2], and respiratory chain content determine the energy state at which match of synthesis and utilization is achieved. Tissues vary widely in their ranges of ATP consumption. Expressed as the turnover of cytochrome c, the rates may change little (7 to 12/s) (liver) or a lot (1 to >300/s) (flight muscle of birds, bats, and insects). Ancillary metabolic pathways, including creatine or arginine kinase, glycerol phosphate shuttle, fatty acid, and citric acid cycle dehydrogenases, are responsible for meeting tissue-specific differences in maximal rate and range in ATP utilization without displacing metabolic homeostasis. Intramitochondrial [NAD+]/[NADH], [ATP], and [Pi] are adjusted to keep [ADP] and [AMP] similar for all tissues despite large differences in ranges in ATP utilization. This is essential because [ADP] and [AMP], particularly the latter, have major roles in regulating the activity of many enzymes and signaling pathways (AMP deaminase, AMP dependent protein kinases, etc.) common to all higher plants and animals. NEW & NOTEWORTHY Oxidative phosphorylation has an intrinsic program that sets and stabilizes cellular energy state ([ATP]/[ADP][Pi]), and thereby metabolic homeostasis. A computational model consistent with regulation of oxidative phosphorylation in higher plants and animals is presented. Focus is on metabolism ancillary to oxidative phosphorylation by which it was integrated into preexisting metabolic regulation and adapted by evolution to develop cells and tissues with differing rates of ATP utilization: i.e., liver versus brain versus muscle.
Collapse
Affiliation(s)
- David F. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Regulation of energy metabolism in the growth plate and osteoarthritic chondrocytes. Rheumatol Int 2018; 38:1963-1974. [DOI: 10.1007/s00296-018-4103-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022]
|
17
|
Golub AS, Dodhy SC, Pittman RN. Oxygen dependence of respiration in rat spinotrapezius muscle contracting at 0.5-8 twitches per second. J Appl Physiol (1985) 2018; 125:124-133. [PMID: 29494286 DOI: 10.1152/japplphysiol.01136.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The oxygen dependence of respiration was obtained in situ in microscopic regions of rat spinotrapezius muscle for different levels of metabolic activity produced by electrical stimulation at rates from 0.5 to 8 Hz. The rate of O2 consumption (V̇o2) was measured with phosphorescence quenching microscopy (PQM) as the rate of O2 disappearance in a muscle with rapid flow arrest. The phosphorescent oxygen probe was loaded into the interstitial space of the muscle to give O2 tension (Po2) in the interstitium. A set of sigmoid curves relating the Po2 dependence of V̇o2 was obtained with a Po2-dependent region below a characteristic Po2 (~30 mmHg) and a Po2-independent region above this Po2. The V̇o2(Po2) plots were fit by the Hill equation containing O2 demand (rest to 8 Hz: 216 ± 26 to 636 ± 77 nl O2/cm3 s) and the Po2 value corresponding to O2 demand/2 (rest to 8 Hz: 22 ± 4 to 11 ± 1 mmHg). The initial Po2 and V̇o2 pairs of values measured at the moment of flow arrest formed a straight line, determining the rate of oxygen supply. This line had a negative slope, equal to the oxygen conductance for the O2 supply chain. For each level of tissue blood flow the set of possible values of Po2 and V̇o2 consists of the intersection points between this O2 supply line and the set of V̇o2 curves. An electrical analogy for the intraorgan O2 supply and consumption is an inverting transistor amplifier, which allows the use of graphic analysis methods for prediction of the behavior of the oxygen processing system in organs. NEW & NOTEWORTHY The sigmoidal shape of curves describing oxygen dependence of muscle respiration varies from basal to maximal workload and characterizes the oxidative metabolism of muscle. The rate of O2 supply depends on extracellular O2 tension and is determined by the overall oxygen conductance in the muscle. The dynamics of oxygen consumption is determined by the supply line that intersects the oxygen demand curves. An electrical analogy for the oxygen supply/consumption system is an inverting transistor amplifier.
Collapse
Affiliation(s)
- Aleksander S Golub
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia
| | - Sami C Dodhy
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia
| | - Roland N Pittman
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
18
|
Zhu XH, Lee BY, Chen W. Functional energetic responses and individual variance of the human brain revealed by quantitative imaging of adenosine triphosphate production rates. J Cereb Blood Flow Metab 2018; 38:959-972. [PMID: 29633649 PMCID: PMC5998995 DOI: 10.1177/0271678x18769039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 03/12/2018] [Indexed: 01/13/2023]
Abstract
Cellular ATP energy metabolism and regulation are essential for brain function and health. Given the high ATP expenditure at resting-state, it is not yet clear how the human brain at working-state can effectively regulate ATP production to meet higher energy requirement. Through quantitative measurement of regional cerebral ATP production rates and associated neurophysiological parameters in human visual cortex at rest and during visual stimulation, we found significant stimulus-induced and highly correlated neuroenergetic changes, indicating distinctive and complementary roles of the ATP synthesis reactions in supporting evoked neuronal activity and maintaining ATP homeostasis. We also uncovered large individual variances in the neuroenergetic responses and significant reductions in intracellular [H+] and free [Mg2+] during the stimulation. These results provide new insights into the mechanism underlying the brain ATP energy regulation and present a sensitive and much-needed neuroimaging tool for quantitatively assessing neuroenergetic state in healthy and diseased human brain.
Collapse
Affiliation(s)
- Xiao-Hong Zhu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Byeong-Yeul Lee
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Wei Chen
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
19
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
20
|
Mtaweh H, Tuira L, Floh AA, Parshuram CS. Indirect Calorimetry: History, Technology, and Application. Front Pediatr 2018; 6:257. [PMID: 30283765 PMCID: PMC6157446 DOI: 10.3389/fped.2018.00257] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/28/2018] [Indexed: 12/29/2022] Open
Abstract
Measurement of energy expenditure is important in order to determine basal metabolic rate and inform energy prescription provided. Indirect calorimetry is the reference standard and clinically recommended means to measure energy expenditure. This article reviews the historical development, technical, and logistic challenges of indirect calorimetry measurement, and provides case examples for practicing clinicians. Formulae to estimate energy expenditure are highly inaccurate and reinforce the role of the indirect calorimetry and the importance of understanding the strength and limitation of the method and its application.
Collapse
Affiliation(s)
- Haifa Mtaweh
- Department of Critical Care Medicine, The Hospital for Sick Children, University Ave, Toronto, ON, Canada
| | - Lori Tuira
- Department of Clinical Dietetics, The Hospital for Sick Children, University Ave, Toronto, ON, Canada
| | - Alejandro A Floh
- Department of Critical Care Medicine, The Hospital for Sick Children, University Ave, Toronto, ON, Canada
| | - Christopher S Parshuram
- Department of Critical Care Medicine, The Hospital for Sick Children, University Ave, Toronto, ON, Canada
| |
Collapse
|
21
|
Schwahn K, Beleggia R, Omranian N, Nikoloski Z. Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data. FRONTIERS IN PLANT SCIENCE 2017; 8:2152. [PMID: 29326746 PMCID: PMC5741659 DOI: 10.3389/fpls.2017.02152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Recent advances in metabolomics technologies have resulted in high-quality (time-resolved) metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA) based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higher-order dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks.
Collapse
Affiliation(s)
- Kevin Schwahn
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Romina Beleggia
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria, Centro di Ricerca per la Cerealicoltura e le Colture Industriali (CREA-CI), Foggia, Italy
| | - Nooshin Omranian
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
22
|
Wilson DF. Oxidative phosphorylation: regulation and role in cellular and tissue metabolism. J Physiol 2017; 595:7023-7038. [PMID: 29023737 PMCID: PMC5709332 DOI: 10.1113/jp273839] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative phosphorylation provides most of the ATP that higher animals and plants use to support life and is responsible for setting and maintaining metabolic homeostasis. The pathway incorporates three consecutive near equilibrium steps for moving reducing equivalents between the intramitochondrial [NAD+ ]/[NADH] pool to molecular oxygen, with irreversible reduction of oxygen to bound peroxide at cytochrome c oxidase determining the net flux. Net flux (oxygen consumption rate) is determined by demand for ATP, with feedback by the energy state ([ATP]/[ADP][Pi ]) regulating the pathway. This feedback affects the reversible steps equally and independently, resulting in the rate being coupled to ([ATP]/[ADP][Pi ])3 . With increasing energy state, oxygen consumption decreases rapidly until a threshold is reached, above which there is little further decrease. In most cells, [ATP] and [Pi ] are much higher than [ADP] and change in [ADP] is primarily responsible for the change in energy state. As a result, the rate of ATP synthesis, plotted against [ADP], remains low until [ADP] reaches about 30 μm and then increases rapidly with further increase in [ADP]. The dependencies on energy state and [ADP] near the threshold can be fitted by the Hill equation with a Hill coefficients of about -2.6 and 4.2, respectively. The homeostatic set point for metabolism is determined by the threshold, which can be modulated by the PO2 and intramitochondrial [NAD+ ]/[NADH]. The ability of oxidative phosphorylation to precisely set and maintain metabolic homeostasis is consistent with it being permissive of, and essential to, development of higher plants and animals.
Collapse
Affiliation(s)
- David F. Wilson
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
23
|
Reducing mitochondrial bound hexokinase II mediates transition from non-injurious into injurious ischemia/reperfusion of the intact heart. J Physiol Biochem 2017; 73:323-333. [PMID: 28258543 PMCID: PMC5534207 DOI: 10.1007/s13105-017-0555-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/10/2017] [Indexed: 01/11/2023]
Abstract
Ischemia/reperfusion (I/R) of the heart becomes injurious when duration of the ischemic insult exceeds a certain threshold (approximately ≥20 min). Mitochondrial bound hexokinase II (mtHKII) protects against I/R injury, with the amount of mtHKII correlating with injury. Here, we examine whether mtHKII can induce the transition from non-injurious to injurious I/R, by detaching HKII from mitochondria during a non-injurious I/R interval. Additionally, we examine possible underlying mechanisms (increased reactive oxygen species (ROS), increased oxygen consumption (MVO2) and decreased cardiac energetics) associated with this transition. Langendorff perfused rat hearts were treated for 20 min with saline, TAT-only or 200 nM TAT-HKII, a peptide that translocates HKII from mitochondria. Then, hearts were exposed to non-injurious 15-min ischemia, followed by 30-min reperfusion. I/R injury was determined by necrosis (LDH release) and cardiac mechanical recovery. ROS were measured by DHE fluorescence. Changes in cardiac respiratory activity (cardiac MVO2 and efficiency and mitochondrial oxygen tension (mitoPO2) using protoporphyrin IX) and cardiac energetics (ATP, PCr, ∆GATP) were determined following peptide treatment. When exposed to 15-min ischemia, control hearts had no necrosis and 85% recovery of function. Conversely, TAT-HKII treatment resulted in significant LDH release and reduced cardiac recovery (25%), indicating injurious I/R. This was associated with increased ROS during ischemia and reperfusion. TAT-HKII treatment reduced MVO2 and improved energetics (increased PCr) before ischemia, without affecting MVO2/RPP ratio or mitoPO2. In conclusion, a reduction in mtHKII turns non-injurious I/R into injurious I/R. Loss of mtHKII was associated with increased ROS during ischemia and reperfusion, but not with increased MVO2 or decreased cardiac energetics before damage occurs.
Collapse
|
24
|
Wilson DF. Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis. J Appl Physiol (1985) 2016; 122:611-619. [PMID: 27789771 DOI: 10.1152/japplphysiol.00715.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 11/22/2022] Open
Abstract
Oxidative phosphorylation is the primary source of metabolic energy, in the form of ATP, in higher plants and animals, but its regulation in vivo is not well understood. A model has been developed for oxidative phosphorylation in vivo that predicts behavior patterns that are both distinctive and consistent with experimental measurements of metabolism in intact cells and tissues. A major regulatory parameter is the energy state ([ATP]/[ADP][Pi], where brackets denote concentration). Under physiological conditions, the [ATP] and [Pi] are ~100 times that of [ADP], and most of the change in energy state is through change in [ADP]. The rate of oxidative phosphorylation (y-axis) increases slowly with increasing [ADP] until a threshold is reached and then increases very rapidly and linearly with further increase in [ADP]. The dependence on [ADP] can be characterized by a threshold [ADP] (T) and control strength (CS), the normalized slope above threshold (Δy/(Δx/T). For normoxic cells without creatine kinase, T is ~30 µM and CS is ~10 s-1 Myocytes and cells with larger ranges of rates of ATP utilization, however, have the same [ADP]- and [AMP]-dependent mechanisms regulating metabolism and gene expression. To compensate, these cells have creatine kinase, and hydrolysis/synthesis of creatine phosphate increases the change in [Pi] and thereby CS. Cells with creatine kinase have [ADP] and [AMP], which are similar to cells without creatine kinase, despite the large differences in metabolic rate. 31P measurements in human muscles during work-to-rest and rest-to-work transitions are consistent with predictions of the model.NEW & NOTEWORTHY A model developed for oxidative phosphorylation in vivo is shown to predict behavior patterns that are both novel and consistent with experimental measurements of metabolism in working muscle and other cells. The dependence of the rate on ADP concentration shows a pronounced threshold with a steep, nearly linear increase above the threshold. The threshold determines the homeostatic set point, and the slope above threshold determines how much metabolism changes in response to varied energy demand.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Wilson DF. Regulation of metabolism: the work-to-rest transition in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 310:E633-E642. [PMID: 26837809 DOI: 10.1152/ajpendo.00512.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/28/2016] [Indexed: 11/22/2022]
Abstract
The behavior of oxidative phosphorylation predicted by a model for the mechanism and kinetics of cytochrome c oxidase is compared with the experimentally observed behavior during the work-to-rest transition in skeletal muscle. For both experiment and model, when work stops, the increase in creatine phosphate and decrease in creatine and inorganic phosphate concentrations ([CrP], [Cr], and [Pi]) begin immediately. The rate of change for each is maximal and then progressively slows as the increasing energy state ([ATP]/[ADP][Pi]) suppresses the rate of oxidative phosphorylation. The time courses can be reasonably fitted to single exponential curves with similar time constants. The energy state in the working and resting steady states at constant Po2 are dependent on the intramitochondrial [NAD+]/[NADH], mitochondrial content, and size of the creatine pool ([CrP] + [Cr]). The rate of change in [CrP] is linearly correlated with [CrP] and with [Pi] and [Cr]. The time constant for [CrP] increase in the resting and working steady states, and the rate of decrease in oxygen consumption are similarly dependent on the Po2 in the inspired gas (experimental) or tissue Po2 (model). Myoglobin strongly buffers intracellular Po2 below ∼15 torr, truncating the low end of the oxygen distribution in the tissue and suppressing intra- and intermyocyte oxygen gradients. The predictions of the model are consistent with the experimental data throughout the work/rest transition, providing valuable insights into the regulation of cellular and tissue metabolism.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
King GJ. Crop epigenetics and the molecular hardware of genotype × environment interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:968. [PMID: 26594221 PMCID: PMC4635209 DOI: 10.3389/fpls.2015.00968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/22/2015] [Indexed: 05/04/2023]
Abstract
Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalization within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behavior of epigenetic marks such as DNA cytosine methylation (5mC), and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears to be a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localized ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involves specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the internal environment of plant nuclei. It is hoped that this will generate a deeper understanding of the molecular mechanisms underlying genotype × environment interactions that may be beneficial for long-term improvement of crop performance in less predictable climates.
Collapse
Affiliation(s)
- Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Crops for the Future, Biotechnology and Breeding Systems, Semenyih, Malaysia
| |
Collapse
|
27
|
Wilson DF. Regulation of metabolism: the rest-to-work transition in skeletal muscle. Am J Physiol Endocrinol Metab 2015; 309:E793-801. [PMID: 26394666 DOI: 10.1152/ajpendo.00355.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial oxidative phosphorylation is programmed to set and maintain metabolic homeostasis, and understanding that program is essential for an integrated view of cellular and tissue metabolism. The behavior predicted by a mechanism-based model for oxidative phosphorylation is compared with that experimentally measured for skeletal muscle when work is initiated. For the model, initiation of work is simulated by imposing a rate of ATP utilization of either 0.6 (equivalent of 13.4 ml O2·100 g tissue(-1)·min(-1) or 6 μmol O2·g tissue(-1)·min(-1)) or 0.3 mM ATP/s. Creatine phosphate ([CrP]) decrease, both experimentally measured and predicted by the model, can be fit to a single exponential. Increase in ATP synthesis begins immediately but can show a "lag period," during which the rate accelerates. The length of the lag period is similar for both experiment and model; in the model, the lag depends on intramitochondrial [NAD(+)]/[NADH], mitochondrial content, and size of the creatine pool ([CrP] + [Cr]) as well as the resting [CrP]/[Cr]. For in vivo conditions, increase in oxygen consumption may be linearly correlated with a decrease in [CrP] and an increase in inorganic phosphate ([Pi]) and [Cr]. The decrease in [CrP], resting and working steady state [CrP], and the increase in oxygen consumption are dependent on the Po2 in the inspired gas (experimental) or tissue Po2 (model). The metabolic behavior predicted by the model is consistent with available experimental measurements in muscle upon initiation of work, with the model providing valuable insight into how metabolic homeostasis is set and maintained.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Abstract
Evidence is presented that the rate and equilibrium constants in mitochondrial oxidative phosphorylation set and maintain metabolic homeostasis in eukaryotic cells. These internal constants determine the energy state ([ATP]/[ADP][Pi]), and the energy state maintains homeostasis through a bidirectional sensory/signaling control network that reaches every aspect of cellular metabolism. The energy state is maintained with high precision (to ∼1 part in 10(10)), and the control system can respond to transient changes in energy demand (ATP utilization) of more than 100 times the resting rate. Epigenetic and environmental factors are able to "fine-tune" the programmed set point over a narrow range to meet the special needs associated with cell differentiation and chronic changes in metabolic requirements. The result is robust across-platform control of metabolism, which is essential to cellular differentiation and the evolution of complex organisms. A model of oxidative phosphorylation is presented, for which the steady-state rate expression has been derived and computer programmed. The behavior of oxidative phosphorylation predicted by the model is shown to fit the experimental data available for isolated mitochondria as well as for cells and tissues. This includes measurements from several different mammalian tissues as well as from insect flight muscle and plants. The respiratory chain and oxidative phosphorylation is remarkably similar for all higher plants and animals. This is consistent with the efficient synthesis of ATP and precise control of metabolic homeostasis provided by oxidative phosphorylation being a key to cellular differentiation and the evolution of structures with specialized function.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Balestra GM, Mik EG, Eerbeek O, Specht PAC, van der Laarse WJ, Zuurbier CJ. Increased in vivo mitochondrial oxygenation with right ventricular failure induced by pulmonary arterial hypertension: mitochondrial inhibition as driver of cardiac failure? Respir Res 2015; 16:6. [PMID: 25645252 PMCID: PMC4320611 DOI: 10.1186/s12931-015-0178-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/20/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The leading cause of mortality due to pulmonary arterial hypertension (PAH) is failure of the cardiac right ventricle. It has long been hypothesized that during the development of chronic cardiac failure the heart becomes energy deprived, possibly due to shortage of oxygen at the level of cardiomyocyte mitochondria. However, direct evaluation of oxygen tension levels within the in vivo right ventricle during PAH is currently lacking. Here we directly evaluated this hypothesis by using a recently reported technique of oxygen-dependent quenching of delayed fluorescence of mitochondrial protoprophyrin IX, to determine the distribution of mitochondrial oxygen tension (mitoPO2) within the right ventricle (RV) subjected to progressive PAH. METHODS PAH was induced through a single injection of monocrotaline (MCT). Control (saline-injected), compensated RV hypertrophy (30 mg/kg MCT; MCT30), and RV failure (60 mg/kg MCT; MCT60) rats were compared 4 wk after treatment. The distribution of mitoPO2 within the RV was determined in mechanically-ventilated, anaesthetized animals, applying different inspired oxygen (FiO2) levels and two increment dosages of dobutamine. RESULTS MCT60 resulted in RV failure (increased mortality, weight loss, increased lung weight), MCT30 resulted in compensated RV hypertrophy. At 30% or 40% FiO2, necessary to obtain physiological arterial PO2 in the diseased animals, RV failure rats had significantly less mitochondria (15% of total mitochondria) in the 0-20 mmHg mitoPO2 range than hypertrophied RV rats (48%) or control rats (54%). Only when oxygen supply was reduced to 21% FiO2, resulting in low arterial PO2 for the MCT60 animals, or when oxygen demand increased with high dose dobutamine, the number of failing RV mitochondria with low oxygen became similar to control RV. In addition, metabolic enzyme analysis revealed similar mitochondrial mass, increased glycolytic hexokinase activity following MCT, with increased lactate dehydrogenase activity only in compensated hypertrophied RV. CONCLUSIONS Our novel observation of increased mitochondrial oxygenation suggests down-regulation of in vivo mitochondrial oxygen consumption, in the absence of hypoxia, with transition towards right ventricular failure induced by pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Gianmarco M Balestra
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC- University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Egbert G Mik
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC- University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Otto Eerbeek
- Department of Anatomy, Embryology and Physiology, AMC, Amsterdam, The Netherlands.
| | - Patricia A C Specht
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC- University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | - Coert J Zuurbier
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology, AMC, Amsterdam, The Netherlands. .,Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Wilson DF, Vinogradov SA. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation. J Appl Physiol (1985) 2014; 117:1431-9. [PMID: 25324518 DOI: 10.1152/japplphysiol.00737.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial oxidative phosphorylation has a central role in eukaryotic metabolism, providing the energy (ATP) required for survival. Regulation of this important pathway is, however, still not understood, largely due to limitations in the ability to measure the essential metabolites, including oxygen (pO2, oxygen pressure), ADP, and AMP. In addition, neither the mechanism of oxygen reduction by mitochondrial cytochrome c oxidase nor how its rate is controlled is understood, although this enzyme determines the rate of oxygen consumption and thereby the rate of ATP synthesis. Cytochrome c oxidase is responsible for reduction of molecular oxygen to water using reducing equivalents donated by cytochrome c and for site 3 energy coupling in oxidative phosphorylation. A mechanism-based model of the cytochrome c oxidase reaction is presented in which transfer of reducing equivalents from the lower- to the higher-potential region of the coupling site occurs against an opposing energy barrier, Q. The steady-state rate equation is fitted to data for the dependence of mitochondrial respiratory rate on cytochrome c reduction, oxygen pressure (pO2), and [ATP]/[ADP][Pi] at pH 6.5 to 8.35 (where Pi is inorganic phosphate). The fit of the rate expression to the experimental data is very good for all experimental conditions. Levels of the intermediates in oxygen reduction in the oxidase reaction site have been calculated. An intermediate in the reaction, tentatively identified as peroxide, bridged between the iron and copper atoms of the reaction site has a central role in coupling mitochondrial respiration to the [ATP]/[ADP][Pi].
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Wilson DF, Harrison DK, Vinogradov A. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria. J Appl Physiol (1985) 2014; 117:1424-30. [PMID: 25324517 DOI: 10.1152/japplphysiol.00736.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cytochrome c oxidase is the enzyme responsible for oxygen consumption by mitochondrial oxidative phosphorylation and coupling site 3 of oxidative phosphorylation. In this role it determines the cellular rate of ATP synthesis by oxidative phosphorylation and is the key to understanding how energy metabolism is regulated. Four electrons are required for the reduction of oxygen to water, and these are provided by the one-electron donor, cytochrome c. The rate of oxygen consumption (ATP synthesis) is dependent on the fraction of cytochrome c reduced (fred), oxygen pressure (pO2), energy state ([ATP]/[ADP][Pi]), and pH. In coupled mitochondria (high energy state) and pO2 >60 torr, the rate increases in an exponential-like fashion with increasing fred. When the dependence on fred is fitted to the equation rate = A: (fred)(b), A: decreased from 100 to near 20, and B: increased from 1.3 to 4 as the pH of the medium increased from 6.5 to 8.3. During oxygen depletion from the medium fred progressively increases and the rate of respiration decreases. The respiratory rate falls to ½ (P50) by about 1.5 torr, at which point fred is substantially increased. The metabolically relevant dependence on pO2 is obtained by correcting for the increase in fred, in which case the P50 is 12 torr. Adding an uncoupler of oxidative phosphorylation eliminates the dependence of the cytochrome c oxidase activity on pH and energy state. The respiratory rate becomes proportional to fred and the P50 decreases to less than 1 torr.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | | | | |
Collapse
|