1
|
Schwartz JL, Fongwoo TA, Bentley RF. The effect of self-identified arm dominance on exercising forearm hemodynamics and skeletal muscle desaturation. PLoS One 2024; 19:e0305539. [PMID: 38885214 PMCID: PMC11182511 DOI: 10.1371/journal.pone.0305539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
The human forearm model is commonly employed in physiological investigations exploring local vascular function and oxygen delivery; however, the effect of arm dominance on exercising forearm hemodynamics and skeletal muscle oxygen saturation (SmO2) in untrained individuals is poorly understood. Therefore, the purpose of this study was to explore the effect of self-identified arm dominance on forearm hemodynamics and SmO2 in untrained individuals during submaximal, non-ischemic forearm exercise. Twenty healthy individuals (23±4 years, 50% female; 80% right-handed) completed three-minute bouts of supine rhythmic (1 second contraction: 2 second relaxation duty cycle) forearm handgrip exercise at both absolute (10kg; 98N) and relative (30% of maximal voluntary contraction) intensities in each forearm. Beat-by-beat measures of forearm blood flow (FBF; ml/min), mean arterial blood pressure (MAP; mmHg) and flexor digitorum superficialis SmO2 (%) were obtained throughout and averaged during the final 30 seconds of rest, exercise, and recovery while forearm vascular conductance was calculated (FVC; ml/min/100mmHg). Data are Δ from rest (mean±SD). Absolute force production did not differ between non-dominant and dominant arms (97±11 vs. 98±13 N, p = 0.606) whereas relative force production in females did (69±24 vs. 82±25 N, p = 0.001). At both exercise intensities, FBFRELAX, FVCRELAX, MAPRELAX, and the time constant tau for FBF and SmO2 were unaffected by arm dominance (all p>0.05). While arm dominance did not influence SmO2 during absolute intensity exercise (p = 0.506), the non-dominant arm in females experienced an attenuated reduction in SmO2 during relative intensity exercise (-14±10 vs. -19±8%, p = 0.026)-though exercise intensity was also reduced (p = 0.001). The present investigation has demonstrated that arm dominance in untrained individuals does not impact forearm hemodynamics or SmO2 during handgrip exercise.
Collapse
Affiliation(s)
- Jacob L. Schwartz
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Trishawna A. Fongwoo
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Robert F. Bentley
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Love LK, Hodgson MD, Keir DA, Kowalchuk JM. The effect of increasing work rate amplitudes from a common metabolic baseline on the kinetic response of V̇o 2p, blood flow, and muscle deoxygenation. J Appl Physiol (1985) 2023; 135:584-600. [PMID: 37439241 DOI: 10.1152/japplphysiol.00566.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023] Open
Abstract
A step-transition in external work rate (WR) increases pulmonary O2 uptake (V̇o2p) in a monoexponential fashion. Although the rate of this increase, quantified by the time constant (τ), has frequently been shown to be similar between multiple different WR amplitudes (ΔWR), the adjustment of O2 delivery to the muscle (via blood flow; BF), a potential regulator of V̇o2p kinetics, has not been extensively studied. To investigate the role of BF on V̇o2p kinetics, 10 participants performed step-transitions on a knee-extension ergometer from a common baseline WR (3 W) to: 24, 33, 45, 54, and 66 W. Each transition lasted 8 min and was repeated four to six times. Volume turbinometry and mass spectrometry, Doppler ultrasound, and near-infrared spectroscopy were used to measure V̇o2p, BF, and muscle deoxygenation (deoxy[Hb + Mb]), respectively. Similar transitions were ensemble-averaged, and phase II V̇o2p, BF, and deoxy[Hb + Mb] were fit with a monoexponential nonlinear least squares regression equation. With increasing ΔWR, τV̇o2p became larger at the higher ΔWRs (P < 0.05), while τBF did not change significantly, and the mean response time (MRT) of deoxy[Hb + Mb] became smaller. These findings that V̇o2p kinetics become slower with increasing ΔWR, while BF kinetics are not influenced by ΔWR, suggest that O2 delivery could not limit V̇o2p in this situation. However, the speeding of deoxy[Hb + Mb] kinetics with increasing ΔWR does imply that the O2 delivery-to-O2 utilization of the microvasculature decreases at higher ΔWRs. This suggests that the contribution of O2 delivery and O2 extraction to V̇O2 in the muscle changes with increasing ΔWR.NEW & NOTEWORTHY A step increase in work rate produces a monoexponential increase in V̇o2p and blood flow to a new steady-state. We found that step transitions from a common metabolic baseline to increasing work rate amplitudes produced a slowing of V̇o2p kinetics, no change in blood flow kinetics, and a speeding of muscle deoxygenation kinetics. As work rate amplitude increased, the ratio of blood flow to V̇o2p became smaller, while the amplitude of muscle deoxygenation became greater. The gain in vascular conductance became smaller, while kinetics tended to become slower at higher work rate amplitudes.
Collapse
Affiliation(s)
- Lorenzo K Love
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology and Physical Education, Redeemer University, Ancaster, Ontario, Canada
| | - Michael D Hodgson
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Daniel A Keir
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - John M Kowalchuk
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology and Physical Education, Redeemer University, Ancaster, Ontario, Canada
| |
Collapse
|
3
|
Meneses AL, Nam MCY, Bailey TG, Anstey C, Golledge J, Keske MA, Greaves K, Askew CD. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age. Physiol Rep 2021; 8:e14580. [PMID: 33038050 PMCID: PMC7547535 DOI: 10.14814/phy2.14580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
Impairments in skeletal muscle microvascular function are frequently reported in patients with various cardiometabolic conditions for which older age is a risk factor. Whether aging per se predisposes the skeletal muscle to microvascular dysfunction is unclear. We used contrast‐enhanced ultrasound (CEU) to compare skeletal muscle microvascular perfusion responses to cuff occlusion and leg exercise between healthy young (n = 12, 26 ± 3 years) and older (n = 12, 68 ± 7 years) adults. Test–retest reliability of CEU perfusion parameters was also assessed. Microvascular perfusion (microvascular volume × flow velocity) of the medial gastrocnemius muscle was measured before and immediately after: (a) 5‐min of thigh‐cuff occlusion, and (b) 5‐min of submaximal intermittent isometric plantar‐flexion exercise (400 N) using CEU. Whole‐leg blood flow was measured using strain‐gauge plethysmography. Repeated measures were obtained with a 15‐min interval, and averaged responses were used for comparisons between age groups. There were no differences in post‐occlusion whole‐leg blood flow and muscle microvascular perfusion between young and older participants (p > .05). Similarly, total whole‐leg blood flow during exercise and post‐exercise peak muscle microvascular perfusion did not differ between groups (p > .05). The overall level of agreement between the test–retest measures of calf muscle perfusion was excellent for measurements taken at rest (intraclass correlation coefficient [ICC] 0.85), and in response to cuff occlusion (ICC 0.89) and exercise (ICC 0.95). Our findings suggest that healthy aging does not affect muscle perfusion responses to cuff‐occlusion and submaximal leg exercise. CEU muscle perfusion parameters measured in response to these provocation tests are highly reproducible in both young and older adults.
Collapse
Affiliation(s)
- Annelise L Meneses
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Michael C Y Nam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Anstey
- Department of Intensive Care, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
| | - Michelle A Keske
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Kim Greaves
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| |
Collapse
|
4
|
Ichinose M, Nakabayashi M, Ono Y. Rapid vasodilation within contracted skeletal muscle in humans: new insight from concurrent use of diffuse correlation spectroscopy and Doppler ultrasound. Am J Physiol Heart Circ Physiol 2020; 320:H654-H667. [PMID: 33337963 DOI: 10.1152/ajpheart.00761.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies showed that conduit artery blood flow rapidly increases after even a brief contraction of muscles within the dependent limb. Whether this rapid hyperemia occurs within contracted skeletal muscle in humans has yet to be confirmed, however. We therefore used diffuse correlation spectroscopy (DCS) to characterize the rapid hyperemia and vasodilatory responses within the muscle microvasculature induced by single muscle contractions in humans. Twenty-five healthy male volunteers performed single 1-s isometric handgrips at 20%, 40%, 60%, and 80% of maximum voluntary contraction. DCS probes were placed on the flexor digitorum superficialis muscle, and a skeletal muscle blood flow index (SMBFI) was derived continuously. At the same time, brachial artery blood flow (BABF) responses were measured using Doppler ultrasound. Single muscle contractions evoked rapid, monophasic increases in both SMBFI and BABF that occurred within 3 s after release of contraction. The initial and peak responses increased with increases in contraction intensity and were greater for BABF than for SMBFI at all intensities. BABF reached its peak within 5 to 8 s after the end of contraction. The SMBFI continued to increase after the BABF passed its peak and was decreasing toward the resting level and peaked about 10 to 15 s after completion of the contraction. We conclude that single muscle contractions induce rapid, intensity-dependent hyperemia within the contracted skeletal muscle microvasculature. Moreover, the characteristics of the rapid hyperemia and vasodilatory responses of skeletal muscle microvessels differ from those simultaneously evaluated in the upstream conduit artery.NEW & NOTEWORTHY Through the concurrent use of diffuse correlation spectroscopy and Doppler ultrasound, we provide the first evidence in humans that a single brief muscle contraction evokes rapid, intensity-dependent hyperemia within the contracted skeletal muscle microvasculature and the upstream conduit artery. We also show that the magnitude and time course of the contraction-induced rapid hyperemia and vasodilatory responses within skeletal muscle microvessels significantly differ from those in the conduit artery.
Collapse
Affiliation(s)
- Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Mikie Nakabayashi
- Graduate School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| |
Collapse
|
5
|
Bock JM, Hughes WE, Ueda K, Feider AJ, Hanada S, Kruse NT, Iwamoto E, Casey DP. Greater α1-adrenergic-mediated vasoconstriction in contracting skeletal muscle of patients with type 2 diabetes. Am J Physiol Heart Circ Physiol 2020; 319:H797-H807. [DOI: 10.1152/ajpheart.00532.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Findings presented in this article are the first to show patients with type 2 diabetes mellitus have blunted hyperemic and vasodilatory responses to dynamic handgrip exercise. Moreover, we illustrate greater α1-adrenergic-mediated vasoconstriction may contribute to our initial observations. Collectively, these data suggest patients with type 2 diabetes may have impaired functional sympatholysis, which can contribute to their reduced exercise capacity.
Collapse
Affiliation(s)
- Joshua M. Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - William E. Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrew J. Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Nicholas T. Kruse
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Erika Iwamoto
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Darren P. Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
6
|
Green S, Kiely C, O'Connor E, Gildea N, O'Shea D, Egaña M. Effects of exercise training and sex on dynamic responses of O 2 uptake in type 2 diabetes. Appl Physiol Nutr Metab 2020; 45:865-874. [PMID: 32134683 DOI: 10.1139/apnm-2019-0636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of training and sex on oxygen uptake dynamics during exercise in type 2 diabetes mellitus (T2DM) are not well established. We tested the hypotheses that exercise training improves the time constant of the primary phase of oxygen uptake (τp oxygen uptake) and with greater effect in males than females. Forty-one subjects with T2DM were assigned to 2 training groups (Tmale, Tfemale) and 2 control groups (Cmale, Cfemale), and were assessed before and after a 12-week intervention period. Twelve weeks of aerobic/resistance training was performed 3 times per week, 60-90 min per session. Assessments included ventilatory threshold (VT), peak oxygen uptake, τp oxygen uptake (80%VT), and dynamic responses of cardiac output, mean arterial pressure and systemic vascular conductance (80%VT). Training significantly decreased τp oxygen uptake in males by a mean of 20% (Tmale = 42.7 ± 6.2 to 34.3 ± 7.2 s) and females by a mean of 16% (Tfemale = 42.2 ± 9.3 to 35.4 ± 8.6 s); whereas τp oxygen uptake was not affected in controls (Cmale = 41.6 ± 9.8 to 42.9 ± 7.6 s; Cfemale = 40.4 ± 12.2 to 40.6 ± 13.4 s). Training increased peak oxygen uptake in both sexes (12%-13%) but did not alter systemic cardiovascular dynamics in either sex. Training improved oxygen uptake dynamics to a similar extent in males and females in the absence of changes in systemic cardiovascular dynamics. Novelty Similar training improvements in oxygen uptake dynamics were observed in males and females with T2DM. In both sexes these improvements occurred without changes in systemic cardiovascular dynamics.
Collapse
Affiliation(s)
- Simon Green
- School of Science and Health, Western Sydney University, Sydney 2567, Australia.,School of Medicine, Western Sydney University, Sydney 2567, Australia
| | - Catherine Kiely
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Eamonn O'Connor
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Donal O'Shea
- Endocrinology, St Columcille's and St Vincent's Hospitals, Dublin, Dublin 18, Ireland
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Limberg JK, Casey DP, Trinity JD, Nicholson WT, Wray DW, Tschakovsky ME, Green DJ, Hellsten Y, Fadel PJ, Joyner MJ, Padilla J. Assessment of resistance vessel function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and pharmacology. Am J Physiol Heart Circ Physiol 2019; 318:H301-H325. [PMID: 31886718 DOI: 10.1152/ajpheart.00649.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The introduction of duplex Doppler ultrasound almost half a century ago signified a revolutionary advance in the ability to assess limb blood flow in humans. It is now widely used to assess blood flow under a variety of experimental conditions to study skeletal muscle resistance vessel function. Despite its pervasive adoption, there is substantial variability between studies in relation to experimental protocols, procedures for data analysis, and interpretation of findings. This guideline results from a collegial discussion among physiologists and pharmacologists, with the goal of providing general as well as specific recommendations regarding the conduct of human studies involving Doppler ultrasound-based measures of resistance vessel function in skeletal muscle. Indeed, the focus is on methods used to assess resistance vessel function and not upstream conduit artery function (i.e., macrovasculature), which has been expertly reviewed elsewhere. In particular, we address topics related to experimental design, data collection, and signal processing as well as review common procedures used to assess resistance vessel function, including postocclusive reactive hyperemia, passive limb movement, acute single limb exercise, and pharmacological interventions.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | | | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Western Australia, Australia
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | | | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Lynn MJT, Mew OK, Drouin PJ, Liberman NL, Tschakovsky ME. Greater post-contraction hyperaemia below vs. above heart level: the role of active vasodilatation vs. passive mechanical distension of arterioles. J Physiol 2019; 598:85-99. [PMID: 31654419 DOI: 10.1113/jp278476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/24/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The immediate increase in skeletal muscle blood flow following contraction is greater when the contracting muscle is below vs. above heart level. This has been attributed to muscle pump-mediated venous emptying and subsequent widening of the arterial to venous pressure gradient, which can occur below but not above heart level. However, alternative explanations could include greater rapid onset vasodilatation and/or transmural pressure-mediated mechanical distension of resistance vessels, but these remain unexplored. We demonstrate that active vasodilatation is not responsible for greater post-contraction hyperaemia below the heart. Instead, an increased transmural pressure-mediated mechanical distension of resistance vessels is a key mechanism responsible for this phenomenon. Our findings establish the importance of considering/accounting for local mechanical arteriolar distension effects when investigating exercise hyperaemia. They also inform the application of exercise for rehabilitative purposes and prompt investigation into whether arteriolar distension accompanying vasodilatation is reduced with diseases or ageing, thereby compromising exercising muscle perfusion. ABSTRACT We tested the hypotheses that increased post-contraction hyperaemia in higher (H; below heart) vs. lower (L; above heart) transmural pressure conditions is due to (1) greater active vasodilatation or (2) greater transmural pressure-mediated arteriolar distension. Participants (n = 20, 12 male, 8 female; combined mean age 24.5 ± 2 years) performed a 2 s isometric handgrip contraction, where arm position was maintained within or changed between H and L during contraction, resulting in four starting-finishing arm position conditions (LL, HL, LH, HH). Post-contraction forearm blood flow (echo and Doppler ultrasound) was higher with contraction release in H vs. L environments (P < 0.05). However, contraction initiated in H did not result in greater vasodilatation (forearm vascular conductance; FVC) than contraction initiated in L, regardless of contraction release condition (peak FVC: LL 217 ± 104 vs. HL 204 ± 92 ml min-1 (100 mmHg)-1 , P = 0.313, LH 229 ± 8 vs. HH 225 ± 85 ml min-1 (100 mmHg)-1 , P = 0.391; first post-contraction cardiac cycle FVC: same comparisons, both P = 0.317). However, FVC of the first post-contraction cardiac cycle was greater for contractions released in H vs. L regardless of pre-contraction condition (LL 106 ± 67 vs. LH 152 ± 76 ml min-1 (100 mmHg)-1 , P < 0.05; HL 80 ± 51 vs. HH 119 ± 58 ml min-1 (100 mmHg)-1 , P < 0.05). These findings refute the hypothesis that greater hyperaemia following a single contraction in higher transmural pressure conditions is due to greater active vasodilatation. Instead, our findings reveal a key role for increased transmural pressure-mediated mechanical distension of arterioles in creating a greater increase in vascular conductance for a given active vasodilatation following skeletal muscle contraction.
Collapse
Affiliation(s)
- Mytchel J T Lynn
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Olivia K Mew
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Patrick J Drouin
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Noah L Liberman
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| |
Collapse
|
9
|
Boulton D, Taylor CE, Green S, Macefield VG. The metaboreflex does not contribute to the increase in muscle sympathetic nerve activity to contracting muscle during static exercise in humans. J Physiol 2018; 596:1091-1102. [PMID: 29315576 DOI: 10.1113/jp275526] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS It is not clear how sympathetic activity to contracting muscle is controlled. We recorded muscle sympathetic nerve activity (MSNA) to the ipsilateral tibialis anterior muscle during 4 min of isometric dorsiflexion of the ankle and 6 min of post-exercise ischaemia, which was repeated contralaterally. MSNA to the contracting muscle increased within 1 min of static exercise and returned to pre-contraction levels at the end. Unlike the increase in MSNA seen in the non-contracting muscle, post-exercise ischaemia had no effect on MSNA to the contracted muscle. We conclude that central command is the primary mechanism responsible for increasing MSNA to contracting muscle and also that the metaboreflex is not expressed in contracting muscle. ABSTRACT Both central command and metaboreflex inputs from contracting muscles increase muscle sympathetic nerve activity (MSNA) to non-contracting muscle during sustained isometric exercise. We recently showed that MSNA to contracting muscle also increases in an intensity-dependent manner, although whether this can be sustained by the metaboreflex is unknown. MSNA was recorded from the left common peroneal nerve and individual spikes of MSNA extracted from the nerve signal. Eleven subjects performed a series of 4 min dorsiflexions of the left ankle at 10% of maximum voluntary contraction under three conditions: without ischaemia, with 6 min of post-exercise ischaemia, and with ischaemia during and after exercise; these were repeated in the right leg. Compared with pre-contraction values, MSNA to the contracting muscles increased and plateaued in the first minute of contraction (50 ± 18 vs. 34 ± 10 spikes min-1 , P = 0.01), returned to pre-contraction levels within 1 min of the contraction ending and was not influenced by ischaemia during or after contraction. Conversely, MSNA to the non-contracting muscles was not different from pre-contraction levels in the first minute of contraction (34 ± 9 vs. 32 ± 5 spikes min-1 , P = 0.48), whereas it increased each minute and was significantly greater by the second minute (44 ± 8 spikes min-1 , P = 0.01). Ischaemia augmented the MSNA response to contraction (63 ± 25 spikes min-1 after 4 min, P < 0.05) and post-exercise ischaemia (63 ± 27 spikes min-1 after 6 min, P < 0.01) for the non-contracting muscles only. These findings support our conclusion that the metaboreflex is not expressed in the contracting muscle during sustained static exercise.
Collapse
Affiliation(s)
- Daniel Boulton
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia
| | - Chloe E Taylor
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Simon Green
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, UAE
| |
Collapse
|
10
|
Bentley RF, Walsh JJ, Drouin PJ, Velickovic A, Kitner SJ, Fenuta AM, Tschakovsky ME. Absence of compensatory vasodilation with perfusion pressure challenge in exercise: evidence for and implications of the noncompensator phenotype. J Appl Physiol (1985) 2018; 124:374-387. [PMID: 28706000 DOI: 10.1152/japplphysiol.00952.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Compromising oxygen delivery (O2D) during exercise requires compensatory vasodilatory and/or pressor responses to protect O2D:demand matching. The purpose of the study was to determine whether compensatory vasodilation is absent in some healthy young individuals in the face of a sudden reduction in exercising forearm perfusion pressure and whether this affects the exercise pressor response. Twenty-one healthy young men (21.6 ± 2.0 yr) completed rhythmic forearm exercise at a work rate equivalent to 70% of their own maximal exercise vasodilation. During steady-state exercise, the exercising arm was rapidly adjusted from below to above heart level, resulting in a reduction in forearm perfusion pressure of -30.7 ± 0.9 mmHg. Forearm blood flow (ml/min; brachial artery Doppler and echo ultrasound), mean arterial blood pressure (mmHg; finger photoplethysmography), and exercising forearm venous effluent (antecubital vein catheter) measurements revealed distinct compensatory vasodilatory differences. Thirteen individuals responded with compensatory vasodilation (509 ± 128 vs. 632 ± 136 ml·min-1·100 mmHg-1; P < 0.001), while eight individuals did not (663 ± 165 vs. 667 ± 167 ml·min-1·100 mmHg-1; P = 0.6). Compensatory pressor responses between groups were not different (5.5 ± 5.5 and 9.7 ± 9.5 mmHg; P = 0.2). Forearm blood flow, O2D, and oxygen consumption were all protected in compensators (all P > 0.05) but not in noncompensators, who therefore suffered compromises to exercise performance (6 ± 14 vs. -36 ± 29 N; P = 0.004). Phenotypic differences were not explained by potassium or nitric oxide bioavailability. In conclusion, both compensator and noncompensator vasodilator phenotype responses to a sudden compromise to exercising muscle blood flow are evident. Interindividual differences in the mechanisms governing O2D:demand matching should be considered as factors influencing exercise tolerance. NEW & NOTEWORTHY In healthy young individuals, compromising submaximally exercising muscle perfusion appears to evoke compensatory vasodilation to defend oxygen delivery. Here we report the absence of compensatory vasodilation in 8 of 21 such individuals, despite their vasodilatory capacity and increases in perfusion with increasing exercise intensity being indistinguishable from compensators. The absence of compensation impaired exercise tolerance. These findings suggest that interindividual differences in oxygen delivery:demand matching efficacy affect exercise tolerance and depend on the nature of a delivery:demand matching challenge.
Collapse
Affiliation(s)
- Robert F Bentley
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Jeremy J Walsh
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Patrick J Drouin
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Aleksandra Velickovic
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Sarah J Kitner
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Alyssa M Fenuta
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
11
|
Kellawan JM, Limberg JK, Scruggs ZM, Nicholson WT, Schrage WG, Joyner MJ, Curry TB. Phosphodiesterase-5 inhibition preserves exercise-onset vasodilator kinetics when NOS activity is reduced. J Appl Physiol (1985) 2018; 124:276-282. [PMID: 28982942 PMCID: PMC5867368 DOI: 10.1152/japplphysiol.00483.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO)-mediated vasodilation contributes to the rapid rise in muscle blood flow at exercise onset. This occurs via increased cyclic guanosine monophosphate (cGMP), which is catabolized by phosphodiesterase-5 (PDE-5). Whether PDE-5 limits exercise vasodilation onset kinetics is unknown. We hypothesized the time course of exercise vasodilation would be 1) accelerated during PDE-5 inhibition (sildenafil citrate, SDF) and 2) decelerated during NO synthase inhibition ( NG-monomethyl-l-arginine, l-NMMA), and 3) the effect of SDF on vasodilation onset kinetics would be attenuated with concurrent l-NMMA. Data from 29 healthy adults were analyzed. Individuals completed 5 min of moderate-intensity forearm exercise under control conditions and during 1) oral SDF ( n = 8), 2) intra-arterial l-NMMA ( n = 15), or 3) combined SDF + l-NMMA ( n = 6). Forearm blood flow (FBF; Doppler ultrasound of the brachial artery) and mean brachial artery blood pressure (MAP) were measured continuously. Forearm vascular conductance (FVC, FBF ÷ MAP) was curve-fit with a monoexponential model, and vasodilation onset kinetics were assessed by mean response time (MRT, time to achieve 63% of steady state). SDF had no effect on MRT ( P = 0.90). NOS inhibition increased MRT ( P = 0.01). MRT during SDF+l-NMMA was not different from control exercise ( P = 0.76). PDE-5 inhibition alone has no effect on rapid-onset vasodilation. Whereas NOS inhibition decelerates vasodilator kinetics, when combined with SDF, vasodilator kinetics do not differ from control. These data suggest NO-independent activation of cGMP occurs at exercise onset; thus PDE-5 inhibition may improve vasodilation in pathologies where NO bioavailability is impaired. NEW & NOTEWORTHY We show that when NO bioavailability is reduced, PDE-5 inhibition can restore vasodilation onset kinetics of exercise-mediated vasodilation via NO-independent cGMP pathways. These data suggest PDE-5 inhibition may improve exercise vasodilation onset kinetics in pathologies where NO bioavailability is impaired.
Collapse
Affiliation(s)
- J Mikhail Kellawan
- Department of Kinesiology, University of Wisconsin , Madison, Wisconsin
- Department of Health and Exercise Science, University of Oklahoma , Norman, Oklahoma
| | - Jacqueline K Limberg
- Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Zachariah M Scruggs
- Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Wayne T Nicholson
- Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin , Madison, Wisconsin
- Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Michael J Joyner
- Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
12
|
Murphy E, Rocha J, Gildea N, Green S, Egaña M. Venous occlusion plethysmography vs. Doppler ultrasound in the assessment of leg blood flow kinetics during different intensities of calf exercise. Eur J Appl Physiol 2017; 118:249-260. [DOI: 10.1007/s00421-017-3765-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
|
13
|
Bentley RF, Walsh JJ, Drouin PJ, Velickovic A, Kitner SJ, Fenuta AM, Tschakovsky ME. Dietary nitrate restores compensatory vasodilation and exercise capacity in response to a compromise in oxygen delivery in the noncompensator phenotype. J Appl Physiol (1985) 2017; 123:594-605. [PMID: 28596274 DOI: 10.1152/japplphysiol.00953.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Recently, dietary nitrate supplementation has been shown to improve exercise capacity in healthy individuals through a potential nitrate-nitrite-nitric oxide pathway. Nitric oxide has been shown to play an important role in compensatory vasodilation during exercise under hypoperfusion. Previously, we established that certain individuals lack a vasodilation response when perfusion pressure reductions compromise exercising muscle blood flow. Whether this lack of compensatory vasodilation in healthy, young individuals can be restored with dietary nitrate supplementation is unknown. Six healthy (21 ± 2 yr), recreationally active men completed a rhythmic forearm exercise. During steady-state exercise, the exercising arm was rapidly transitioned from an uncompromised (below heart) to a compromised (above heart) position, resulting in a reduction in local pressure of -31 ± 1 mmHg. Exercise was completed following 5 days of nitrate-rich (70 ml, 0.4 g nitrate) and nitrate-depleted (70 ml, ~0 g nitrate) beetroot juice consumption. Forearm blood flow (in milliliters per minute; brachial artery Doppler and echo ultrasound), mean arterial blood pressure (in millimeters of mercury; finger photoplethysmography), exercising forearm venous effluent (ante-cubital vein catheter), and plasma nitrite concentrations (chemiluminescence) revealed two distinct vasodilatory responses: nitrate supplementation increased (plasma nitrite) compared with placebo (245 ± 60 vs. 39 ± 9 nmol/l; P < 0.001), and compensatory vasodilation was present following nitrate supplementation (568 ± 117 vs. 714 ± 139 ml ⋅ min-1 ⋅ 100 mmHg-1; P = 0.005) but not in placebo (687 ± 166 vs. 697 ± 171 min-1 ⋅ 100 mmHg-1; P = 0.42). As such, peak exercise capacity was reduced to a lesser degree (-4 ± 39 vs. -39 ± 27 N; P = 0.01). In conclusion, dietary nitrate supplementation during a perfusion pressure challenge is an effective means of restoring exercise capacity and enabling compensatory vasodilation.NEW & NOTEWORTHY Previously, we identified young, healthy persons who suffer compromised exercise tolerance when exercising muscle perfusion pressure is reduced as a result of a lack of compensatory vasodilation. The ability of nitrate supplementation to restore compensatory vasodilation in such noncompensators is unknown. We demonstrated that beetroot juice supplementation led to compensatory vasodilation and restored perfusion and exercise capacity. Elevated plasma nitrite is an effective intervention for correcting the absence of compensatory vasodilation in the noncompensator phenotype.
Collapse
Affiliation(s)
- Robert F Bentley
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Jeremy J Walsh
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Patrick J Drouin
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Aleksandra Velickovic
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Sarah J Kitner
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Alyssa M Fenuta
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Boulton D, Taylor CE, Macefield VG, Green S. Contributions of Central Command and Muscle Feedback to Sympathetic Nerve Activity in Contracting Human Skeletal Muscle. Front Physiol 2016; 7:163. [PMID: 27242537 PMCID: PMC4865629 DOI: 10.3389/fphys.2016.00163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/18/2016] [Indexed: 11/13/2022] Open
Abstract
During voluntary contractions, muscle sympathetic nerve activity (MSNA) to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-min isometric dorsiflexion contractions (left leg) separated by 2-min rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10% of maximum). MSNA was recorded continuously (microneurography) from the left peroneal nerve and quantified from cardiac-synchronized, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34% (P < 0.01) during voluntary contractions but did not change significantly during electrically-evoked contractions (-8 ± 12%, P > 0.05). MSNA analyzed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01), remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.
Collapse
Affiliation(s)
- Daniel Boulton
- School of Science and Health, Western Sydney University Sydney NSW, Australia
| | - Chloe E Taylor
- School of Science and Health, Western Sydney UniversitySydney NSW, Australia; School of Medicine, Western Sydney UniversitySydney NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney UniversitySydney NSW, Australia; Neuroscience Research AustraliaSydney NSW, Australia
| | - Simon Green
- School of Science and Health, Western Sydney UniversitySydney NSW, Australia; School of Medicine, Western Sydney UniversitySydney NSW, Australia; Neuroscience Research AustraliaSydney NSW, Australia
| |
Collapse
|
15
|
Poitras VJ, Bentley RF, Hopkins-Rosseel DH, LaHaye SA, Tschakovsky ME. Independent effect of type 2 diabetes beyond characteristic comorbidities and medications on immediate but not continued knee extensor exercise hyperemia. J Appl Physiol (1985) 2015; 119:202-12. [PMID: 26048976 DOI: 10.1152/japplphysiol.00758.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 06/01/2015] [Indexed: 01/23/2023] Open
Abstract
We tested the hypothesis that type 2 diabetes (T2D), when present in the characteristic constellation of comorbidities (obesity, hypertension, dyslipidemia) and medications, slows the dynamic adjustment of exercising muscle perfusion and blunts the steady state relative to that of controls matched for age, body mass index, fitness, comorbidities, and non-T2D medications. Thirteen persons with T2D and 11 who served as controls performed rhythmic single-leg isometric quadriceps exercise (rest-to-6 kg and 6-to-12 kg transitions, 5 min at each intensity). Measurements included leg blood flow (LBF, femoral artery ultrasound), mean arterial pressure (MAP, finger photoplethysmography), and leg vascular conductance (LVK, calculated). Dynamics were quantified using mean response time (MRT). Measures of amplitude were also used to compare response adjustment: the change from baseline to 1) the peak initial response (greatest 1-s average in the first 10 s; ΔLBFPIR, ΔLVKPIR) and 2) the on-transient (average from curve fit at 15, 45, and 75 s; ΔLBFON, ΔLVKON). ΔLBFPIR was significantly blunted in T2D vs. control individuals (P = 0.037); this was due to a tendency for reduced ΔLVKPIR (P = 0.063). In contrast, the overall response speed was not different between groups (MRT P = 0.856, ΔLBFON P = 0.150) nor was the change from baseline to steady state (P = 0.204). ΔLBFPIR, ΔLBFON, and LBF MRT did not differ between rest-to-6 kg and 6-to-12 kg workload transitions (all P > 0.05). Despite a transient amplitude impairment at the onset of exercise, there is no robust or consistent effect of T2D on top of the comorbidities and medications typical of this population on the overall dynamic adjustment of LBF, or the steady-state levels achieved during low- or moderate-intensity exercise.
Collapse
Affiliation(s)
- Veronica J Poitras
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Robert F Bentley
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Diana H Hopkins-Rosseel
- Cardiac Rehabilitation Centre, Hotel Dieu Hospital, Kingston, Ontario, Canada; and School of Rehabilitation Therapy, Queen's University, Kingston, Ontario, Canada
| | - Stephen A LaHaye
- Cardiac Rehabilitation Centre, Hotel Dieu Hospital, Kingston, Ontario, Canada; and
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada;
| |
Collapse
|
16
|
Green S, Egaña M, Baldi JC, Lamberts R, Regensteiner JG. Cardiovascular control during exercise in type 2 diabetes mellitus. J Diabetes Res 2015; 2015:654204. [PMID: 25918732 PMCID: PMC4396731 DOI: 10.1155/2015/654204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022] Open
Abstract
Controlled studies of male and female subjects with type 2 diabetes mellitus (DM) of short duration (~3-5 years) show that DM reduces peak VO2 (L·min(-1) and mL·kg(-1)·min(-1)) by an average of 12-15% and induces a greater slowing of the dynamic response of pulmonary VO2 during submaximal exercise. These effects occur in individuals less than 60 years of age but are reduced or absent in older males and are consistently associated with significant increases in the exercise pressor response despite normal resting blood pressure. This exaggerated pressor response, evidence of exertional hypertension in DM, is manifest during moderate submaximal exercise and coincides with a more constrained vasodilation in contracting muscles. Maximum vasodilation during contractions involving single muscle groups is reduced by DM, and the dynamic response of vasodilation during submaximal contractions is slowed. Such vascular constraint most likely contributes to exertional hypertension, impairs dynamic and peak VO2 responses, and reduces exercise tolerance. There is a need to establish the effect of DM on dynamic aspects of vascular control in skeletal muscle during whole-body exercise and to clarify contributions of altered cardiovascular control and increased arterial stiffness to exertional hypertension.
Collapse
Affiliation(s)
- Simon Green
- School of Science and Health, University of Western Sydney, Sydney, NSW 2751, Australia
- Neuroscience Research Australia, Sydney, NSW 2751, Australia
- *Simon Green:
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 1, Ireland
| | - J. Chris Baldi
- Department of Medicine, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Regis Lamberts
- Department of Physiology-HeartOtago, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Judith G. Regensteiner
- Division of General Internal Medicine, Center for Women's Health Research, Department of Medicine, School of Medicine, University of Colorado, Denver, CO 80210, USA
| |
Collapse
|
17
|
Interactive effect of acute sympathetic activation and exercise intensity on the dynamic response characteristics of vascular conductance in the human calf muscle. Eur J Appl Physiol 2014; 115:879-90. [PMID: 25479730 DOI: 10.1007/s00421-014-3069-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The effect of acute activation of the sympathetic nervous system on the dynamic response of muscle hyperaemia during exercise at different intensities is not clear. METHODS To explore this, six men performed 16, 5-min bouts of intermittent calf contractions at two intensities (25 and 50 % MVC) and two levels of sympathetic activation (CPT cold pressor test, CON control). Mean arterial pressure (MAP) and leg vascular conductance (LVC leg blood flow/MAP) were measured during rest and contractions (3 s intervals), and dynamic response characteristics of LVC were estimated using curve-fitting and empirical modeling. RESULTS MAP was ~20 % greater (P ≤ 0.05) during CPT than CON before and during initial contractions at both intensities. At 25 % MVC, CPT reduced the exercise-induced change in LVC (0.109 vs 0.125 ml 100 ml(-1 )min(-1 )mmHg(-1); P < 0.05), an effect attributed to the reduction in the amplitude of the fast growth phase (0.091 vs 0.128 1 ml 100 ml(-1 )min(-1 )mmHg(-1); P < 0.05). At 50 % MVC, CPT also blunted the fast growth phase (0.147 vs 0.189 ml 100 ml(-1 )min(-1 )mmHg(-1); P < 0.05), but the total change in LVC during exercise was unaffected because of a significant reduction in the amplitude of the rapid decay phase and tendency (P = 0.1) for a lower amplitude of the slow decay phase. CONCLUSION Increased sympathetic constraint of vasodilation persists during initial contractions but is overcome at the high intensity by a mechanism apparently related to hyperaemic decay.
Collapse
|
18
|
Kellawan JM, Bentley RF, Bravo MF, Moynes JS, Tschakovsky ME. Does oxygen delivery explain interindividual variation in forearm critical impulse? Physiol Rep 2014; 2:2/11/e12203. [PMID: 25413323 PMCID: PMC4255810 DOI: 10.14814/phy2.12203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction-2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP(-1)) were calculated. There was a wide range in O2 delivery (59.98-121.15 O2 mL·min(-1)) and critical impulse (381.5-584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r(2) = 0.85, P < 0.01). Both vasodilation (r(2) = 0.64, P < 0.001) and the exercise pressor response (r(2) = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined.
Collapse
Affiliation(s)
- J Mikhail Kellawan
- Department of Kinesiology, School of Education, University of Wisconsin, Madison, Wisconsin
| | - Robert F Bentley
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Michael F Bravo
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Jackie S Moynes
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Michael E Tschakovsky
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Kiely C, O'Connor E, O'Shea D, Green S, Egaña M. Hemodynamic responses during graded and constant-load plantar flexion exercise in middle-aged men and women with type 2 diabetes. J Appl Physiol (1985) 2014; 117:755-64. [DOI: 10.1152/japplphysiol.00555.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypotheses that type 2 diabetes (T2D) impairs the 1) leg hemodynamic responses to an incremental intermittent plantar-flexion exercise and 2) dynamic responses of leg vascular conductance (LVC) during low-intensity (30% maximal voluntary contraction, MVC) and high-intensity (70% MVC) constant-load plantar-flexion exercise in the supine posture. Forty-four middle-aged individuals with T2D (14 women), and 35 healthy nondiabetic (ND) individuals (18 women) were tested. Leg blood flow (LBF) was measured between each contraction using venous occlusion plethysmography. During the incremental test peak force (Fpeak) relative to MVC was significantly reduced ( P < 0.05) in men and women with T2D compared with their respective nondiabetic counterparts. Peak LBF and the slope of LBF relative to percentage Fpeak were also reduced ( P < 0.05) in women with T2D compared with healthy women (peak blood flow, 460.6 ± 126.8 vs. 628.3 ± 347.7 ml/min; slope, 3.78 ± 1.74 vs. 5.85 ± 3.14 ml·min−1·%Fpeak−1) and in men with T2D compared with nondiabetic men (peak blood flow, 621.7 ± 241.3 vs. 721.2 ± 359.7 ml/min; slope, 5.75 ± 2.66 vs. 6.33 ± 3.63 ml·min−1·%Fpeak−1). During constant-load contractions at 30% MVC T2D did not affect the dynamic responses of LVC (LBF/MAP). However, at 70% MVC [completed by a subgroup of participants (20 with T2D, 6 women; 13 ND, 6 women)] the time constant of the second growth phase of LVC was longer and the amplitude of the first growth phase was lower ( P < 0.05 for both) in men and women with T2D. The results suggest that the T2D-induced impairments in performance of the leg muscles are related to reductions in blood flow in both men and women.
Collapse
Affiliation(s)
- Catherine Kiely
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eamonn O'Connor
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Donal O'Shea
- Endocrinology, St Columcille's and St Vincent's Hospitals, Dublin, Ireland; and
| | - Simon Green
- School of Science and Health and School of Medicine, University of Western Sydney, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Crecelius AR, Luckasen GJ, Larson DG, Dinenno FA. KIR channel activation contributes to onset and steady-state exercise hyperemia in humans. Am J Physiol Heart Circ Physiol 2014; 307:H782-91. [PMID: 24973385 DOI: 10.1152/ajpheart.00212.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that activation of inwardly rectifying potassium (KIR) channels and Na(+)-K(+)-ATPase, two pathways that lead to hyperpolarization of vascular cells, contributes to both the onset and steady-state hyperemic response to exercise. We also determined whether after inhibiting these pathways nitric oxide (NO) and prostaglandins (PGs) are involved in the hyperemic response. Forearm blood flow (FBF; Doppler ultrasound) was determined during rhythmic handgrip exercise at 10% maximal voluntary contraction for 5 min in the following conditions: control [saline; trial 1 (T1)]; with combined inhibition of KIR channels and Na(+)-K(+)-ATPase alone [via barium chloride (BaCl2) and ouabain, respectively; trial 2 (T2)]; and with additional combined nitric oxide synthase (N(G)-monomethyl-l-arginine) and cyclooxygenase inhibition [ketorolac; trial 3 (T3)]. In T2, the total hyperemic responses were attenuated ~50% from control (P < 0.05) at exercise onset, and there was minimal further effect in T3 (protocol 1; n = 11). In protocol 2 (n = 8), steady-state FBF was significantly reduced during T2 vs. T1 (133 ± 15 vs. 167 ± 17 ml/min; Δ from control: -20 ± 3%; P < 0.05) and further reduced during T3 (120 ± 15 ml/min; -29 ± 3%; P < 0.05 vs. T2). In protocol 3 (n = 8), BaCl2 alone reduced FBF during onset (~50%) and steady-state exercise (~30%) as observed in protocols 1 and 2, respectively, and addition of ouabain had no further impact. Our data implicate activation of KIR channels as a novel contributing pathway to exercise hyperemia in humans.
Collapse
Affiliation(s)
- Anne R Crecelius
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, University of Colorado Health, Loveland, Colorado
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, University of Colorado Health, Loveland, Colorado
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado; Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and
| |
Collapse
|
21
|
Abstract
Muscular exercise requires transitions to and from metabolic rates often exceeding an order of magnitude above resting and places prodigious demands on the oxidative machinery and O2-transport pathway. The science of kinetics seeks to characterize the dynamic profiles of the respiratory, cardiovascular, and muscular systems and their integration to resolve the essential control mechanisms of muscle energetics and oxidative function: a goal not feasible using the steady-state response. Essential features of the O2 uptake (VO2) kinetics response are highly conserved across the animal kingdom. For a given metabolic demand, fast VO2 kinetics mandates a smaller O2 deficit, less substrate-level phosphorylation and high exercise tolerance. By the same token, slow VO2 kinetics incurs a high O2 deficit, presents a greater challenge to homeostasis and presages poor exercise tolerance. Compelling evidence supports that, in healthy individuals walking, running, or cycling upright, VO2 kinetics control resides within the exercising muscle(s) and is therefore not dependent upon, or limited by, upstream O2-transport systems. However, disease, aging, and other imposed constraints may redistribute VO2 kinetics control more proximally within the O2-transport system. Greater understanding of VO2 kinetics control and, in particular, its relation to the plasticity of the O2-transport/utilization system is considered important for improving the human condition, not just in athletic populations, but crucially for patients suffering from pathologically slowed VO2 kinetics as well as the burgeoning elderly population.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas, USA.
| | | |
Collapse
|
22
|
Ross GA, Mihok ML, Murrant CL. Extracellular adenosine initiates rapid arteriolar vasodilation induced by a single skeletal muscle contraction in hamster cremaster muscle. Acta Physiol (Oxf) 2013; 208:74-87. [PMID: 23297742 DOI: 10.1111/apha.12060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
AIM Recent studies suggest that adenosine (ADO) can be produced extracellularly in response to skeletal muscle contraction. We tested the hypothesis that a single muscle contraction produces extracellular ADO rapidly enough and in physiologically relevant concentrations to be able to contribute to the rapid vasodilation that occurs at the onset of muscle contraction. METHODS We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of arterioles at a site of overlap with the stimulated muscle fibres before and after a single contraction (stimulus frequencies: 4, 20 and 60 Hz; 250 ms train duration). Muscle fibres were stimulated in the absence and presence of non-specific ADO membrane receptor antagonists 8-phenyltheophylline (8-PT, 10(-6) M) or xanthine amine congener (XAC, 10(-6) M) or an inhibitor of an extracellular source of ADO, ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AMPCP, 10(-5) M). RESULTS We observed that the dilatory event at 4 s following a single contraction was significantly inhibited at all stimulus frequencies by an average of 63.9 ± 2.6% by 8-PT. The 20-s dilatory event that occurred at 20 and 60 Hz was significantly inhibited by 53.6 ± 2.6 and 73.8 ± 2.3% by 8-PT and XAC respectively. Further, both the 4- and 20-s dilatory events were significantly inhibited by AMPCP by 78.6 ± 6.6 and 67.1 ± 1.5%, respectively, at each stimulus frequency tested. CONCLUSIONS Our data show that ADO is produced extracellularly during a single muscle contraction and that it is produced rapidly enough and in physiologically relevant concentrations to contribute to the rapid vasodilation in response to muscle contraction.
Collapse
Affiliation(s)
- G. A. Ross
- Department of Human Biology and Nutritional Science; University of Guelph; Guelph; ON; Canada
| | - M. L. Mihok
- Department of Human Biology and Nutritional Science; University of Guelph; Guelph; ON; Canada
| | - C. L. Murrant
- Department of Human Biology and Nutritional Science; University of Guelph; Guelph; ON; Canada
| |
Collapse
|
23
|
Donnelly J, Green S. Effect of hypoxia on the dynamic response of hyperaemia in the contracting human calf muscle. Exp Physiol 2012; 98:81-93. [PMID: 22689444 DOI: 10.1113/expphysiol.2012.066258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although systemic hypoxia increases the muscle hyperaemic response during 'steady-state' exercise, its effect on the dynamic characteristics of this response is not clear. In the present study, we first established that hypoxia increases the steady-state hyperaemic response at low workloads during calf exercise. To study dynamic aspects of this response, eight subjects performed eight exercise trials while breathing a normoxic (fractional inspired O(2) = 0.2094) or hypoxic gas mixture (fractional inspired O(2) = 0.105). Subjects performed intermittent contractions (1 s) of the calf muscle at 20% maximal voluntary contraction, and the leg blood flow (LBF), leg vascular conductance (LVC) and EMG activities of the triceps surae muscles were measured during each contraction-relaxation period (3 s). The LBF and LVC responses were averaged for each subject and fitted using a four-phase, exponential growth and decay function. Hypoxia evoked significant increases in the change in LBF (15%) and LVC (23%) from the start to the end of exercise, as well as the amplitude of the rapid growth phase of LBF and LVC (21%). Similar, but non-significant, effects on the amplitude of the slow growth phase of LBF (P = 0.08) and LVC (P = 0.10) were observed. By contrast, hypoxia had no effect on temporal parameters of these growth phases, parameters defining the decay phases or EMG activities. These results suggest that the effect of hypoxia on exercise hyperaemia is targeted at the rapid and perhaps the slow growth phase of the response, and is not mediated by a change in the level of muscle activation.
Collapse
Affiliation(s)
- J Donnelly
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
24
|
Reeder EJ, Green S. Dynamic response characteristics of hyperaemia in the human calf muscle: effect of exercise intensity and relation to electromyographic activity. Eur J Appl Physiol 2012; 112:3997-4013. [DOI: 10.1007/s00421-012-2362-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/17/2012] [Indexed: 11/29/2022]
|
25
|
Tschakovsky ME, Wiltshire EV. RESPONSE. Med Sci Sports Exerc 2011. [DOI: 10.1249/mss.0b013e318207871b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Venous occlusion plethysmography versus Doppler ultrasound in the assessment of leg blood flow during calf exercise. Eur J Appl Physiol 2011; 111:1889-900. [DOI: 10.1007/s00421-010-1819-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 12/27/2010] [Indexed: 11/25/2022]
|
27
|
MacAnaney O, Reilly H, O'Shea D, Egaña M, Green S. Effect of type 2 diabetes on the dynamic response characteristics of leg vascular conductance during exercise. Diab Vasc Dis Res 2011; 8:12-21. [PMID: 21262866 DOI: 10.1177/1479164110389625] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study we tested the hypothesis that type 2 diabetes impairs the dynamic response of leg vascular conductance (LVC) during exercise. LVC (leg blood flow/mean arterial pressure) responses were studied during intermittent contractions of the calf muscle in subjects with type 2 diabetes (n = 9), heavy controls (n = 10) and lean controls (n = 8) using a biexponential function and an estimate of the mean response time (MRT). The time constant of the second phase of LVC was significantly greater in type 2 diabetes (66.4 ± 29.2 s) than the heavy (22.2 ± 13.4 s) and lean (21.8 ± 9.3 s) controls, resulting in a significantly greater MRT in the diabetic group (median [IQR] = 30.7 [24.6-46.5] s versus 16.3 [4.3-23.2] s and 18.4 [13.7-19.3] s). These data support the hypothesis and suggest that a slowed hyperaemic response in the exercising limb might contribute to exercise intolerance in diabetic subjects.
Collapse
Affiliation(s)
- Oscar MacAnaney
- Department of Physiology, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
28
|
Wiltshire EV, Poitras V, Pak M, Hong T, Rayner J, Tschakovsky ME. Massage impairs postexercise muscle blood flow and "lactic acid" removal. Med Sci Sports Exerc 2010; 42:1062-71. [PMID: 19997015 DOI: 10.1249/mss.0b013e3181c9214f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study tested the hypothesis that one of the ways sports massage aids muscle recovery from exercise is by increasing muscle blood flow to improve "lactic acid" removal. METHODS Twelve subjects performed 2 min of strenuous isometric handgrip (IHG) exercise at 40% maximum voluntary contraction to elevate forearm muscle lactic acid. Forearm blood flow (FBF; Doppler and Echo ultrasound of the brachial artery) and deep venous forearm blood lactate and H+ concentration ([La-], [H+]) were measured every minute for 10 min post-IHG under three conditions: passive (passive rest), active (rhythmic exercise at 10% maximum voluntary contraction), and massage (effleurage and pétrissage). Arterialized [La-] and [H+] from a superficial heated hand vein was measured at baseline. RESULTS Data are presented as mean +/- SE. Venoarterial [La-] difference ([La-]v-a) at 30 s of post-IHG was the same across conditions (passive = 6.1 +/- 0.6 mmol x L(-1), active = 5.7 +/- 0.6 mmol x L(-1), massage = 5.5 +/- 0.6 mmol x L(-1), NS), whereas FBF was greater in passive (766 +/- 101 mL x min(-1)) versus active (614 +/- 62 mL x min(-1), P = 0.003) versus massage (540 +/- 60 mL x min(-1), P < 0.0001). Total FBF area under the curve (AUC) for 10 min after handgrip was significantly higher in passive versus massage (4203 +/- 531 vs 3178 +/- 304 mL, P = 0.024) but not versus active (3584 +/- 284 mL, P = 0.217). La(-)- efflux (FBF x [La-]v-a) AUC mirrored FBF AUC (passive = 20.5 +/- 2.8 mmol vs massage = 14.7 +/- 1.6 mmol, P = 0.03, vs active = 15.4 +/- 1.9 mmol, P = 0.064). H+ efflux (FBF x [H+]v-a) was greater in passive versus massage at 30 s (2.2 +/- 0.4e(-5) vs 1.3 +/- 0.2e(-5) mmol, P < 0.001) and 1.5 min (1.0 +/- 0.2e(-5) vs 0.6 +/- 0.09e(-5) mmol, P = 0.003) after IHG. CONCLUSIONS Massage impairs La(-) and H+ removal from muscle after strenuous exercise by mechanically impeding blood flow.
Collapse
Affiliation(s)
- E Victoria Wiltshire
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Plasma ATP concentration and venous oxygen content in the forearm during dynamic handgrip exercise. BMC PHYSIOLOGY 2009; 9:24. [PMID: 20003530 PMCID: PMC2801472 DOI: 10.1186/1472-6793-9-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 12/15/2009] [Indexed: 11/30/2022]
Abstract
Background It has been proposed that adenosine triphosphate (ATP) released from red blood cells (RBCs) may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC). Results Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P < 0.05), and remained at this higher level 180 seconds into exercise (P < 0.05 versus rest). The increase in ATP was mirrored by a decrease in venous oxygen content. While there was no significant relationship between ATP concentration and venous oxygen content at 30 seconds of exercise, they were moderately and inversely correlated at 180 seconds of exercise (r = -0.651, P = 0.021). Arterial ATP concentration remained unchanged throughout exercise, resulting in an increase in the venous-arterial ATP difference. Conclusions Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.
Collapse
|
30
|
Can venous occlusion plethysmography be used to measure high rates of arterial inflow? Eur J Appl Physiol 2009; 108:239-45. [PMID: 19774391 DOI: 10.1007/s00421-009-1208-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
To investigate whether venous occlusion plethysmography (VOP) may be used to measure high rates of arterial inflow associated with exercise, venous occlusions were performed at rest, and following dynamic handgrip exercise at 15, 30, 45, and 60% of maximum voluntary contraction (MVC) in seven healthy males. The effect of including more than one cardiac cycle in the calculation of blood flow was assessed by comparing the cumulative blood flow over one, two, three, or four cardiac cycles. The inclusion of more than one cardiac cycle at 30 and 60% MVC, and more than two cardiac cycles at 15 and 45% MVC resulted in a lower blood flow compared to using only the first cardiac cycle (P < 0.05). Despite the small time interval over which arterial inflow was measured (~1 s), this did not affect the reproducibility of the technique. Reproducibility (coefficient of variation for arterial inflow over three trials) tended to be poorer at the higher workloads, although this was not significant (12.7 +/- 6.6, 16.2 +/- 7.3, and 22.9 +/- 9.9% for the 15, 30, and 45% MVC workloads; P = 0.102). There was also a tendency for greater reproducibility with the inclusion of more cardiac cycles at the highest workload, but this did not reach significance (P = 0.070). In conclusion, when calculated over the first cardiac cycle only during venous occlusion, high rates of forearm blood flow can be measured using VOP, and this can be achieved without a significant decrease in the reproducibility of the measurement.
Collapse
|
31
|
Weil BR, Byrne SA, Baynard T, Kanaley JA. Vascular function is impaired early after the initiation of chronic cigarette smoking. Artery Res 2009. [DOI: 10.1016/j.artres.2009.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Padilla J, Harris RA, Rink LD, Wallace JP. Characterization of the brachial artery shear stress following walking exercise. Vasc Med 2008; 13:105-11. [PMID: 18593799 DOI: 10.1177/1358863x07086671] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Habitual exercise provides repeated episodes of elevated vascular shear stress (SS), which may be a mechanism for repair of endothelial dysfunction in disease. Our aim was to determine the brachial artery SS during the 3-hour period following single bouts of low, moderate, and high-intensity walking exercise. In a randomized crossover design, 14 men walked for 45 minutes on a treadmill at 25%, 50% and 75% of VO2peak separated by 2-7 days. Using Doppler ultrasonography, brachial artery SS was assessed immediately after exercise and then hourly for 3 hours. High-intensity walking elicited greater (p<0.05) post-exercise SS compared with low and moderate intensity. In addition, a 3x4 (intensity x time) ANOVA indicated an absence of interaction (p=0.369) and a decline in post-exercise SS over time (p<0.0001) which was abolished after 2 hours. Thus, we found that brachial artery SS is greatest following high-intensity walking and that the rate of decline in SS is similar across all walking intensities.
Collapse
Affiliation(s)
- Jaume Padilla
- Clinical Exercise Physiology Laboratory, Department of Kinesiology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
33
|
Pyke KE, Hartnett JA, Tschakovsky ME. Are the dynamic response characteristics of brachial artery flow-mediated dilation sensitive to the magnitude of increase in shear stimulus? J Appl Physiol (1985) 2008; 105:282-92. [PMID: 18467554 DOI: 10.1152/japplphysiol.01190.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the dynamic characteristics of brachial artery dilation in response to step increases in shear stress [flow-mediated dilation (FMD)]. Brachial artery diameter (BAD) and mean blood velocity (MBV) (Doppler ultrasound) were obtained in 15 healthy subjects. Step increases in MBV at two shear stimulus magnitudes were investigated: large (L; maximal MBV attainable), and small (S; MBV at 50% of the large step). Increase in shear rate (estimate of shear stress: MBV/BAD) was 76.8 +/- 15.6 s(-1) for L and 41.4 +/- 8.7 s(-1) for S. The peak %FMD was 14.5 +/- 3.8% for L and 5.7 +/- 2.1% for S (P < 0.001). Both the L (all subjects) and the S step trials (12 of 15 subjects) elicited a biphasic diameter response with a fast initial phase (phase I) followed by a slower final phase. Relative contribution of phase I to total FMD when two phases occurred was not sensitive to shear rate magnitude (r(2) = 0.003, slope P = 0.775). Parameters quantifying the dynamics of the FMD response [time delay (TD), time constant (tau)] were also not sensitive to shear rate magnitude for both phases (phase I: TD r(2) = 0.03, slope P = 0.376, tau r(2) = 0.04, slope P = 0.261; final phase: TD r(2) = 0.07, slope P = 0.169, tau r(2) = 0.07, slope P = 0.996). These data support the existence of two distinct mechanisms, or sets of mechanisms, in the human conduit artery FMD response that are proportionally sensitive to shear stimulus magnitude and whose dynamic response is not sensitive to shear stimulus magnitude.
Collapse
Affiliation(s)
- K E Pyke
- Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
34
|
Tschakovsky ME. Introduction to proceedings from the 2005 CSEP symposium “Exercise and the endothelium”. Appl Physiol Nutr Metab 2008; 33:149-50. [DOI: 10.1139/h07-145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This introduction summarizes the topics addressed in the three companion review papers on various issues surrounding exercise and the endothelium. Leading experts in the field discuss the most recent findings regarding the following: (i) nitric oxide and exercise hyperemia, (ii) the response of the endothelium to exercise training, and (iii) the impact of exercise on the vascular biology of angiotensin as it relates to the vascular endothelium.
Collapse
Affiliation(s)
- Michael E. Tschakovsky
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6 (e-mail: )
| |
Collapse
|
35
|
Tschakovsky ME, Joyner MJ. Nitric oxide and muscle blood flow in exercise. Appl Physiol Nutr Metab 2008; 33:151-61. [DOI: 10.1139/h07-148] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Despite being the subject of investigation for well over 100 years, the nature of exercising muscle blood flow control remains, in many respects, poorly understood. In this review we focus on the potential role of nitric oxide in vasodilation of muscle resistance vessels during a bout of exercise. Its contribution is explored in the context of whether it contributes to steady-state exercise hyperemia, the dynamic adjustment of muscle blood flow to exercise, or the modulation of sympathetic vasoconstriction in exercising muscle. It appears that the obligatory role of nitric oxide in all three of these categories is modest at best. The elucidation of the integrated nature of exercise hyperemia control in terms of synergy and redundancy of mechanism interaction remains in its infancy, and much more remains to be learned about the role of nitric oxide in this type of integrated control.
Collapse
Affiliation(s)
- Michael E. Tschakovsky
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | - Michael J. Joyner
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| |
Collapse
|
36
|
Ferreira LF, Koga S, Barstow TJ. Dynamics of noninvasively estimated microvascular O2 extraction during ramp exercise. J Appl Physiol (1985) 2007; 103:1999-2004. [PMID: 17823295 DOI: 10.1152/japplphysiol.01414.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Utilization of near-infrared spectroscopy (NIRS) in clinical exercise testing to detect microvascular abnormalities requires characterization of the responses in healthy individuals and theoretical foundation for data interpretation. We examined the profile of the deoxygenated hemoglobin signal from NIRS {deoxygenated hemoglobin + myoglobin [deoxy-(Hb+Mb)] ≈ O2 extraction} during ramp exercise to test the hypothesis that the increase in estimated O2 extraction would be close to hyperbolic, reflecting a linear relationship between muscle blood flow (Q̇m) and muscle oxygen uptake (V̇o2m) with a positive Q̇m intercept. Fifteen subjects (age 24 ± 5 yr) performed incremental ramp exercise to fatigue (15–35 W/min). The deoxy-(Hb+Mb) response, measured by NIRS, was fitted by a hyperbolic function [ f( x) = ax/( b + x), where a is the asymptotic value and b is the x value that yields 50% of the total amplitude] and sigmoidal function { f( x) = f0 + A/[1 + e−(− c+ dx)], where f0 is baseline, A is total amplitude, and c is a constant dependent on d, the slope of the sigmoid}, and the goodness of fit was determined by F test. Only one subject demonstrated a hyperbolic increase in deoxy-(Hb+Mb) ( a = 170%, b = 193 W), whereas 14 subjects displayed a sigmoidal increase in deoxy-(Hb+Mb) ( f0 = −7 ± 7%, A = 118 ± 16%, c = 3.25 ± 1.14, and d = 0.03 ± 0.01). Computer simulations revealed that sigmoidal increases in deoxy-(Hb+Mb) reflect a nonlinear relationship between microvascular Q̇m and V̇o2m during incremental ramp exercise. The mechanistic implications of our findings are that, in most healthy subjects, Q̇m increased at a faster rate than V̇o2m early in the exercise test and slowed progressively as maximal work rate was approached.
Collapse
Affiliation(s)
- Leonardo F Ferreira
- Department of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, KS 66506-0302, USA
| | | | | |
Collapse
|
37
|
Energy metabolism in intensively exercising calf muscle under a simulated orthostasis. Pflugers Arch 2007; 455:1153-63. [PMID: 17940794 DOI: 10.1007/s00424-007-0361-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/22/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
We conducted non-invasive methods to investigate the mechanisms how an orthostasis improves fatigue resistance in human calf muscle during intense exercise. Eleven healthy volunteers performed two series of ten intervals of maximum dynamic exercise (15 s) and recovery (45 s) at almost horizontal body position under both, control conditions (CON) and lower body negative pressure (LBNP, -40 mbar). As from the second work interval, LBNP significantly improved fatigue resistance shown as a lower reduction in work and in contraction velocity (P < 0.01). During each work interval, EMG showed a small increase in amplitude (P < 0.01) and a steep drop by 20% in median frequency (P < 0.01). Under LBNP, both EMG parameters completely recovered during subsequent rest, whereas under CON recovery was incomplete (P < 0.01). During the first work interval, consumption of phosphocreatine (PCr) was almost the same for both conditions. In periods of recovery under LBNP, resynthesis of PCr and inorganic phosphate were significantly faster. PCr reached 10 to 20% higher levels (P < 0.01). LBNP caused an initial increase in intracellular pH (0.08 U (P < 0.01)). The subsequent time courses of pH were similar for CON and LBNP. During work, pH steeply increased by about 0.3 U. During subsequent recovery, pH dropped to values between 6.3 and 6.5. LBNP caused significantly higher levels of total haemoglobin and oxy-haemoglobin (P < 0.05). A simulated orthostasis increased fatigue resistance during high intense interval exercise because of a faster PCr resynthesis and may be because of improvements in the maintenance of motoneuronal activity.
Collapse
|
38
|
Marro KI, Olive JL, Hyyti OM, Kushmerick MJ. Time-courses of perfusion and phosphocreatine in rat leg during low-level exercise and recovery. J Magn Reson Imaging 2007; 25:1021-7. [PMID: 17457811 DOI: 10.1002/jmri.20903] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To develop a noninvasive protocol for measuring local perfusion and metabolic demand in muscle tissue with sufficient sensitivity and time resolution to monitor kinetics at the onset of low-level exercise and during recovery. MATERIALS AND METHODS Capillary-level perfusion, the critical factor that determines oxygen and substrate delivery to active muscle, was measured by an arterial spin labeling (ASL) technique optimized for skeletal muscle. Phosphocreatine (PCr) kinetics, which signal the flux of oxidative phosphorylation, were measured by (31)P MR spectroscopy. Perfusion and PCr measurements were made in parallel studies before, during, and after three different intensities of low-level, stimulated exercise in rat hind limb. RESULTS The data reveal close coupling between the perfusion response and PCr changes. The onset and recovery time constants for PCr changes were independent of contractile force over the range of forces studied. Perfusion time constants during both onset of exercise and recovery tended to increase with contractile force. CONCLUSION These results demonstrate that the protocol implemented can be useful for probing the mechanisms that control skeletal muscle blood flow, the physiological limits to muscle performance, and the causes for the attenuated exercise-induced hyperemia observed in disease states.
Collapse
Affiliation(s)
- Kenneth I Marro
- Department of Radiology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
39
|
Tschakovsky ME, Saunders NR, Webb KA, O'Donnell DE. Muscle blood-flow dynamics at exercise onset: do the limbs differ? Med Sci Sports Exerc 2006; 38:1811-8. [PMID: 17019304 DOI: 10.1249/01.mss.0000230341.86870.4f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Common approaches to understanding control of muscle blood flow in exercise focus on the contributions of various putative vasoregulatory mechanisms to the magnitude of the steady-state response. The application of systems-control principles offers a unique approach to characterizing and quantifying the non-steady-state adaptation of muscle blood flow with exercise onset. Information gained from this approach provides novel insight into the nature of control mechanisms governing physiological responses to exercise. This review is intended to provide the reader with an understanding of 1) exercise models, methodology for measuring muscle blood flow, and analysis approaches for quantifying muscle blood-flow dynamics; 2) what is currently known about the dynamic response of muscle blood-flow control mechanisms in humans; and 3) the similarities and differences in exercising muscle blood-flow control in the upper versus the lower limbs in humans.
Collapse
Affiliation(s)
- Michael E Tschakovsky
- School of Physical and Health Education, Queen's University, Kingston, Ontario, Canada.
| | | | | | | |
Collapse
|
40
|
Richardson RS, Secher NH, Tschakovsky ME, Proctor DN, Wray DW. Metabolic and Vascular Limb Differences Affected by Exercise, Gender, Age, and Disease. Med Sci Sports Exerc 2006; 38:1792-6. [PMID: 17019301 DOI: 10.1249/01.mss.0000229568.17284.ab] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We studied previously resistance-trained men and compared the effects of concentric and eccentric training on performance and structural muscle parameters. METHODS Seventeen trained individuals (age 26.9 +/- 3.4 yr) participated in 12 wk of either maximum concentric (N = 8) or eccentric (N = 9) resistance training of the elbow flexors. The functional performance was measured as the maximum concentric and eccentric strength and angular velocity at standard loads. Muscle cross-sectional area and cross-sectional area of single cells were used as measures of muscular hypertrophy. Fiber-type proportions were assessed by staining cells for myofibrillar ATPase. RESULTS Both eccentric and concentric training increased concentric strength to a similar extent (14 vs 18%), whereas eccentric training led to greater increases in eccentric strength than concentric training did (26 vs 9%). The maximum angular velocity at all loads was enhanced equally in both training groups. The cross-sectional area of both the elbow flexors (+11%) and of the type I and type IIA fibers increased only after the eccentric training. In addition, the relative cross-sectional area occupied by the type II fibers increased from 64 to 73% after the eccentric training. There were only minor changes in the fiber-type proportions. CONCLUSION The present data suggest that for resistance-trained men, increases in concentric strength and velocity performance after eccentric training are largely mediated by changes in fiber and muscle cross-sectional area. However, hypertrophy alone could not explain the increase in eccentric strength. Because the increases in strength and velocity performance after concentric training could not be ascribed to muscular adaptations alone, we suggest that they may be attributable to additional neural factors.
Collapse
Affiliation(s)
- Russell S Richardson
- Department of Medicine, University of California San Diego, La Jolla, CA 92009, USA.
| | | | | | | | | |
Collapse
|
41
|
Armstrong ML, Dua AK, Murrant CL. Time course of vasodilation at the onset of repetitive skeletal muscle contractions. Am J Physiol Regul Integr Comp Physiol 2006; 292:R505-15. [PMID: 16931651 DOI: 10.1152/ajpregu.00381.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize the vasodilatory response in the transition from a single skeletal contraction to a series of contractions, we measured the response of hamster cremaster muscle arterioles associated with four to five skeletal muscle fibers stimulated to contract for one, two, three, or four contractions (250-ms train duration) at 4-s intervals [15 contractions per minute (CPM)] for up to 12 s, at stimulus frequencies of 4, 10, 20, 30, 40, 60, and 80 Hz. To investigate the contribution of contraction frequency, we stimulated muscle fiber bundles at 30 or 60 CPM for 12 s at stimulus frequencies of 4, 20, and 60 Hz. Arteriolar diameters at the site of overlap with the stimulated muscle fibers were measured before and after each contraction. At 15 CPM at 4, 20, and 60 Hz, we observed a peak change in diameter following the first contraction of 1.1 +/- 0.1, 1.6 +/- 0.2, and 2.1 +/- 0.2 mum that almost doubled in response to the second contraction (2.0 +/- 0.1, 3.0 +/- 0.1, and 3.8 +/- 0.1 mum, respectively), but there was no further dilation following the third or fourth contraction. A similar response occurred at all stimulus and contraction frequencies tested. At 30 and 60 CPM at 60 Hz, the plateau after two contractions was followed by a further increase in diameter to a second plateau at 7-8 s. Therefore, the vasodilatory response in the transition from single to multiple contractions had components that were stimulation parameter dependent and independent and showed a plateauing behavior indicative of rapid changes in either the nature and/or concentration of vasodilators released or changes in vascular reactivity.
Collapse
Affiliation(s)
- Marika L Armstrong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
42
|
Ferreira LF, Harper AJ, Barstow TJ. Frequency-domain characteristics and filtering of blood flow following the onset of exercise: implications for kinetics analysis. J Appl Physiol (1985) 2006; 100:817-25. [PMID: 16282426 DOI: 10.1152/japplphysiol.01036.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the validity and usefulness of a low-pass filter (LPFILTER) to reduce point-to-point variability and enhance parameter estimation of the kinetics of blood flow (BF). Computer simulations were used to determine the power spectrum of simulated responses. Moreover, we studied the leg BF response to a single transition in four subjects during supine knee-extension exercise using three methods of data processing [beat-by-beat, average of 3 cardiac cycles (AVG3 BEATS), and LPFILTER]. The power spectrum of BF containing the kinetics information (≤0.2 Hz) did not overlap with the oscillations due to muscle contraction and cardiac cycle (simulations and Doppler measurements). There were no significant differences between the parameter estimates for a two-exponential model using Beat-by-Beat, AVG3 BEATS, and LPFILTER ( P > 0.05; n = 4). However, LPFILTER (cutoff = 0.2 Hz) resulted in a significantly lower standard error of the estimate for all parameters ( P < 0.05). The means ± SD for the standard error of the estimate for Beat-by-Beat, AVG3 BEATS, and LPFILTER were, respectively, time constant- phase 1 = 5.0 ± 1.1 s, 4.5 ± 2.1 s, and 0.3 ± 0.2 s; time delay- phase 2 = 17.8 ± 7.9 s, 12.8 ± 7.5 s, and 1.4 ± 1.4 s; time constant- phase 2 = 15.8 ± 4.6 s, 9.9 ± 2.9 s, and 1.1 ± 0.5 s. In conclusion, LPFILTER appeared to be a valid procedure providing a high signal-to-noise ratio and data density and thus LPFILTER resulted in the smallest confidence interval for parameter estimates of BF kinetics.
Collapse
Affiliation(s)
- Leonardo F Ferreira
- Dept. of Anatomy and Physiology, 1A Natatorium, Kansas State Univ., Manhattan, KS 66506-0302, USA
| | | | | |
Collapse
|
43
|
MacPhee SL, Shoemaker JK, Paterson DH, Kowalchuk JM. Kinetics of O2 uptake, leg blood flow, and muscle deoxygenation are slowed in the upper compared with lower region of the moderate-intensity exercise domain. J Appl Physiol (1985) 2005; 99:1822-34. [PMID: 16037398 DOI: 10.1152/japplphysiol.01183.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Six male subjects [23 yr (SD 4)] performed repetitions (6–8) of two-legged, moderate-intensity, knee-extension exercise during two separate protocols that included step transitions from 3 W to 90% estimated lactate threshold (θL) performed as a single step (S3) and in two equal steps (S1, 3 W to ∼45% θL; S2, ∼45% θL to ∼90% θL). The time constants (τ) of pulmonary oxygen uptake (V̇o2), leg blood flow (LBF), heart rate (HR), and muscle deoxygenation (HHb) were greater ( P < 0.05) in S2 (τV̇o2, ∼52 s; τLBF, ∼ 39 s; τHR, ∼42 s; τHHb, ∼33 s) compared with S1 (τV̇o2, ∼24 s; τLBF, ∼21 s; τHR, ∼21 s; τHHb, ∼16 s), while the delay before an increase in HHb was reduced ( P < 0.05) in S2 (∼14 s) compared with S1 (∼20 s). The V̇o2 and HHb amplitudes were greater ( P < 0.05) in S2 compared with S1, whereas the LBF amplitude was similar in S2 and S1. Thus the slowed V̇o2 response in S2 compared with S1 is consistent with a mechanism whereby V̇o2 kinetics is limited, in part, by a slowed adaptation of blood flow and/or O2 transport when exercise was initiated from a baseline of moderate-intensity exercise.
Collapse
Affiliation(s)
- Shelley L MacPhee
- Canadian Centre for Activity and Aging, 3M Centre, The University of Western Ontario, London, Ontario, Canada N6A 3K7
| | | | | | | |
Collapse
|