1
|
Draper S, Singer T, Dulaney C, McDaniel J. Single Leg Cycling Offsets Reduced Muscle Oxygenation in Hypoxic Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159139. [PMID: 35897502 PMCID: PMC9331301 DOI: 10.3390/ijerph19159139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022]
Abstract
The intensity of large muscle mass exercise declines at altitude due to reduced oxygen delivery to active muscles. The purpose of this investigation was to determine if the greater limb blood flow during single-leg cycling prevents the reduction in tissue oxygenation observed during traditional double-leg cycling in hypoxic conditions. Ten healthy individuals performed bouts of double and single-leg cycling (4, four-minute stages at 50−80% of their peak oxygen consumption) in hypoxic (15% inspired O2) and normoxic conditions. Heart rate, mean arterial pressure, femoral blood flow, lactate, oxygenated hemoglobin, total hemoglobin, and tissue saturation index in the vastus lateralis were recorded during cycling tests. Femoral blood flow (2846 ± 912 mL/min) and oxygenated hemoglobin (−2.98 ± 3.56 au) during single-leg cycling in hypoxia were greater than double-leg cycling in hypoxia (2429 ± 835 mL/min and −6.78 ± 3.22 au respectively, p ≤ 0.01). In addition, tissue saturation index was also reduced in the double-leg hypoxic condition (60.2 ± 3.1%) compared to double-leg normoxic (66.0 ± 2.4%, p = 0.008) and single-leg hypoxic (63.3 ± 3.2, p < 0.001) conditions. These data indicate that while at altitude, use of reduced muscle mass exercise can help offset the reduction in tissue oxygenation observed during larger muscle mass activities allowing athletes to exercise at greater limb/muscle specific intensities.
Collapse
Affiliation(s)
- Shane Draper
- Department of Exercise Science and Outdoor Recreation, Utah Valley University, Orem, UT 84058, USA;
| | - Tyler Singer
- Department of Exercise Science, Fairmont State University, Fairmont, WV 26554, USA;
| | - Cody Dulaney
- Department of Fitness and Wellness Leadership, State University of New York Plattsburgh, Plattsburgh, NY 12901, USA;
| | - John McDaniel
- Department of Exercise Science, Kent State University, Kent, OH 44242, USA
- Advanced Platform Technology Center, VA Northeast Ohio Healthcare System, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
2
|
Caldwell HG, Hoiland RL, Smith KJ, Brassard P, Bain AR, Tymko MM, Howe CA, Carr JMJR, Stacey BS, Bailey DM, Drapeau A, Sekhon MS, MacLeod DB, Ainslie PN. Trans-cerebral HCO 3- and PCO 2 exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans. J Cereb Blood Flow Metab 2022; 42:559-571. [PMID: 34904461 PMCID: PMC8943603 DOI: 10.1177/0271678x211065924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023]
Abstract
This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO3-]) and carbon dioxide tension (PCO2) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO2 (PaCO2) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO3-] increased by 0.15 ± 0.05 mmol ⋅ l-1 per mmHg elevation in PaCO2 across a wide physiological range (35 to 60 mmHg PaCO2; P < 0.001). The narrowing of the venous-arterial [HCO3-] and PCO2 differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO3-] exchange (CBF × venous-arterial [HCO3-] difference) was reduced indicating a shift from net release toward net uptake of [HCO3-] (P = 0.004). Arterial [HCO3-] was reduced by -0.48 ± 0.15 mmol ⋅ l-1 per nmol ⋅ l-1 increase in arterial [H+] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO3-] difference and arterial [H+] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO3-] exchange was unaltered throughout exercise when indexed against arterial [H+] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO3-] - during acute respiratory/exercise-induced metabolic acidosis, respectively - differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO3-] exchange).
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kurt J Smith
- Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Anthony R Bain
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jay MJR Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
3
|
Nordsborg NB, Aragón-Vela J, Bonne T, Mohr M. A 3-min All-out Upper-body Ergometer Test For Competitive Swimmers. Int J Sports Med 2020; 42:724-730. [PMID: 33352602 DOI: 10.1055/a-1312-6797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We examined the application of a land-based swimming ergometer 3-min all-out test to determine physiological predictors of swimming performance. Fourteen young elite swimmers participated (males: n=6; females: n=8). The swimmers completed two 3-min upper-body all-out tests on a swimming ergometer. Additionally, the swimmers completed freestyle swim races ranging from 50 m to 1500 m. High test-retest reproducibility (r=0.98 and coefficient of variation values <7.5%) was evident for ergometer derived peak, mean and critical power. Very strong correlations (r>0.87, p<0.001) were obtained between the 200-, 400-, 800- and 1500-m swimming performances and derived critical speed. Moreover, correlations were found between peak force and peak power and 50-m performance, in addition to critical power and performance for all distances. The critical speed was the dominant predictor of 200- to 1500-m performances (r=0.84-0.99). In conclusion, the land-based 3-min all-out swimming ergometer test is reliable and valid in predicting swimming performance in competitive swimmers and evaluates important physiological components in swimmers independent of technical abilities.
Collapse
Affiliation(s)
| | - Jerónimo Aragón-Vela
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Denmark
| | - Thomas Bonne
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Denmark
| | - Magni Mohr
- Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands.,The Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Breenfeldt Andersen A, Bejder J, Bonne T, Olsen NV, Nordsborg N. Repeated Wingate sprints is a feasible high-quality training strategy in moderate hypoxia. PLoS One 2020; 15:e0242439. [PMID: 33186393 PMCID: PMC7665825 DOI: 10.1371/journal.pone.0242439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Sprint-interval training (SIT) is efficient at improving maximal aerobic capacity and anaerobic fitness at sea-level and may be a feasible training strategy at altitude. Here, it was evaluated if SIT intensity can be maintained in mild to moderate hypoxia. It was hypothesized that 6 x 30 s Wingate sprint performance with 2 min active rest between sprints can be performed in hypoxic conditions corresponding to ~3,000 m of altitude without reducing mean power output (MPO). In a single-blinded, randomized crossover design, ten highly-trained male endurance athletes with a maximal oxygen uptake ([Formula: see text]O2max) of 68 ± 5 mL O2 × min-1 × kg-1 completed 6 x 30 s all-out Wingate cycling sprints separated by two-minute active recovery on four separate days in a hypobaric chamber. The ambient pressure within the chamber on each experimental day was 772 mmHg (~0 m), 679 mmHg (~915 m), 585 mmHg (~ 2,150 m), and 522 mmHg (~3,050 m), respectively. MPO was not different at sea-level and up to ~2,150 m (~1% and ~3% non-significant decrements at ~915 and ~2,150 m, respectively), whereas MPO was ~5% lower (P<0.05) at ~3,050 m. Temporal differences between altitudes was not different for peak power output (PPO), despite a main effect of altitude. In conclusion, repeated Wingate exercise can be completed by highly-trained athletes at altitudes up to ~2,150 m without compromising MPO or PPO. In contrast, MPO was compromised in hypobaric hypoxia corresponding to ~3,050 m. Thus, SIT may be an efficient strategy for athletes sojourning to moderate altitude and aiming to maintain training quality.
Collapse
Affiliation(s)
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bonne
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Niels Vidiendal Olsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroanesteshia, The Neuroscience Center, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Nikolai Nordsborg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Christiansen D. Molecular stressors underlying exercise training-induced improvements in K + regulation during exercise and Na + ,K + -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 2019; 225:e13196. [PMID: 30288889 DOI: 10.1111/apha.13196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
Despite substantial progress made towards a better understanding of the importance of skeletal muscle K+ regulation for human physical function and its association with several disease states (eg type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ regulation to various stimuli, including exercise training, remains inadequately explored in humans. In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and its key determinants, including Na+ ,K+ -ATPase function and expression, by exercise training are examined. Special attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox balance, hypoxia, reactive oxygen species, antioxidant function, Na+ ,K+ , and Ca2+ concentrations, anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the effects of different types of exercise training on K+ regulation in humans is provided, focusing on recent discoveries about the muscle fibre-type-dependent regulation of Na+ ,K+ -ATPase-isoform expression. Furthermore, with special emphasis on blood-flow-restricted exercise as an exemplary model to modulate the key molecular mechanisms identified, it is discussed how training interventions may be designed to maximize improvements in K+ regulation in humans. The novel insights gained from this review may help us to better understand how exercise training and other strategies, such as pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical function in humans.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Denmark
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|
6
|
Bejder J, Bonne TC, Nyberg M, Sjøberg KA, Nordsborg NB. Physiological determinants of elite mountain bike cross-country Olympic performance. J Sports Sci 2018; 37:1154-1161. [PMID: 30430912 DOI: 10.1080/02640414.2018.1546546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Detailed physiological phenotyping was hypothesized to have predictive value for Olympic distance cross-country mountain bike (XCO-MTB) performance. Additionally, mean (MPO) and peak power output (PPO) in 4 × 30 s all-out sprinting separated by 1 min was hypothesized as a simple measure with predictive value for XCO-MTB performance. Parameters indicative of body composition, cardiovascular function, power and strength were determined and related to XCO-MTB national championship performance (n = 11). Multiple linear regression demonstrated 98% of the variance (P < 0.001) in XCO-MTB performance (tXCO-MTB; [min]) is explained by maximal oxygen uptake relative to body mass (VO2peak,rel; [ml/kg/min]), 30 s all-out fatigue resistance (FI; [%]) and with a minor contribution from quadriceps femoris maximal torque (Tmax; [Nm]): tXCO-MTB = -0.217× VO2peak,rel.-0.201× FI+ 0.012× Tmax+ 85.4. Parameters with no additional predictive value included hemoglobin mass, leg peak blood flow, femoral artery diameter, knee-extensor peak workload, jump height, quadriceps femoris maximal voluntary contraction force and rate of force development. Additionally, multiple linear regression demonstrated parameters obtained from 4x30s repeated sprinting explained 88% of XCO-MTB variance (P < 0.001) with tXCO-MTB = -5.7× MPO+ 5.0× PPO+ 55.9. In conclusion, XCO-MTB performance is predictable from VO2peak,rel and 30 s all-out fatigue resistance. Additionally, power variables from a repeated sprint test provides a cost-effective way of monitoring athletes XCO-MTB performance.
Collapse
Affiliation(s)
- Jacob Bejder
- a Department of Nutrition, Exercise and Sports (NEXS) , University of Copenhagen , Copenhagen , Denmark
| | - Thomas Christian Bonne
- a Department of Nutrition, Exercise and Sports (NEXS) , University of Copenhagen , Copenhagen , Denmark
| | - Michael Nyberg
- a Department of Nutrition, Exercise and Sports (NEXS) , University of Copenhagen , Copenhagen , Denmark
| | - Kim Anker Sjøberg
- a Department of Nutrition, Exercise and Sports (NEXS) , University of Copenhagen , Copenhagen , Denmark
| | | |
Collapse
|
7
|
Girard O, Brocherie F, Millet GP. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Med 2018; 47:1931-1949. [PMID: 28451905 DOI: 10.1007/s40279-017-0733-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many sport competitions, typically involving the completion of single- (e.g. track-and-field or track cycling events) and multiple-sprint exercises (e.g. team and racquet sports, cycling races), are staged at terrestrial altitudes ranging from 1000 to 2500 m. Our aim was to comprehensively review the current knowledge on the responses to either acute or chronic altitude exposure relevant to single and multiple sprints. Performance of a single sprint is generally not negatively affected by acute exposure to simulated altitude (i.e. normobaric hypoxia) because an enhanced anaerobic energy release compensates for the reduced aerobic adenosine triphosphate production. Conversely, the reduction in air density in terrestrial altitude (i.e. hypobaric hypoxia) leads to an improved sprinting performance when aerodynamic drag is a limiting factor. With the repetition of maximal efforts, however, repeated-sprint ability is more altered (i.e. with earlier and larger performance decrements) at high altitudes (>3000-3600 m or inspired fraction of oxygen <14.4-13.3%) compared with either normoxia or low-to-moderate altitudes (<3000 m or inspired fraction of oxygen >14.4%). Traditionally, altitude training camps involve chronic exposure to low-to-moderate terrestrial altitudes (<3000 m or inspired fraction of oxygen >14.4%) for inducing haematological adaptations. However, beneficial effects on sprint performance after such altitude interventions are still debated. Recently, innovative 'live low-train high' methods, in isolation or in combination with hypoxic residence, have emerged with the belief that up-regulated non-haematological peripheral adaptations may further improve performance of multiple sprints compared with similar normoxic interventions.
Collapse
Affiliation(s)
- Olivier Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol (Oxf) 2018; 223:e13045. [PMID: 29383885 PMCID: PMC5969286 DOI: 10.1111/apha.13045] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/01/2018] [Accepted: 01/24/2018] [Indexed: 12/24/2022]
Abstract
Aim This study explored the effects of blood flow restriction (BFR) on mRNA responses of PGC‐1α (total, 1α1, and 1α4) and Na+,K+‐ATPase isoforms (NKA; α1‐3, β1‐3, and FXYD1) to an interval running session and determined whether these effects were related to increased oxidative stress, hypoxia, and fibre type‐specific AMPK and CaMKII signalling, in human skeletal muscle. Methods In a randomized, crossover fashion, 8 healthy men (26 ± 5 year and 57.4 ± 6.3 mL kg−1 min−1) completed 3 exercise sessions: without (CON) or with blood flow restriction (BFR), or in systemic hypoxia (HYP, ~3250 m). A muscle sample was collected before (Pre) and after exercise (+0 hour, +3 hours) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α‐AMPK Thr172/α‐AMPK, ACC Ser221/ACC, CaMKII Thr287/CaMKII, and PLBSer16/PLB ratios in type I and II fibres. Results Muscle hypoxia (assessed by near‐infrared spectroscopy) was matched between BFR and HYP, which was higher than CON (~90% vs ~70%; P < .05). The mRNA levels of FXYD1 and PGC‐1α isoforms (1α1 and 1α4) increased in BFR only (P < .05) and were associated with increases in indicators of oxidative stress and type I fibre ACC Ser221/ACC ratio, but dissociated from muscle hypoxia, lactate, and CaMKII signalling. Conclusion Blood flow restriction augmented exercise‐induced increases in muscle FXYD1 and PGC‐1α mRNA in men. This effect was related to increased oxidative stress and fibre type‐dependent AMPK signalling, but unrelated to the severity of muscle hypoxia, lactate accumulation, and modulation of fibre type‐specific CaMKII signalling.
Collapse
Affiliation(s)
- D. Christiansen
- Institute of Sport, Exercise and Active Living (ISEAL); Victoria University; Melbourne Vic. Australia
| | - R. M. Murphy
- Department of Biochemistry and Genetics; La Trobe Institute for Molecular Science; La Trobe University; Melbourne Vic. Australia
| | - J. Bangsbo
- Department of Nutrition, Exercise and Sports (NEXS); University of Copenhagen; Copenhagen N Denmark
| | - C. G. Stathis
- Institute of Sport, Exercise and Active Living (ISEAL); Victoria University; Melbourne Vic. Australia
| | - D. J. Bishop
- Institute of Sport, Exercise and Active Living (ISEAL); Victoria University; Melbourne Vic. Australia
- School of Medical and Health Sciences; Edith Cowan University; Perth WA Australia
| |
Collapse
|
9
|
Christiansen D, Bishop DJ, Broatch JR, Bangsbo J, McKenna MJ, Murphy RM. Cold-water immersion after training sessions: effects on fiber type-specific adaptations in muscle K + transport proteins to sprint-interval training in men. J Appl Physiol (1985) 2018; 125:429-444. [PMID: 29745801 DOI: 10.1152/japplphysiol.00259.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Effects of regular use of cold-water immersion (CWI) on fiber type-specific adaptations in muscle K+ transport proteins to intense training, along with their relationship to changes in mRNA levels after the first training session, were investigated in humans. Nineteen recreationally active men (24 ± 6 yr, 79.5 ± 10.8 kg, 44.6 ± 5.8 ml·kg-1·min-1) completed six weeks of sprint-interval cycling, either without (passive rest; CON) or with training sessions followed by CWI (15 min at 10°C; COLD). Muscle biopsies were obtained before and after training to determine abundance of Na+, K+-ATPase isoforms (α1-3, β1-3) and phospholemman (FXYD1) and after recovery treatments (+0 h and +3 h) on the first day of training to measure mRNA content. Training increased ( P < 0.05) the abundance of α1 and β3 in both fiber types and β1 in type-II fibers and decreased FXYD1 in type-I fibers, whereas α2 and α3 abundance was not altered by training ( P > 0.05). CWI after each session did not influence responses to training ( P > 0.05). However, α2 mRNA increased after the first session in COLD (+0 h, P < 0.05) but not in CON ( P > 0.05). In both conditions, α1 and β3 mRNA increased (+3 h; P < 0.05) and β2 mRNA decreased (+3 h; P < 0.05), whereas α3, β1, and FXYD1 mRNA remained unchanged ( P > 0.05) after the first session. In summary, Na+,K+-ATPase isoforms are differently regulated in type I and II muscle fibers by sprint-interval training in humans, which, for most isoforms, do not associate with changes in mRNA levels after the first training session. CWI neither impairs nor improves protein adaptations to intense training of importance for muscle K+ regulation. NEW & NOTEWORTHY Although cold-water immersion (CWI) after training and competition has become a routine for many athletes, limited published evidence exists regarding its impact on training adaptation. Here, we show that CWI can be performed regularly without impairing training-induced adaptations at the fiber-type level important for muscle K+ handling. Furthermore, sprint-interval training invoked fiber type-specific adaptations in K+ transport proteins, which may explain the dissociated responses of whole-muscle protein levels and K+ transport function to training previously reported.
Collapse
Affiliation(s)
- Danny Christiansen
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen , Denmark
| | - David J Bishop
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,School of Medical and Health Sciences, Edith Cowan University , Perth, Western Australia , Australia
| | - James R Broatch
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Jens Bangsbo
- Department of Nutrition, Exercise, and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria , Australia
| |
Collapse
|
10
|
De Smet S, D'Hulst G, Poffé C, Van Thienen R, Berardi E, Hespel P. High-intensity interval training in hypoxia does not affect muscle HIF responses to acute hypoxia in humans. Eur J Appl Physiol 2018; 118:847-862. [PMID: 29423544 DOI: 10.1007/s00421-018-3820-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE The myocellular response to hypoxia is primarily regulated by hypoxia-inducible factors (HIFs). HIFs thus conceivably are implicated in muscular adaptation to altitude training. Therefore, we investigated the effect of hypoxic versus normoxic training during a period of prolonged hypoxia ('living high') on muscle HIF activation during acute ischaemia. METHODS Ten young male volunteers lived in normobaric hypoxia for 5 weeks (5 days per week, ~ 15.5 h per day, FiO2: 16.4-14.0%). One leg was trained in hypoxia (TRHYP, 12.3% FiO2) whilst the other leg was trained in normoxia (TRNOR, 20.9% FiO2). Training sessions (3 per week) consisted of intermittent unilateral knee extensions at 20-25% of the 1-repetition maximum. Before and after the intervention, a 10-min arterial occlusion and reperfusion of the leg was performed. Muscle oxygenation status was continuously measured by near-infrared spectroscopy. Biopsies were taken from m. vastus lateralis before and at the end of the occlusion. RESULTS Irrespective of training, occlusion elevated the fraction of HIF-1α expressing myonuclei from ~ 54 to ~ 64% (P < 0.05). However, neither muscle HIF-1α or HIF-2α protein abundance, nor the expression of HIF-1α or downstream targets selected increased in any experimental condition. Training in both TRNOR and TRHYP raised muscular oxygen extraction rate upon occlusion by ~ 30%, whilst muscle hyperperfusion immediately following the occlusion increased by ~ 25% in either group (P < 0.05). CONCLUSION Ten minutes of arterial occlusion increased HIF-1α-expressing myonuclei. However, neither normoxic nor hypoxic training during 'living high' altered muscle HIF translocation, stabilisation, or transcription in response to acute hypoxia induced by arterial occlusion.
Collapse
Affiliation(s)
- Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Gommaar D'Hulst
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium.,Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Ruud Van Thienen
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Emanuele Berardi
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium. .,Bakala Academy-Athletic Performance Center, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Lundby C, Montero D, Gehrig S, Andersson Hall U, Kaiser P, Boushel R, Meinild Lundby AK, Kirk N, Valdivieso P, Flück M, Secher NH, Edin F, Hein T, Madsen K. Physiological, biochemical, anthropometric, and biomechanical influences on exercise economy in humans. Scand J Med Sci Sports 2017; 27:1627-1637. [DOI: 10.1111/sms.12849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 01/27/2023]
Affiliation(s)
- C. Lundby
- Department of Food & Nutrition & Sport Science; Gothenburg University; Gothenburg Sweden
- Zürich Center for Integrative Human Physiology (ZIHP); University of Zürich; Zürich Switzerland
| | - D. Montero
- Zürich Center for Integrative Human Physiology (ZIHP); University of Zürich; Zürich Switzerland
| | - S. Gehrig
- Zürich Center for Integrative Human Physiology (ZIHP); University of Zürich; Zürich Switzerland
| | - U. Andersson Hall
- Department of Food & Nutrition & Sport Science; Gothenburg University; Gothenburg Sweden
| | - P. Kaiser
- Zürich Center for Integrative Human Physiology (ZIHP); University of Zürich; Zürich Switzerland
| | - R. Boushel
- School of Kinesiology; University of British Columbia; Vancouver Canada
| | - A.-K. Meinild Lundby
- Zürich Center for Integrative Human Physiology (ZIHP); University of Zürich; Zürich Switzerland
| | - N. Kirk
- Zürich Center for Integrative Human Physiology (ZIHP); University of Zürich; Zürich Switzerland
| | | | - M. Flück
- Universitätsklinik Balgrist; Zürich Switzerland
| | - N. H. Secher
- Department of Anesthesia; The Copenhagen Muscle Research Center; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - F. Edin
- Department of Food & Nutrition & Sport Science; Gothenburg University; Gothenburg Sweden
| | - T. Hein
- Department of Food & Nutrition & Sport Science; Gothenburg University; Gothenburg Sweden
| | - K. Madsen
- Department of Food & Nutrition & Sport Science; Gothenburg University; Gothenburg Sweden
| |
Collapse
|
12
|
Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric “Live High-Train Low”: a double-blind placebo-controlled cross-over study. Eur J Appl Physiol 2017; 117:979-988. [DOI: 10.1007/s00421-017-3586-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
|
13
|
De Smet S, Van Thienen R, Deldicque L, James R, Sale C, Bishop DJ, Hespel P. Nitrate Intake Promotes Shift in Muscle Fiber Type Composition during Sprint Interval Training in Hypoxia. Front Physiol 2016; 7:233. [PMID: 27378942 PMCID: PMC4906611 DOI: 10.3389/fphys.2016.00233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/30/2016] [Indexed: 12/04/2022] Open
Abstract
Purpose: We investigated the effect of sprint interval training (SIT) in normoxia, vs. SIT in hypoxia alone or in conjunction with oral nitrate intake, on buffering capacity of homogenized muscle (βhm) and fiber type distribution, as well as on sprint and endurance performance. Methods: Twenty-seven moderately-trained participants were allocated to one of three experimental groups: SIT in normoxia (20.9% FiO2) + placebo (N), SIT in hypoxia (15% FiO2) + placebo (H), or SIT in hypoxia + nitrate supplementation (HN). All participated in 5 weeks of SIT on a cycle ergometer (30-s sprints interspersed by 4.5 min recovery-intervals, 3 weekly sessions, 4–6 sprints per session). Nitrate (6.45 mmol NaNO3) or placebo capsules were administered 3 h before each session. Before and after SIT participants performed an incremental VO2max-test, a 30-min simulated cycling time-trial, as well as a 30-s cycling sprint test. Muscle biopsies were taken from m. vastus lateralis. Results: SIT decreased the proportion of type IIx muscle fibers in all groups (P < 0.05). The relative number of type IIa fibers increased (P < 0.05) in HN (P < 0.05 vs. H), but not in the other groups. SIT had no significant effect on βhm. Compared with H, SIT tended to enhance 30-s sprint performance more in HN than in H (P = 0.085). VO2max and 30-min time-trial performance increased in all groups to a similar extent. Conclusion: SIT in hypoxia combined with nitrate supplementation increases the proportion of type IIa fibers in muscle, which may be associated with enhanced performance in short maximal exercise. Compared with normoxic training, hypoxic SIT does not alter βhm or endurance and sprinting exercise performance.
Collapse
Affiliation(s)
- Stefan De Smet
- Exercise Physiology Research Group, Department of Kinesiology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Ruud Van Thienen
- Exercise Physiology Research Group, Department of Kinesiology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Louise Deldicque
- Exercise Physiology Research Group, Department of Kinesiology, Katholieke Universiteit LeuvenLeuven, Belgium; Institute of Neuroscience, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | - Ruth James
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University Nottingham, UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University Nottingham, UK
| | - David J Bishop
- Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Kinesiology, Katholieke Universiteit LeuvenLeuven, Belgium; Department of Kinesiology, Bakala Academy-Athletic Performance Center, KU LeuvenLeuven, Belgium
| |
Collapse
|
14
|
Saugy JJ, Schmitt L, Hauser A, Constantin G, Cejuela R, Faiss R, Wehrlin JP, Rosset J, Robinson N, Millet GP. Same Performance Changes after Live High-Train Low in Normobaric vs. Hypobaric Hypoxia. Front Physiol 2016; 7:138. [PMID: 27148076 PMCID: PMC4835493 DOI: 10.3389/fphys.2016.00138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/30/2016] [Indexed: 01/28/2023] Open
Abstract
PURPOSE We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study. METHODS Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they trained at 1100-1200 m and lived at 2250 m (P i O2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg) under NH (hypoxic chamber; FiO2 18.05 ± 0.03%) or HH (real altitude; barometric pressure 580.2 ± 2.9 mmHg) conditions. The subjects completed the NH and HH camps with a 1-year washout period. Measurements and protocol were identical for both phases of the crossover study. Oxygen saturation (S p O2) was constantly recorded nightly. P i O2 and training loads were matched daily. Blood samples and VO2max were measured before (Pre-) and 1 day after (Post-1) LHTL. A 3-km running-test was performed near sea level before and 1, 7, and 21 days after training camps. RESULTS Total hypoxic exposure was lower for NH than for HH during LHTL (230 vs. 310 h; P < 0.001). Nocturnal S p O2 was higher in NH than in HH (92.4 ± 1.2 vs. 91.3 ± 1.0%, P < 0.001). VO2max increased to the same extent for NH and HH (4.9 ± 5.6 vs. 3.2 ± 5.1%). No difference was found in hematological parameters. The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time. CONCLUSION Increases in VO2max and performance enhancement were similar between NH and HH conditions.
Collapse
Affiliation(s)
- Jonas J Saugy
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Laurent Schmitt
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; National School of Mountain Sports/National Ski-Nordic CentrePrémanon, France
| | - Anna Hauser
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Section for Elite Sport, Swiss Federal Institute of SportMagglingen, Switzerland
| | - Guillaume Constantin
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne Lausanne, Switzerland
| | - Roberto Cejuela
- Departmental Section of Physical Education and Sports, University of Alicante Alicante, Spain
| | - Raphael Faiss
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Section for Elite Sport, Swiss Federal Institute of SportMagglingen, Switzerland
| | - Jon P Wehrlin
- Section for Elite Sport, Swiss Federal Institute of Sport Magglingen, Switzerland
| | - Jérémie Rosset
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne Lausanne, Switzerland
| | - Neil Robinson
- Swiss Laboratory for Doping Analyses, University of Lausanne Lausanne, Switzerland
| | - Grégoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| |
Collapse
|
15
|
Jacobs RA, Lundby AKM, Fenk S, Gehrig S, Siebenmann C, Flück D, Kirk N, Hilty MP, Lundby C. Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. J Physiol 2015; 594:1151-66. [PMID: 26339730 DOI: 10.1113/jp271118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 12/11/2022] Open
Abstract
The role of hypoxia on skeletal muscle mitochondria is controversial. Studies superimposing exercise training on hypoxic exposure demonstrate an increase in skeletal muscle mitochondrial volume density (Mito(VD)) over equivalent normoxic training. In contrast, reductions in both skeletal muscle mass and Mito(VD) have been reported following mountaineering expeditions. These observations may, however, be confounded by negative energy balance, which may obscure the results. Accordingly we sought to examine the effects of high altitude hypoxic exposure on mitochondrial characteristics, with emphasis on Mito(VD), while minimizing changes in energy balance. For this purpose, skeletal muscle biopsies were obtained from nine lowlanders at sea level (Pre) and following 7 and 28 days of exposure to 3454 m. Maximal ergometer power output, whole body weight and composition, leg lean mass and skeletal muscle fibre area all remained unchanged following the altitude exposure. Transmission electron microscopy determined that intermyofibrillar (IMF) Mito(VD) was augmented (P = 0.028) by 11.5 ± 9.2% from Pre (5.05 ± 0.9%) to 28 Days (5.61 ± 0.04%). In contrast, there was no change in subsarcolemmal (SS) Mito(VD). As a result, total Mito(VD) (IMF + SS) was increased (P = 0.031) from 6.20 ± 1.5% at Pre to 6.62 ± 1.4% at 28 Days (7.8 ± 9.3%). At the same time no changes in mass-specific respiratory capacities, mitochondrial protein or antioxidant content were found. This study demonstrates that skeletal muscle Mito(VD) may increase with 28 days acclimation to 3454 m.
Collapse
Affiliation(s)
- Robert A Jacobs
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland.,Health and Physical Education, School of Teaching and Learning, Western Carolina University, Cullowhee, NC, USA.,Physical Therapy Department, Western Carolina University, Cullowhee, NC, USA
| | | | - Simone Fenk
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| | - Saskia Gehrig
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| | - Christoph Siebenmann
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland.,Department of Environmental Physiology, School of Technology and Health, Royal Institute of Technology, Solna, Sweden
| | - Daniela Flück
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| | - Niels Kirk
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| | | | - Carsten Lundby
- Zürich Centre for Integrative Human Physiology, Institute of Physiology, University of Zürich, Switzerland
| |
Collapse
|
16
|
Lundby C, Robach P. Reply to Schumacher et al. J Appl Physiol (1985) 2013; 114:1363-4. [PMID: 23681741 DOI: 10.1152/japplphysiol.00047.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Jacobs RA, Diaz V, Soldini L, Haider T, Thomassen M, Nordsborg NB, Gassmann M, Lundby C. Fast-Twitch Glycolytic Skeletal Muscle Is Predisposed to Age-Induced Impairments in Mitochondrial Function. J Gerontol A Biol Sci Med Sci 2013; 68:1010-22. [DOI: 10.1093/gerona/gls335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Jacobs RA, Díaz V, Meinild AK, Gassmann M, Lundby C. The C57Bl/6 mouse serves as a suitable model of human skeletal muscle mitochondrial function. Exp Physiol 2012. [PMID: 23180810 DOI: 10.1113/expphysiol.2012.070037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is debatable whether differences in mitochondrial function exist across skeletal muscle types and whether mouse skeletal muscle mitochondrial function can serve as a valid model for human skeletal muscle mitochondrial function. The aims of this study were to compare and contrast three different mouse skeletal muscles and to identify the mouse muscle that most closely resembles human skeletal muscle respiratory capacity and control. Mouse quadriceps (QUAD(M)), soleus (SOL(M)) and gastrocnemius (GAST(M)) skeletal muscles were obtained from 8- to 10-week-old healthy mice (n = 8), representing mixed, oxidative and glycolytic muscle, respectively. Skeletal muscle samples were also collected from young, active, healthy human subjects (n = 8) from the vastis lateralis (QUAD(H)). High-resolution respirometry was used to examine mitochondrial function in all skeletal muscle samples, and mitochondrial content was quantified with citrate synthase activity. Mass-specific respiration was higher across all respiratory states in SOL(M) versus both GAST(M) and QUAD(H) (P < 0.01). When controlling for mitochondrial content, however, SOL(M) respiration was lower than GAST(M) and QUAD(H) (P < 0.05 and P < 0.01, respectively). When comparing respiratory capacity between mouse and human muscle, QUAD(M) exhibited only one different respiratory state when compared with QUAD(H). These results demonstrate that qualitative differences in mitochondrial function exist between different mouse skeletal muscles types when respiratory capacity is normalized to mitochondrial content, and that skeletal muscle respiratory capacity in young, healthy QUAD(M) does correspond well with that of young, healthy QUAD(H).
Collapse
Affiliation(s)
- Robert A Jacobs
- Institute of Physiology and Zurich Center for Integrative Human Physiology, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Luo Y, Lu G, Chen Y, Liu F, Xu G, Yin J, Gao Y. Long-term cycles of hypoxia and normoxia increase the contents of liver mitochondrial DNA in rats. Eur J Appl Physiol 2012; 113:223-32. [DOI: 10.1007/s00421-012-2414-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/25/2012] [Indexed: 12/15/2022]
|