1
|
Jønsson AB, Krogh S, Lillelund S, Aagaard P, Kasch H, Nielsen JF. Efficacy of Blood Flow Restriction Exercise for Improving Lower Limb Muscle Strength and Function in Chronic Spinal Cord Injury: A Randomized Controlled Trial. Scand J Med Sci Sports 2024; 34:e14759. [PMID: 39636092 DOI: 10.1111/sms.14759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
The objective of the present study was to evaluate the efficacy of low-load (LL) blood flow restriction exercise (BFRE) for improving lower limb muscle strength, muscle thickness and physical function in individuals with spinal cord injury (SCI). In a randomized sham-controlled trial, 21 participants (age ≥ 18 years, SCI duration ≥ 1 year, knee extensor strength grade 2-4, ASIA A-D) were randomized to either 45-min LL-BFRE (n = 11) or sham BFRE (n = 10) twice/week for 8 weeks. The exercise protocol consisted of four sets (30 × 15 × 15 × 15 repetitions) of unilateral seated leg extensions and leg curls at 30%-40% of 1RM performed with pneumatic cuffs applied proximally on the trained limb and inflated to 40% of total arterial occlusion pressure (BFRE) or non-inflated (sham exercise). Maximal voluntary isometric quadriceps and hamstring muscle strength, quadriceps muscle thickness, thigh circumference, and physical function were assessed at baseline, after 4 and 8 weeks of training and at 4-week follow-up. No significant between-group differences were found between BFRE and sham exercise in quadriceps or hamstring muscle strength, 10-m walking test, timed up & go, 6-min walking test or the spinal cord independence measure. In contrast, a significant between-group difference favoring BFRE was present for muscle thickness and thigh circumference from baseline to 4-week follow-up (0.76 cm (95% CI: 0.32; 1.20, p = 0.002) and 2.42 cm (0.05; 4.79, p = 0.05), respectively). In conclusion, there was no significant difference in the effect of LL-BFRE and sham exercise on muscle strength and physical function in individuals with SCI. However, significant increases in muscle thickness and thigh circumference were observed in favor of BFRE. Trial Registration: ClinicalTrials.gov identifier: NCT03690700.
Collapse
Affiliation(s)
- Anette Bach Jønsson
- Spinal Cord Injury Centre of Western Denmark, Hammel Neurorehabilitation Centre and University Research Clinic, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Søren Krogh
- Spinal Cord Injury Centre of Western Denmark, Hammel Neurorehabilitation Centre and University Research Clinic, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Susanne Lillelund
- Spinal Cord Injury Centre of Western Denmark, Hammel Neurorehabilitation Centre and University Research Clinic, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, Muscle Physiology and Biomechanics Research Unit, University of Southern Denmark, Odense, Denmark
| | - Helge Kasch
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Feldbæk Nielsen
- Spinal Cord Injury Centre of Western Denmark, Hammel Neurorehabilitation Centre and University Research Clinic, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Pinto MD, Nosaka K, Blazevich AJ. In vivo human medial gastrocnemius fascicle behaviour and belly gear during submaximal eccentric contractions are not affected by concentric fatiguing exercise. J Biomech 2024; 162:111895. [PMID: 38103313 DOI: 10.1016/j.jbiomech.2023.111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Changes in muscle geometry and belly gearing during eccentric contractions influence fibre strain and susceptibility to muscle damage. They are modulated by the interaction between connective tissues and intracellular-intrafascicular fluid pressures and external pressures from neighbouring structures. Fatiguing exercise triggers fluid shifts (muscle swelling) and muscle activation changes that may influence these modulators. Our purpose was to measure medial gastrocnemius (MG) geometric changes in vivo during eccentric contractions before and after maximal concentric muscle work to test the hypothesis that fatigue would reduce fascicle rotation and muscle gear and provoke greater fascicle strain. Submaximal eccentric plantar flexor contractions at 40% and 60% of maximal eccentric torque were performed on an isokinetic dynamometer at 5°.s-1 before and immediately after the fatiguing exercise. MG fascicles and muscle-tendon junction were captured using ultrasonography during contractions, allowing quantification of geometric changes, whole-MG length, and belly gear (Δmuscle length/Δfascicle length). Triceps surae (TS) activation was estimated using surface electromyography and the distribution of activations between synergistic muscles was then determined. After exercise, concentric torque decreased ∼39% and resting muscle thickness increased by 4%, indicating muscle fatigue and swelling, respectively. While soleus (Sol) activation and the Sol/TS ratio increased, no changes in MG, MG/TS ratio or fascicle rotation during the contraction were detected. Thus, fascicle lengthening and belly gear remained unaltered. Changes in muscle thickness during contraction was also similar before and after exercise, suggesting that changes in muscle shape were relatively unaffected by the exercise. Consequently, the muscle maintained mechanical integrity after the fatiguing muscle work.
Collapse
Affiliation(s)
- Matheus Daros Pinto
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | | |
Collapse
|
3
|
Jønsson AB, Krogh S, Laursen HS, Aagaard P, Kasch H, Nielsen JF. Safety and efficacy of blood flow restriction exercise in individuals with neurological disorders: A systematic review. Scand J Med Sci Sports 2024; 34:e14561. [PMID: 38268066 DOI: 10.1111/sms.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVES This systematic review evaluated the safety and efficacy of blood flow restriction exercise (BFRE) on skeletal muscle size, strength, and functional performance in individuals with neurological disorders (ND). METHODS A literature search was performed in PubMed, CINAHL, and Embase. Two researchers independently assessed eligibility and performed data extraction and quality assessments. ELIGIBILITY CRITERIA Study populations with ND, BFRE as intervention modality, outcome measures related to safety or efficacy. RESULTS Out of 443 studies identified, 16 were deemed eligible for review. Three studies examined the efficacy and safety of BFRE, one study focused on efficacy results, and 12 studies investigated safety. Disease populations included spinal cord injury (SCI), inclusion body myositis (sIBM), multiple sclerosis (MS), Parkinson's disease (PD), and stroke. A moderate-to-high risk of bias was presented in the quality assessment. Five studies reported safety concerns, including acutely elevated pain and rating of perceived exertion levels, severe fatigue, muscle soreness, and cases of autonomic dysreflexia. Two RCTs reported a significant between-group difference in physical function outcomes, and two RCTs reported neuromuscular adaptations. CONCLUSION BFRE seems to be a potentially safe and effective training modality in individuals with ND. However, the results should be interpreted cautiously due to limited quality and number of studies, small sample sizes, and a general lack of heterogeneity within and between the examined patient cohorts.
Collapse
Affiliation(s)
- Anette Bach Jønsson
- Spinal Cord Injury Center of Western Denmark, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
| | - Søren Krogh
- Spinal Cord Injury Center of Western Denmark, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
| | | | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, Muscle Physiology and Biomechanics Research Unit, University of Southern, Odense, Denmark
| | - Helge Kasch
- Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Feldbaek Nielsen
- Spinal Cord Injury Center of Western Denmark, Viborg, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
- Hammel Neurorehabilitation Centre and University Clinic, Hammel, Denmark
| |
Collapse
|
4
|
Cleary CJ, Herda TJ, Quick AM, Herda AA. Acute muscle swelling effects of a knee rehabilitation exercise performed with and without blood flow restriction. PLoS One 2022; 17:e0278540. [PMID: 36548274 PMCID: PMC9778495 DOI: 10.1371/journal.pone.0278540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
This study assessed the acute effect of adding blood flow restriction (BFR) to quad sets on muscle-cross sectional area (mCSA), muscle thickness (MT), echo intensity (EI), and subcutaneous fat-normalized EI (EINORM) of the superficial quadriceps muscles. Twelve males and 12 females (mean±SD; age (yrs): 21.4±2.9; stature (m): 1.76±0.1; body mass (kg): 77.7±2.9) performed 70 repetitions (one set of 30, three sets of 15 repetitions) of bodyweight quad sets separately on each leg, with or without BFR (CON) applied. Rating of perceived exertion was recorded following each set. Panoramic ultrasound images of the vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) were captured prior to (PRE), immediately after (IMM-POST), 30- (30-POST), and 60-minutes after (60-POST) after exercise. Sex x condition x time repeated measures ANOVAs assessed differences at p<0.05 for each muscle and dependent variable separately. Although males had larger VM and VL mCSA and VL MT (p<0.05), there were no acute changes from PRE to IMM-POST (p>0.05). There was a 3-way interaction in VL mCSA (p = 0.025) which indicated BFR was greater than CON at IMM-POST by 7.6% (p = 0.019) for males only. Females had greater EI in the VM and VL than males (p<0.05), yet males had greater EINORM for each muscle (p>0.05) and EINORM did not change over time or treatment (p>0.05). The lack of changes in MT, EI, and EINORM indicate that unloaded quad sets do not provide a stimulus to promote fluid shifts or acute changes in muscle size with the exception of IMM-POST in the VL for males. Future research should attempt to elucidate the acute muscular responses of BFR application for lightly loaded rehabilitation exercises in the clinical populations for which they are prescribed.
Collapse
Affiliation(s)
- Christopher J. Cleary
- Department of Health, Sport, and Exercise Sciences, University of Kansas Edwards Campus, Overland Park, Kansas, United States of America
| | - Trent J. Herda
- Department of Health, Sport, and Exercise Sciences, University of Kansas Lawrence Campus, Lawrence, Kansas, United States of America
| | - Austin M. Quick
- Department of Health, Sport, and Exercise Sciences, University of Kansas Lawrence Campus, Lawrence, Kansas, United States of America
| | - Ashley A. Herda
- Department of Health, Sport, and Exercise Sciences, University of Kansas Edwards Campus, Overland Park, Kansas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Landers-Ramos RQ, Dondero K, Nelson C, Ranadive SM, Prior SJ, Addison O. Muscle thickness and inflammation during a 50km ultramarathon in recreational runners. PLoS One 2022; 17:e0273510. [PMID: 36048789 PMCID: PMC9436055 DOI: 10.1371/journal.pone.0273510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose
This study examined changes in circulating levels of inflammatory cytokines [IL-6, sIL-6R, TNF-α, and calprotectin], skeletal muscle morphology, and muscle strength following a 50km race in non-elite athletes.
Methods
Eleven individuals (8 men; 3 women) underwent pre-race assessments of rectus femoris muscle thickness (resting and contracted) using ultrasound, isometric knee extensor torque, and plasma cytokines. Measures were repeated after 10km of running, the 50km finish (post-race), and again 24-hrs post-race.
Results
Compared with baseline values, Δ muscle thickness (resting to contracted) increased significantly 24 hrs post-race (11 ± 11% vs. 22 ± 8%; P = 0.01). Knee extensor torque was significantly reduced immediately post-race (151 ± 46 vs. 134 ± 43 Nm; P = 0.047) but remained similar to post-race values at 24 hrs post-race (P = 0.613). Compared with pre-race levels, IL-6 and calprotectin concentrations increased 302% and 50% after 10km, respectively (P<0.017 for both), peaked post-race (2598% vs. pre-race for IL-6 and 68% vs. pre-race for calprotectin; P = 0.018 for both), and returned to pre-race levels at 24-hrs post-race (P>0.05 for both). Creatine kinase levels rose steadily during and after the race, peaking 24-hrs post-race (184 ± 113 U/L pre-race vs. 1508 ± 1815 U/L 24-hrs post-race; P = 0.005).
Conclusion
This is the first report of delayed increases in Δ muscle thickness at 24 hrs post-50km, which are preceded by reductions in knee extensor torque and elevations in plasma IL-6, and calprotectin. Recreational athletes should consider the acute muscle inflammatory response when determining training and recovery strategies for 50km participation.
Collapse
Affiliation(s)
- Rian Q. Landers-Ramos
- Department of Kinesiology, Towson University, Towson, Maryland, United States of America
- * E-mail:
| | - Kathleen Dondero
- Department of Kinesiology, Towson University, Towson, Maryland, United States of America
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christa Nelson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | | | - Steven J. Prior
- University of Maryland, College Park, Maryland, United States of America
- Veterans Affairs Medical Center, Geriatric Research and Clinical Center, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland School of Medicine, Division of Geriatrics and Palliative Medicine, Baltimore, Maryland, United States of America
| | - Odessa Addison
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Veterans Affairs Medical Center, Geriatric Research and Clinical Center, Baltimore, Maryland, United States of America
| |
Collapse
|
6
|
Kolind MI, Gam S, Phillip JG, Pareja-Blanco F, Olsen HB, Gao Y, Søgaard K, Nielsen JL. Effects of low load exercise with and without blood-flow restriction on microvascular oxygenation, muscle excitability and perceived pain. Eur J Sport Sci 2022; 23:542-551. [PMID: 35125067 DOI: 10.1080/17461391.2022.2039781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This paper aimed to examine the acute effect of low-load (LL) exercise with blood-flow restriction (LL-BFR) on microvascular oxygenation and muscle excitability of the vastus medialis (VM) and vastus lateralis (VL) muscles during a single bout of unilateral knee extension exercise performed to task failure. Seventeen healthy recreationally resistance-trained males were enrolled in a within-group randomized cross-over study design. Participants performed one set of unilateral knee extensions at 20% of one-repetition maximum (1RM) to task failure, using a LL-BFR or LL free-flow (LL-FF) protocol in a randomized order on separate days. Changes in microvascular oxygenation and muscle excitability in VL and VM were assessed using near-infrared spectroscopy (NIRS) and surface electromyography (sEMG), respectively. Pain measures were collected using the visual analog scale (VAS) before and following set completion. Within- and between- protocol comparisons were performed at multiple time points of set completion for each muscle. During LL-BFR, participants performed 43% fewer repetitions and reported feeling more pain compared to LL-FF (p<0.05). Normalized to time to task failure, LL-BFR and LL-FF generally demonstrated similar progression in microvascular oxygenation and muscle excitability during exercise to task failure. The present results demonstrate that LL-BFR accelerates time to task failure, compared with LL-FF, resulting in a lower dose of mechanical work to elicit similar levels of oxygenation, blood-pooling, and muscle excitability. LL-BFR may be preferable to LL-FF in clinical settings where high workloads are contraindicated, although increased pain experienced during BFR may limit its application.HighlightsCompared to free flow (FF), neuromuscular fatigue mechanisms are accelerated during blood flow restricted (BFR) training. This can be observed as changes in microvascular oxygenation and muscle excitability occurring at a ∼43% faster mean rate during BFR compared to FF.BFR exercise seems to elicit the same level of neuromuscular fatigue as FF training within a shorter timeframe. This reduces total joint load and may be especially helpful in cases where high training volumes may be contraindicated (e.g. recovering from a sports injury or orthopedic surgery).
Collapse
Affiliation(s)
- Mikkel I. Kolind
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Søren Gam
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Jeppe G. Phillip
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Fernando Pareja-Blanco
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Ctra. de Utrera, 1, 41013 Sevilla, Spain
| | - Henrik B. Olsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Ying Gao
- Department of Sports Science, College of Education, Zhejiang University, 310028 Hangzhou, China
- Faculty of Sport and Health Sciences, University of Jyväskylä, Seminaarinkatu 15, 40014 Jyväskylä, Finland
| | - Karen Søgaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| | - Jakob L. Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campus vej 55, 5230 Odense, Denmark
| |
Collapse
|