1
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
2
|
Panza GS, Burtscher J, Zhao F. Intermittent hypoxia: a call for harmonization in terminology. J Appl Physiol (1985) 2023; 135:886-890. [PMID: 37560767 PMCID: PMC10642510 DOI: 10.1152/japplphysiol.00458.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Mild intermittent hypoxia may be a potent novel strategy to improve cardiovascular function, motor and cognitive function, and altitude acclimatization. However, there is still a stigma surrounding the field of intermittent hypoxia (IH). Major contributors to this stigma may be due to the overlapping terminology, heterogeneous methodological approaches, and an almost dogmatic focus on different mechanistic underpinnings in different fields of research. Many clinicians and investigators explore the pathophysiological outcomes following long-term exposure to IH in an attempt to improve our understanding of sleep apnea (SA) and develop new treatment plans. However, others use IH as a tool to improve physiological outcomes such as blood pressure, motor function, and altitude acclimatization. Unfortunately, studies investigating the pathophysiology of SA or the potential benefit of IH use similar, unstandardized terminologies facilitating a confusion surrounding IH protocols and the intentions of various studies. In this perspective paper, we aim to highlight IH terminology-related issues with the aim of spurring harmonization of the terminology used in the field of IH research to account for distinct outcomes of hypoxia exposure depending on protocol and individuum.
Collapse
Affiliation(s)
- Gino S Panza
- Department of Research and Development, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, Michigan, United States
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fei Zhao
- Department of Research and Development, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
3
|
McNaughton KMD, Witherow JL, Dupuche CB, Peebles KC, Elphick TG, Hudson AL, McCaughey EJ, Boswell-Ruys CL, Butler JE. Inspiratory muscle reflex control after incomplete cervical spinal cord injury. J Appl Physiol (1985) 2022; 133:1318-1326. [PMID: 36356259 DOI: 10.1152/japplphysiol.00113.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In healthy individuals, loading inspiratory muscles by brief inspiratory occlusion produces a short-latency inhibitory reflex (IR) in the electromyographic (EMG) activity of scalene and diaphragm muscles. This IR may play a protective role to prevent aspiration and airway collapse during sleep. In people with motor and sensory complete cervical spinal cord injury (cSCI), who were able to breathe independently, this IR was predominantly absent. Here, we investigated the reflex response to brief airway occlusion in 16 participants with sensory incomplete cSCI [American spinal injury association impairment scale (AIS) score B or C]. Surface EMG was recorded from scalene muscles and the lateral chest wall (overlying diaphragm). The airway occlusion evoked a small change in mouth pressure resembling a physiological occlusion. The short-latency IR was present in 10 (63%) sensory incomplete cSCI participants; significantly higher than the IR incidence observed in complete cSCI participants in our previous study (14%; P = 0.003). When present, mean IR latency across all muscles was 58 ms (range 29-79 ms), and mean rectified EMG amplitude decreased to 37% preocclusion levels. Participants without an IR had untreated severe obstructive sleep apnea (OSA), in contrast to those with an IR, who had either had no, mild, or treated OSA (P = 0.002). Insufficient power did not allow statistical comparison between IR presence or absence and participant clinical characteristics. In conclusion, spared sensory connections or intersegmental connections may be necessary to generate the IR. Future studies to establish whether IR presence is related to respiratory morbidity in the tetraplegic population are required.NEW & NOTEWORTHY Individuals with incomplete cSCI were tested for the presence of a short latency reflex inhibition of inspiratory muscles, by brief airway occlusion. The reflex was 4.5 times more prevalent in this group compared with those with complete cSCI and is similar to the incidence in able-bodied people. Participants without this reflex all had untreated severe OSA, in contrast to those with an IR, who either had no, mild, or treated OSA. This work reveals novel differences in the reflex control of inspiratory muscles across the cSCI population.
Collapse
Affiliation(s)
- Keith M D McNaughton
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,Department of Health Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Jessica L Witherow
- Department of Health Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Crystal B Dupuche
- Department of Health Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Karen C Peebles
- Department of Health Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Tom G Elphick
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Anna L Hudson
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Euan J McCaughey
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia.,Queen Elizabeth National Spinal Injuries Unit, Glasgow, United Kingdom
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,Department of Physiotherapy, Prince of Wales Hospital, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Jane E Butler
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
4
|
Farré R, Almendros I, Martínez-García MÁ, Gozal D. Experimental Models to Study End-Organ Morbidity in Sleep Apnea: Lessons Learned and Future Directions. Int J Mol Sci 2022; 23:ijms232214430. [PMID: 36430904 PMCID: PMC9696027 DOI: 10.3390/ijms232214430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep apnea (SA) is a very prevalent sleep breathing disorder mainly characterized by intermittent hypoxemia and sleep fragmentation, with ensuing systemic inflammation, oxidative stress, and immune deregulation. These perturbations promote the risk of end-organ morbidity, such that SA patients are at increased risk of cardiovascular, neurocognitive, metabolic and malignant disorders. Investigating the potential mechanisms underlying SA-induced end-organ dysfunction requires the use of comprehensive experimental models at the cell, animal and human levels. This review is primarily focused on the experimental models employed to date in the study of the consequences of SA and tackles 3 different approaches. First, cell culture systems whereby controlled patterns of intermittent hypoxia cycling fast enough to mimic the rates of episodic hypoxemia experienced by patients with SA. Second, animal models consisting of implementing realistic upper airway obstruction patterns, intermittent hypoxia, or sleep fragmentation such as to reproduce the noxious events characterizing SA. Finally, human SA models, which consist either in subjecting healthy volunteers to intermittent hypoxia or sleep fragmentation, or alternatively applying oxygen supplementation or temporary nasal pressure therapy withdrawal to SA patients. The advantages, limitations, and potential improvements of these models along with some of their pertinent findings are reviewed.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
- Correspondence: (R.F.); (D.G.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
| | - Miguel-Ángel Martínez-García
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, The University of Missouri, Columbia, MO 65201, USA
- Correspondence: (R.F.); (D.G.)
| |
Collapse
|
5
|
Kulikov V, Tregub P, Parshin DV, Smirnova Y, Smirnov K. Hypercapnic hypoxia improves cognitive and motor functions of children with cerebral palsy. Neurol Res 2022; 44:738-747. [PMID: 35275043 DOI: 10.1080/01616412.2022.2051130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A randomized, triple-blind, placebo-controlled trial involving 42 patients between 3 and 7 years of age with spastic cerebral palsy was performed. For the treatment test group (n=22), daily respiratory exercises with hypercapnic hypoxia were performed using a Carbonic training apparatus for 20 minutes per day; a total of 14 to 16 sessions were performed. Before the start of the study and the day after training was completed, the patients underwent neurological and neurophysiological examinations (electroencephalography, magnetic stimulation of the pyramidal tract, and cognitive potentials Р300).The evoked potentials showed a decrease in the peak latency of the P3 component of the test group after treatment (302 ms) that was more pronounced than that of the placebo group (305 ms; p<0.05). Magnetic stimulation showed that hypercapnic hypoxic training resulted in reductions in central motor conduction time by 2.2 to 2.5 ms (p<0.05) and in the excitation threshold of the motor cortex by 12% to 16% (р<0.01) depending on the lateralization; The strategy of adjusting to hypercapnic hypoxia, either unfavorable (hyperventilation and avoidance) or favorable (homeostatic with the achievement of preset values for hypercapnia and hypoxia), did not change during the process of training in the placebo group; however, it shifted considerably toward favorable (from 33% to 57%; р<0.05) in the test group.Respiratory training with hypercapnic hypoxia can have a positive impact on the functional state of the nervous system of children with cerebral palsy and can be considered a method of improving the efficiency of standard therapy.
Collapse
Affiliation(s)
- Vp Kulikov
- Altai Medical Institute of Postgraduate Education, LLC, Barnaul, Russia.,Federal State Budgetary Educational Institution of Higher Education Altai State Medical University, Barnaul, Russia
| | - Pp Tregub
- Altai Medical Institute of Postgraduate Education, LLC, Barnaul, Russia.,Federal State Budgetary Scientific Institution Research Center of Neurology, Moscow, Russia
| | - D V Parshin
- Regional State Budgetary Healthcare Institution Regional Psychoneurological Children Sanatorium , Barnaul, Russia
| | - YuV Smirnova
- Regional State Budgetary Healthcare Institution Altai Regional Clinical Center for Maternal and Child Health Care, Barnaul, Russia
| | - Kv Smirnov
- Regional State Budgetary Healthcare Institution Altai Regional Clinical Center for Maternal and Child Health Care, Barnaul, Russia
| |
Collapse
|
6
|
Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol 2021; 341:113709. [PMID: 33781731 PMCID: PMC8527806 DOI: 10.1016/j.expneurol.2021.113709] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
This review explores forms of respiratory and autonomic plasticity, and associated outcome measures, that are initiated by exposure to intermittent hypoxia. The review focuses primarily on studies that have been completed in humans and primarily explores the impact of mild intermittent hypoxia on outcome measures. Studies that have explored two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of ventilation and upper airway muscle activity, are initially reviewed. The role these forms of plasticity might have in sleep disordered breathing are also explored. Thereafter, the role of intermittent hypoxia in the initiation of autonomic plasticity is reviewed and the role this form of plasticity has in cardiovascular and hemodynamic responses during and following intermittent hypoxia is addressed. The role of these responses in individuals with sleep disordered breathing and spinal cord injury are subsequently addressed. Ultimately an integrated picture of the respiratory, autonomic and cardiovascular responses to intermittent hypoxia is presented. The goal of the integrated picture is to address the types of responses that one might expect in humans exposed to one-time and repeated daily exposure to mild intermittent hypoxia. This form of intermittent hypoxia is highlighted because of its potential therapeutic impact in promoting functional improvement and recovery in several physiological systems.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Gino Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States of America.
| |
Collapse
|
7
|
Vermeulen TD, Benbaruj J, Brown CV, Shafer BM, Floras JS, Foster GE. Peripheral chemoreflex contribution to ventilatory long-term facilitation induced by acute intermittent hypercapnic hypoxia in males and females. J Physiol 2020; 598:4713-4730. [PMID: 32744340 DOI: 10.1113/jp280458] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/30/2020] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Ventilatory long-term facilitation (vLTF) refers to respiratory neuroplasticity that develops following intermittent hypoxia in both healthy and clinical populations. A sustained hypercapnic background is argued to be required for full vLTF expression in humans. We determined whether acute intermittent hypercapnic hypoxia elicits vLTF during isocapnic-normoxic recovery in healthy males and females. We further assessed whether tonic peripheral chemoreflex drive is necessary and contributes to the expression of vLTF. Following 40 min of intermittent hypercapnic hypoxia, minute ventilation was increased throughout 50 min of isocapnic-normoxic recovery. Inhibition of peripheral chemoreflex drive with hyperoxia attenuated the magnitude of vLTF. Males and females achieve vLTF through different respiratory recruitment patterns. ABSTRACT Ventilatory long-term facilitation (vLTF) refers to respiratory neuroplasticity that manifests as increased minute ventilation ( V ̇ I ) following intermittent hypoxia. In humans, hypercapnia sustained throughout intermittent hypoxia and recovery is considered necessary for vLTF expression. We examined whether acute intermittent hypercapnic hypoxia (IHH) induces vLTF, and if peripheral chemoreflex drive contributes to vLTF throughout isocapnic-normoxic recovery. In 19 individuals (9 females, age: 22 ± 3 years; mean ± SD), measurements of tidal volume (VT ), breathing frequency (fB ), V ̇ I , and end-tidal gases ( P ET O 2 and P ETC O 2 ), were made at baseline, during IHH and 50 min of recovery. Totalling 40 min, IHH included 1 min intervals of 40 s hypercapnic hypoxia (target P ET O 2 = 50 mmHg and P ETC O 2 = +4 mmHg above baseline) and 20 s normoxia. During baseline and recovery, dynamic end-tidal forcing maintained resting P ET O 2 and P ETC O 2 and delivered 1 min of hyperoxia ( P ET O 2 = 355 ± 7 mmHg) every 5 min. The depression in V ̇ I during hyperoxia was considered an index of peripheral chemoreflex drive. Throughout recovery V ̇ I was increased 4.6 ± 3.7 l min-1 from baseline (P < 0.01). Hyperoxia depressed V ̇ I at baseline, and augmented depression was evident following IHH (Δ V ̇ I = -0.8 ± 0.9 vs. -1.7 ± 1.3 l min-1 , respectively, P < 0.01). The vLTF was similar between sexes (P = 0.15), but males had larger increases in VT than females (sex-by-time interaction, P = 0.03), and females tended to increase fB (P = 0.09). During isocapnic-normoxic recovery following IHH: (1) vLTF is expressed in healthy humans; (2) vLTF expression is attenuated but not abolished with peripheral chemoreflex inhibition by hyperoxia, suggesting a contribution from central nervous pathways in vLTF expression; and (3) males and females develop similar vLTF through different ventilatory recruitment strategies.
Collapse
Affiliation(s)
- Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada.,Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Canada
| | - Jenna Benbaruj
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
8
|
Stuckless TJR, Vermeulen TD, Brown CV, Boulet LM, Shafer BM, Wakeham DJ, Steinback CD, Ayas NT, Floras JS, Foster GE. Acute intermittent hypercapnic hypoxia and sympathetic neurovascular transduction in men. J Physiol 2020; 598:473-487. [PMID: 31805605 DOI: 10.1113/jp278941] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Intermittent hypoxia leads to long-lasting increases in muscle sympathetic nerve activity and blood pressure, contributing to increased risk for hypertension in obstructive sleep apnoea patients. We determined whether augmented vascular responses to increasing sympathetic vasomotor outflow, termed sympathetic neurovascular transduction (sNVT), accompanied changes in blood pressure following acute intermittent hypercapnic hypoxia in men. Lower body negative pressure was utilized to induce a range of sympathetic vasoconstrictor firing while measuring beat-by-beat blood pressure and forearm vascular conductance. IH reduced vascular shear stress and steepened the relationship between diastolic blood pressure and sympathetic discharge frequency, suggesting greater systemic sNVT. Our results indicate that recurring cycles of acute intermittent hypercapnic hypoxia characteristic of obstructive sleep apnoea could promote hypertension by increasing sNVT. ABSTRACT Acute intermittent hypercapnic hypoxia (IH) induces long-lasting elevations in sympathetic vasomotor outflow and blood pressure in healthy humans. It is unknown whether IH alters sympathetic neurovascular transduction (sNVT), measured as the relationship between sympathetic vasomotor outflow and either forearm vascular conductance (FVC; regional sNVT) or diastolic blood pressure (systemic sNVT). We tested the hypothesis that IH augments sNVT by exposing healthy males to 40 consecutive 1 min breathing cycles, each comprising 40 s of hypercapnic hypoxia ( P ETC O 2 : +4 ± 3 mmHg above baseline; P ET O 2 : 48 ± 3 mmHg) and 20 s of normoxia (n = 9), or a 40 min air-breathing control (n = 7). Before and after the intervention, lower body negative pressure (LBNP; 3 min at -15, -30 and -45 mmHg) was applied to elicit reflex increases in muscle sympathetic nerve activity (MSNA, fibular microneurography) when clamping end-tidal gases at baseline levels. Ventilation, arterial pressure [systolic blood pressure, diastolic blood pressure, mean arterial pressure (MAP)], brachial artery blood flow ( Q ̇ BA ), FVC ( Q ̇ BA /MAP) and MSNA burst frequency were measured continuously. Following IH, but not control, ventilation [5 L min-1 ; 95% confidence interval (CI) = 1-9] and MAP (5 mmHg; 95% CI = 1-9) were increased, whereas FVC (-0.2 mL min-1 mmHg-1 ; 95% CI = -0.0 to -0.4) and mean shear rate (-21.9 s-1 ; 95% CI = -5.8 to -38.0; all P < 0.05) were reduced. Systemic sNVT was increased following IH (0.25 mmHg burst-1 min-1 ; 95% CI = 0.01-0.49; P < 0.05), whereas changes in regional forearm sNVT were similar between IH and sham. Reductions in vessel wall shear stress and, consequently, nitric oxide production may contribute to heightened systemic sNVT and provide a potential neurovascular mechanism for elevated blood pressure in obstructive sleep apnoea.
Collapse
Affiliation(s)
- Troy J R Stuckless
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Denis J Wakeham
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Craig D Steinback
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Najib T Ayas
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
9
|
Farré R, Almendros I, Montserrat JM, Gozal D, Navajas D. Gas Partial Pressure in Cultured Cells: Patho-Physiological Importance and Methodological Approaches. Front Physiol 2018; 9:1803. [PMID: 30618815 PMCID: PMC6300470 DOI: 10.3389/fphys.2018.01803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
Gas partial pressures within the cell microenvironment are one of the key modulators of cell pathophysiology. Indeed, respiratory gases (O2 and CO2) are usually altered in respiratory diseases and gasotransmitters (CO, NO, H2S) have been proposed as potential therapeutic agents. Investigating the pathophysiology of respiratory diseases in vitro mandates that cultured cells are subjected to gas partial pressures similar to those experienced by each cell type in its native microenvironment. For instance, O2 partial pressures range from ∼13% in the arterial endothelium to values as low as 2-5% in cells of other healthy tissues and to less than 1% in solid tumor cells, clearly much lower values than those used in conventional cell culture research settings (∼19%). Moreover, actual cell O2 partial pressure in vivo changes with time, at considerably different timescales as illustrated by tumors, sleep apnea, or mechanical ventilation. Unfortunately, the conventional approach to modify gas concentrations at the above culture medium precludes the tight and exact control of intra-cellular gas levels to realistically mimic the natural cell microenvironment. Interestingly, well-controlled cellular application of gas partial pressures is currently possible through commercially available silicone-like material (PDMS) membranes, which are biocompatible and have a high permeability to gases. Cells are seeded on one side of the membrane and tailored gas concentrations are circulated on the other side of the membrane. Using thin membranes (50-100 μm) the value of gas concentration is instantaneously (<0.5 s) transmitted to the cell microenvironment. As PDMS is transparent, cells can be concurrently observed by conventional or advanced microscopy. This procedure can be implemented in specific-purpose microfluidic devices and in settings that do not require expensive or complex technologies, thus making the procedure readily implementable in any cell biology laboratory. This review describes the gas composition requirements for a cell culture in respiratory research, the limitations of current experimental settings, and also suggests new approaches to better control gas partial pressures in a cell culture.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep M. Montserrat
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Sleep Lab, Hospital Clinic of Barcelona, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, United States
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
10
|
Lui S, Torontali Z, Tadjalli A, Peever J. Brainstem Nuclei Associated with Mediating Apnea-Induced Respiratory Motor Plasticity. Sci Rep 2018; 8:12709. [PMID: 30139983 PMCID: PMC6107593 DOI: 10.1038/s41598-018-28578-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/21/2018] [Indexed: 01/30/2023] Open
Abstract
The respiratory control system is plastic. It has a working memory and is capable of retaining how respiratory stimuli affect breathing by regulating synaptic strength between respiratory neurons. For example, repeated airway obstructions trigger a form of respiratory plasticity that strengthens inspiratory activity of hypoglossal (XII) motoneurons. This form of respiratory plasticity is known as long-term facilitation (LTF) and requires noradrenaline released onto XII motoneurons. However, the brainstem regions responsible for this form of LTF remain unidentified. Here, we used electrophysiology, neuropharmacology and immunohistochemistry in adult rats to identify the brainstem regions involved in mediating LTF. First, we show that repeated airway obstructions induce LTF of XII motoneuron activity and that inactivation of the noradrenergic system prevents LTF. Second, we show that noradrenergic cells in the locus coeruleus (LC), which project to XII motoneurons, are recruited during LTF induction. Third, we show that targeted inactivation of noradrenergic LC cells during LTF induction prevents LTF. And lastly, we show that the nucleus tractus solitarius (NTS), which has known projections to the LC, is critical for LTF because its inactivation prevents LTF. Our results suggest that both the LC and NTS are involved in mediating apnea-induced LTF, and we hypothesize that a NTS → LC → XII circuit mechanism mediates this form of respiratory motor plasticity.
Collapse
Affiliation(s)
- Simon Lui
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Zoltan Torontali
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Arash Tadjalli
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - John Peever
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada. .,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
11
|
Mateika JH, Panza G, Alex R, El-Chami M. The impact of intermittent or sustained carbon dioxide on intermittent hypoxia initiated respiratory plasticity. What is the effect of these combined stimuli on apnea severity? Respir Physiol Neurobiol 2017; 256:58-66. [PMID: 29097171 DOI: 10.1016/j.resp.2017.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/13/2017] [Accepted: 10/21/2017] [Indexed: 11/28/2022]
Abstract
The following review explores the effect that intermittent or sustained hypercapnia coupled to intermittent hypoxia has on respiratory plasticity. The review explores published work which suggests that intermittent hypercapnia leads to long-term depression of respiration when administered in isolation and prevents the initiation of long-term facilitation when administered in combination with intermittent hypoxia. The review also explores the impact that sustained hypercapnia alone and in combination with intermittent hypoxia has on the magnitude of long-term facilitation. After exploring the outcomes linked to intermittent hypoxia/hypercapnia and intermittent hypoxia/sustained hypercapnia the translational relevance of the outcomes as it relates to breathing stability during sleep is addressed. The likelihood that naturally induced cycles of intermittent hypoxia, coupled to oscillations in carbon dioxide that range between hypocapnia and hypercapnia, do not initiate long-term facilitation is addressed. Moreover, the conditions under which intermittent hypoxia/sustained hypercapnia could serve to improve breathing stability and mitigate co-morbidities associated with sleep apnea are considered.
Collapse
Affiliation(s)
- Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, United States; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, United States.
| | - Gino Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Raichel Alex
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Mohamad El-Chami
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI, 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| |
Collapse
|