1
|
Leitner BP, Siebel S, Akingbesote ND, Zhang X, Perry RJ. Insulin and cancer: a tangled web. Biochem J 2022; 479:583-607. [PMID: 35244142 PMCID: PMC9022985 DOI: 10.1042/bcj20210134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
For a century, since the pioneering work of Otto Warburg, the interwoven relationship between metabolism and cancer has been appreciated. More recently, with obesity rates rising in the U.S. and worldwide, epidemiologic evidence has supported a link between obesity and cancer. A substantial body of work seeks to mechanistically unpack the association between obesity, altered metabolism, and cancer. Without question, these relationships are multifactorial and cannot be distilled to a single obesity- and metabolism-altering hormone, substrate, or factor. However, it is important to understand the hormone-specific associations between metabolism and cancer. Here, we review the links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on current investigational metabolic adjuncts to standard-of-care cancer treatment.
Collapse
Affiliation(s)
- Brooks P. Leitner
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Stephan Siebel
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Pediatrics, Yale School of Medicine, New Haven, CT, U.S.A
| | - Ngozi D. Akingbesote
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Xinyi Zhang
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Rachel J. Perry
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Cancer cachexia cannot be easily reversed by standard nutritional support and interventions directed at underlying metabolic derangements may be needed to prevent or reverse cachexia and maintain healthy body composition. The following review will highlight the contribution and potential therapeutic interventions for insulin resistance, alterations in ghrelin signaling, and hypogonadism in cancer patients. RECENT FINDINGS In addition to decreased caloric intake, chronic inflammation, and altered metabolism of glucose, proteins and lipids, endocrine abnormalities can propagate weight loss or changes in body composition in cancer patients. SUMMARY Cancer cachexia, loss of muscle mass with or without the loss of fat mass, is a multifactorial syndrome, which is associated with increased morbidity and mortality. Currently, limited therapeutic options for the treatment of weight loss in cancer patients exist, which lead to clinically meaningful improvements in weight gain and performance status. Treatment directed at underlying insulin resistance, low testosterone, and altered ghrelin sensitivity, in the future, may lead to potential therapeutic options for loss of lean body mass and cancer cachexia.
Collapse
|
3
|
Rivera-Alvarez I, Pérez-Treviño P, Chapoy-Villanueva H, Vela-Guajardo JE, Nieblas B, Garza-González S, García-Rivas G, García N. A single session of physical activity restores the mitochondrial organization disrupted by obesity in skeletal muscle fibers. Life Sci 2020; 256:117965. [PMID: 32544463 DOI: 10.1016/j.lfs.2020.117965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several studies have proved that physical activity (PA) regulates energetic metabolism associated with mitochondrial dynamics through AMPK activation in healthy subjects. Obesity, a condition that induces oxidative stress, mitochondrial dysfunction, and low AMPK activity leads to mitochondrial fragmentation. However, few studies describe the effect of PA on mitochondrial dynamics regulation in obesity. AIM The present study aimed to evaluate the effect of a single session of PA on mitochondrial dynamics regulation as well as its effect on mitochondrial function and organization in skeletal muscles of obese rats (Zucker fa/fa). MAIN METHODS Male Zucker lean and Zucker fa/fa rats aged 12 to 13 weeks were divided into sedentary and subjected-to-PA (single session swimming) groups. Gastrocnemius muscle was dissected into isolated fibers, mitochondria, mRNA, and total proteins for their evaluation. KEY FINDINGS The results showed that PA increased the Mfn-2 protein level in the lean and obese groups, whereas Drp1 levels decreased in the obese group. OMA1 protease levels increased in the lean group and decreased in the obese group. Additionally, AMPK analysis parameters (expression, protein level, and activity) did not increase in the obese group. These findings correlated with the partial restoration of mitochondrial function in the obese group, increasing the capacity to maintain the membrane potential after adding calcium as a stressor, and increasing the transversal organization level of the mitochondria analyzed in isolated fibers. SIGNIFICANCE These results support the notion that obese rats subjected to PA maintain mitochondrial function through mitochondrial fusion activation by an AMPK-independent mechanism.
Collapse
Affiliation(s)
- Irais Rivera-Alvarez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Héctor Chapoy-Villanueva
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Jorge E Vela-Guajardo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Bianca Nieblas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Salvador Garza-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, NL, Mexico
| | - Noemí García
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza Garcia, NL, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, NL, Mexico.
| |
Collapse
|
4
|
Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet 2020; 139:381-399. [PMID: 31997134 PMCID: PMC7147958 DOI: 10.1007/s00439-020-02119-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
Abstract
Our cells operate based on two distinct genomes that are enclosed in the nucleus and mitochondria. The mitochondrial genome presumably originates from endosymbiotic bacteria. With time, a large portion of the original genes in the bacterial genome is considered to have been lost or transferred to the nuclear genome, leaving a reduced 16.5 Kb circular mitochondrial DNA (mtDNA). Traditionally only 37 genes, including 13 proteins, were thought to be encoded within mtDNA, its genetic repertoire is expanding with the identification of mitochondrial-derived peptides (MDPs). The biology of aging has been largely unveiled to be regulated by genes that are encoded in the nuclear genome, whereas the mitochondrial genome remained more cryptic. However, recent studies position mitochondria and mtDNA as an important counterpart to the nuclear genome, whereby the two organelles constantly regulate each other. Thus, the genomic network that regulates lifespan and/or healthspan is likely constituted by two unique, yet co-evolved, genomes. Here, we will discuss aspects of mitochondrial biology, especially mitochondrial communication that may add substantial momentum to aging research by accounting for both mitonuclear genomes to more comprehensively and inclusively map the genetic and molecular networks that govern aging and age-related diseases.
Collapse
Affiliation(s)
- Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
5
|
Sun ZG, Tian G, Zheng XC, Liu WY, Luo XT, Xiao J, Song H, Xu X. AMPKα2 Deficiency Does Not Affect the Exercise-Induced Improvements in Glucose Tolerance and Metabolic Disorders in Mice Fed a High-Fat Diet. J Nutr Sci Vitaminol (Tokyo) 2020; 65:491-497. [PMID: 31902862 DOI: 10.3177/jnsv.65.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exercise can improve obesity and metabolic disorders in mice fed a high-fat diet (HFD), but the role of AMPKα2 in the process remains unclear. The aim of this study was to investigate the role of AMPKα2 in the exercise-induced improvements in glucose tolerance and metabolic turnover in obesity mice. Male wild-type mice (n=12) and AMPKα2 knockout (AMPKα2 KO) mice (n=12) were fed a HFD for 16 wk and were then randomly divided into four groups: WT HFD group (WT HF), AMPKα2 KO HFD group (AMPKα2 KO HF), WT HFD exercise group (WT HE), and AMPK HFD exercise group (AMPKα2 KO HE). The HF groups continue to be fed a HFD from 16 wk to 24 wk, and the HE groups were fed a HFD and performed exercise training. After 8 wk of exercise, all mice were placed in an energy metabolism chamber to test their metabolic turnover, include locomotor activity, food intake, oxygen consumption (VO2), carbon dioxide production (VCO2), energy expenditure (EE) and respiratory exchange ratio (RER), over a period of 3 d. Exercise improved glucose tolerance, VO2, VCO2 and EE in mice fed a HFD (p<0.05). The VO2, VCO2 and EE in AMPKα2 KO HE group were lower than these in WT HE group (p<0.05). Our findings revealed exercise improved glucose tolerance and metabolic disorders in C57 and AMPKα2 KO mice fed a HFD. AMPKα2 is not essential for exercise-induced improvements in glucose tolerance and metabolic disorders.
Collapse
Affiliation(s)
- Zhong-Guang Sun
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Ge Tian
- Beijing Xian Nong Tan Sports Technical College
| | - Xiao-Ci Zheng
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Wen-Ying Liu
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Xue-Ting Luo
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Jing Xiao
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Hui Song
- Department of Exercise Rehabilitation, Shanghai University of Sport
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport
| |
Collapse
|
6
|
Regulation of metabolism during hibernation in brown bears (Ursus arctos): Involvement of cortisol, PGC-1α and AMPK in adipose tissue and skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110591. [PMID: 31669707 DOI: 10.1016/j.cbpa.2019.110591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to investigate changes in expression of known cellular regulators of metabolism during hyperphagia (Sept) and hibernation (Jan) in skeletal muscle and adipose tissue of brown bears and determine whether signaling molecules and transcription factors known to respond to changes in cellular energy state are involved in the regulation of these metabolic adaptations. During hibernation, serum levels of cortisol, glycerol, and triglycerides were elevated, and protein expression and activation of AMPK in skeletal muscle and adipose tissue were reduced. mRNA expression of the co-activator PGC-1α was reduced in all tissues in hibernation whereas mRNA expression of the transcription factor PPAR-α was reduced in the vastus lateralis muscle and adipose tissue only. During hibernation, gene expression of ATGL and CD36 was not altered; however, HSL gene expression was reduced in adipose tissue. During hibernation gene expression of the lipogenic enzyme DGAT in all tissues and the expression of the FA oxidative enzyme LCAD in the vastus lateralis muscle were reduced. Gene and protein expression of the glucose transporter GLUT4 was decreased in adipose tissue in hibernation. Our data suggest that high cortisol levels are a key adaptation during hibernation and link cortisol to a reduced activation of the AMPK/PGC-1α/PPAR-α axis in the regulation of metabolism in skeletal muscle and adipose tissue. Moreover, our results indicate that during this phase of hibernation at a time when metabolic rate is significantly reduced metabolic adaptations in peripheral tissues seek to limit the detrimental effects of unduly large energy dissipation.
Collapse
|
7
|
Dev R, Bruera E, Dalal S. Insulin resistance and body composition in cancer patients. Ann Oncol 2019; 29 Suppl 2:ii18-ii26. [PMID: 29506229 DOI: 10.1093/annonc/mdx815] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer cachexia, weight loss with altered body composition, is a multifactorial syndrome propagated by symptoms that impair caloric intake, tumor byproducts, chronic inflammation, altered metabolism, and hormonal abnormalities. Cachexia is associated with reduced performance status, decreased tolerance to chemotherapy, and increased mortality in cancer patients. Insulin resistance as a consequence of tumor byproducts, chronic inflammation, and endocrine dysfunction has been associated with weight loss in cancer patients. Insulin resistance in cancer patients is characterized by increased hepatic glucose production and gluconeogenesis, and unlike type 2 diabetes, normal fasting glucose with high, normal or low levels of insulin. Cancer cachexia results in altered body composition with the loss of lean muscle mass with or without the loss of adipose tissue. Alteration in visceral adiposity, accumulation of intramuscular adipose tissue, and secretion of adipocytokines from adipose cells may play a role in promoting the metabolic derangements associated with cachexia including a proinflammatory environment and insulin resistance. Increased production of ghrelin, testosterone deficiency, and low vitamin D levels may also contribute to altered metabolism of glucose. Cancer cachexia cannot be easily reversed by standard nutritional interventions and identifying and treating cachexia at the earliest stage of development is advocated. Experts advocate for multimodal therapy to address symptoms that impact caloric intake, reduce chronic inflammation, and treat metabolic and endocrine derangements, which propagate the loss of weight. Treatment of insulin resistance may be a critical component of multimodal therapy for cancer cachexia and more research is needed.
Collapse
Affiliation(s)
- R Dev
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - E Bruera
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Dalal
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
8
|
Radhakrishnan J, Baetiong A, Kaufman H, Huynh M, Leschinsky A, Fresquez A, White C, DiMario JX, Gazmuri RJ. Improved exercise capacity in cyclophilin-D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake via AMPK-TBC1D1 signaling nexus. FASEB J 2019; 33:11443-11457. [PMID: 31339770 DOI: 10.1096/fj.201802238r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously reported in HEK 293T cells that silencing the mitochondrial peptidyl prolyl isomerase cyclophilin-D (Cyp-D) reduces Vo2. We now report that in vivo Cyp-D ablation using constitutive Cyp-D knockout (KO) mice also reduces Vo2 both at rest (∼15%) and during treadmill exercise (∼12%). Yet, despite Vo2 reduction, these Cyp-D KO mice ran longer (1071 ± 77 vs. 785 ± 79 m; P = 0.002), for longer time (43 ± 3 vs. 34 ± 3 min; P = 0.004), and at higher speed (34 ± 1 vs. 29 ± 1 m/s; P ≤ 0.001), resulting in increased work (87 ± 6 vs. 58 ± 6 J; P ≤ 0.001). There were parallel reductions in carbon dioxide production, but of lesser magnitude, yielding a 2.3% increase in the respiratory exchange ratio consistent with increased glucose utilization as respiratory substrate. In addition, primary skeletal muscle cells of Cyp-D KO mice subjected to electrical stimulation exhibited higher glucose uptake (4.4 ± 0.55 vs. 2.6 ± 0.04 pmol/mg/min; P ≤ 0.001) with enhanced AMPK activation (0.58 ± 0.06 vs. 0.38 ± 0.03 pAMPK/β-tubulin ratio; P ≤ 0.01) and TBC1 (Tre-2/USP6, BUB2, Cdc16) domain family, member 1 (TBC1D1) inactivation. Likewise, pharmacological activation of AMPK also increased glucose uptake (3.2 ± 0.3 vs. 2.3 ± 0.2 pmol/mg/min; P ≤ 0.001). Moreover, lactate and ATP levels were increased in these cells. Taken together, Cyp-D ablation triggered an adaptive response resulting in increased exercise capacity despite less oxygen utilization associated with increased glucose uptake and utilization involving AMPK-TBC1D1 signaling nexus.-Radhakrishnan, J., Baetiong, A., Kaufman, H., Huynh, M., Leschinsky, A., Fresquez, A., White, C., DiMario, J. X., Gazmuri, R. J. Improved exercise capacity in cyclophilin-D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake via AMPK-TBC1D1 signaling nexus.
Collapse
Affiliation(s)
- Jeejabai Radhakrishnan
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Department of Clinical Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Alvin Baetiong
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Harrison Kaufman
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Michelle Huynh
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Angela Leschinsky
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Adriana Fresquez
- Discipline of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Carl White
- Discipline of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Joseph X DiMario
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Department of Biomedical Research, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Raúl J Gazmuri
- Resuscitation Institute, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Department of Clinical Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
- Captain James A. Lovell Federal Health Care Center, North Chicago, Illinois, USA
| |
Collapse
|
9
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Krolopp JE, Thornton SM, Abbott MJ. IL-15 Activates the Jak3/STAT3 Signaling Pathway to Mediate Glucose Uptake in Skeletal Muscle Cells. Front Physiol 2016; 7:626. [PMID: 28066259 PMCID: PMC5167732 DOI: 10.3389/fphys.2016.00626] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
Myokines are specialized cytokines that are secreted from skeletal muscle (SKM) in response to metabolic stimuli, such as exercise. Interleukin-15 (IL-15) is a myokine with potential to reduce obesity and increase lean mass through induction of metabolic processes. It has been previously shown that IL-15 acts to increase glucose uptake in SKM cells. However, the downstream signals orchestrating the link between IL-15 signaling and glucose uptake have not been fully explored. Here we employed the mouse SKM C2C12 cell line to examine potential downstream targets of IL-15-induced alterations in glucose uptake. Following differentiation, C2C12 cells were treated overnight with 100 ng/ml of IL-15. Activation of factors associated with glucose metabolism (Akt and AMPK) and known downstream targets of IL-15 (Jak1, Jak3, STAT3, and STAT5) were assessed with IL-15 stimulation. IL-15 stimulated glucose uptake and GLUT4 translocation to the plasma membrane. IL-15 treatment had no effect on phospho-Akt, phospho-Akt substrates, phospho-AMPK, phospho-Jak1, or phospho-STAT5. However, with IL-15, phospho-Jak3 and phospho-STAT3 levels were increased along with increased interaction of Jak3 and STAT3. Additionally, IL-15 induced a translocation of phospho-STAT3 from the cytoplasm to the nucleus. We have evidence that a mediator of glucose uptake, HIF1α, expression was dependent on IL-15 induced STAT3 activation. Finally, upon inhibition of STAT3 the positive effects of IL-15 on glucose uptake and GLUT4 translocation were abolished. Taken together, we provide evidence for a novel signaling pathway for IL-15 acting through Jak3/STAT3 to regulate glucose metabolism.
Collapse
Affiliation(s)
- James E Krolopp
- Department of Health Sciences and Kinesiology, Crean College of Health and Behavioral Sciences, Chapman University Orange, CA, USA
| | - Shantaé M Thornton
- Department of Health Sciences and Kinesiology, Crean College of Health and Behavioral Sciences, Chapman University Orange, CA, USA
| | - Marcia J Abbott
- Department of Health Sciences and Kinesiology, Crean College of Health and Behavioral Sciences, Chapman UniversityOrange, CA, USA; Department of Biological Sciences, Human and Evolutionary Biology Section, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
11
|
IL-15 Mediates Mitochondrial Activity through a PPAR δ-Dependent-PPAR α-Independent Mechanism in Skeletal Muscle Cells. PPAR Res 2016; 2016:5465804. [PMID: 27738421 PMCID: PMC5050360 DOI: 10.1155/2016/5465804] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/01/2016] [Accepted: 08/21/2016] [Indexed: 11/17/2022] Open
Abstract
Molecular mediators of metabolic processes, to increase energy expenditure, have become a focus for therapies of obesity. The discovery of cytokines secreted from the skeletal muscle (SKM), termed "myokines," has garnered attention due to their positive effects on metabolic processes. Interleukin-15 (IL-15) is a myokine that has numerous positive metabolic effects and is linked to the PPAR family of mitochondrial regulators. Here, we aimed to determine the importance of PPARα and/or PPARδ as targets of IL-15 signaling. C2C12 SKM cells were differentiated for 6 days and treated every other day with IL-15 (100 ng/mL), a PPARα inhibitor (GW-6471), a PPARδ inhibitor (GSK-3787), or both IL-15 and the inhibitors. IL-15 increased mitochondrial activity and induced PPARα, PPARδ, PGC1α, PGC1β, UCP2, and Nrf1 expression. There was no effect of inhibiting PPARα, in combination with IL-15, on the aforementioned mRNA levels except for PGC1β and Nrf1. However, with PPARδ inhibition, IL-15 failed to induce the expression levels of PGC1α, PGC1β, UCP2, and Nrf1. Further, inhibition of PPARδ abolished IL-15 induced increases in citrate synthase activity, ATP production, and overall mitochondrial activity. IL-15 had no effects on mitochondrial biogenesis. Our data indicates that PPARδ activity is required for the beneficial metabolic effects of IL-15 signaling in SKM.
Collapse
|
12
|
Fentz J, Kjøbsted R, Kristensen CM, Hingst JR, Birk JB, Gudiksen A, Foretz M, Schjerling P, Viollet B, Pilegaard H, Wojtaszewski JFP. AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2015; 309:E900-14. [PMID: 26419588 DOI: 10.1152/ajpendo.00157.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/28/2015] [Indexed: 01/10/2023]
Abstract
Exercise training increases skeletal muscle expression of metabolic proteins improving the oxidative capacity. Adaptations in skeletal muscle by pharmacologically induced activation of 5'-AMP-activated protein kinase (AMPK) are dependent on the AMPKα2 subunit. We hypothesized that exercise training-induced increases in exercise capacity and expression of metabolic proteins, as well as acute exercise-induced gene regulation, would be compromised in muscle-specific AMPKα1 and -α2 double-knockout (mdKO) mice. An acute bout of exercise increased skeletal muscle mRNA content of cytochrome c oxidase subunit I, glucose transporter 4, and VEGF in an AMPK-dependent manner, whereas cluster of differentiation 36 and fatty acid transport protein 1 mRNA content increased similarly in AMPKα wild-type (WT) and mdKO mice. During 4 wk of voluntary running wheel exercise training, the AMPKα mdKO mice ran less than WT. Maximal running speed was lower in AMPKα mdKO than in WT mice but increased similarly in both genotypes with exercise training. Exercise training increased quadriceps protein content of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1), cytochrome c, hexokinase II, plasma membrane fatty acid-binding protein, and citrate synthase activity more in AMPKα WT than in mdKO muscle. However, analysis of a subgroup of mice matched for running distance revealed that only UQCRC1 protein content increased more in WT than in mdKO mice with exercise training. Thus, AMPKα1 and -α2 subunits are important for acute exercise-induced mRNA responses of some genes and may be involved in regulating basal metabolic protein expression but seem to be less important in exercise training-induced adaptations in metabolic proteins.
Collapse
Affiliation(s)
- Joachim Fentz
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Maag Kristensen
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Janne Rasmus Hingst
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Bratz Birk
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Anders Gudiksen
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- Institut National de la Sante et de la Recherche Medicale, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Descartes, Sorbonne Paris Cité, Paris, France
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- Institut National de la Sante et de la Recherche Medicale, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Descartes, Sorbonne Paris Cité, Paris, France
| | - Henriette Pilegaard
- Centre of Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, the August Krogh Centre, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
13
|
Brandauer J, Andersen MA, Kellezi H, Risis S, Frøsig C, Vienberg SG, Treebak JT. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Front Physiol 2015; 6:85. [PMID: 25852572 PMCID: PMC4371692 DOI: 10.3389/fphys.2015.00085] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/04/2015] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p < 0.01) and superoxide dismutase 2 (MnSOD; p < 0.05) protein abundance in quadriceps muscle of wild-type (WT; n = 13–15), but not AMPK α2 kinase dead (KD; n = 12–13) mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p = 0.051; n = 6). To further elucidate a role for AMPK in mediating these effects, we treated WT (n = 7–8) and AMPK α2 KD (n = 7–9) mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). Four weeks of daily AICAR injections (500 mg/kg) resulted in AMPK-dependent increases in SIRT3 (p < 0.05) and MnSOD (p < 0.01) in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n = 9–10). Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p < 0.01) and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p < 0.05). Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training.
Collapse
Affiliation(s)
- Josef Brandauer
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark ; Department of Health Sciences, Gettysburg College Gettysburg, PA, USA
| | - Marianne A Andersen
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| | - Holti Kellezi
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| | - Steve Risis
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| | - Christian Frøsig
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, The August Krogh Centre, University of Copenhagen Copenhagen, Denmark
| | - Sara G Vienberg
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| | - Jonas T Treebak
- Section of Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|