1
|
Orsat J, Guernec A, Le Maréchal C, Pichereau V, Guerrero F. Association between rat decompression sickness resistance, transthyretin single nucleotide polymorphism, and expression: A pilot study. Physiol Rep 2024; 12:e16160. [PMID: 39039431 PMCID: PMC11262998 DOI: 10.14814/phy2.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Decompression sickness (DCS) is a systemic syndrome that can occur after an environmental pressure reduction. Previously, we showed that the plasmatic tetrameric form of transthyretin (TTR) nearly disappeared in rats suffering DCS but not in asymptomatic ones. In this pilot study, we assessed whether the resistance to DCS could be associated with polymorphism of the gene of TTR. For this study, Sanger sequencing was performed on purified PCR products from the liver of 14-week-old male and female standard and DCS-resistant rats (n = 5 per group). Hepatic TTR mRNA expression was assessed by RT-qPCR in 18-19 week-old male and female standard and resistant rats (n = 6 per group). There is a synonymous single nucleotide polymorphism (SNP) on the third base of codon 46 (c.138 C > T). The thymine allele was present in 90% and 100% of males and females standard, respectively. However, this allele is present in only 30% of DCS-resistant males and females (p = 0.0002301). In the liver, there is a significant effect of the resistance to DCS (p = 0.043) and sex (p = 0.047) on TTR expression. Levels of TTR mRNA were lower in DCS-resistant animals. To conclude, DCS resistance might be associated with a SNP and a lower expression of TTR.
Collapse
Affiliation(s)
- J. Orsat
- Laboratoire ORPHY EA 4324Univ BrestBrestFrance
| | - A. Guernec
- Laboratoire ORPHY EA 4324Univ BrestBrestFrance
| | - C. Le Maréchal
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHRU Brest, UMR1078BrestFrance
| | - V. Pichereau
- LEMAR UMR 6539 CNRS/UBO/IRD/IfremerUniv BrestBrestFrance
| | - F. Guerrero
- Laboratoire ORPHY EA 4324Univ BrestBrestFrance
| |
Collapse
|
2
|
Felipo-Benavent M, Martínez-Romero A, Rubio-Guerri C, Álvaro-Álvarez T, Gil D, García-Párraga D, O'Connor JE. Flow cytometric kinetic assay of calcium mobilization in whole blood platelets of bottlenose dolphins (Tursiops truncatus). Cytometry A 2022; 103:347-352. [PMID: 36164987 DOI: 10.1002/cyto.a.24693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Abstract
Marine mammals may suffer alterations in platelet function and hemostasia due to multiple pathologies, environmental conditions (including stress) or exposure to different contaminants that induce platelet activation. Detecting early alterations in platelet function in these animals could be an especially relevant diagnostic tool in these species because they typically do not show signs of weakness or disease until the pathology is in advanced state, in order to avoid attracting predators in natural conditions. The study of early markers of platelet activation is relevant for the detection, monitoring and therapy of inflammation and hemostasis disorders. Flow cytometry provides a convenient method to evaluate platelet activation by following the kinetics of intracellular Ca2+ , using sensitive fluorescent indicators that can be loaded into intact cells. In order to study intraplatelet Ca2+ mobilization in marine mammals, we have adapted a kinetic assay of human platelet activation to study platelet activation in whole-blood samples of bottlenose dolphins (Tursiops truncatus) using the Ca2+ -sensitive dye Fluo-4AM and a clone of the platelet-specific antibody CD41-PE that recognizes dolphin platelets. This no-wash, no-lyse protocol provides a simple and sensitive tool to assess in vitro the time course and intensity of signal-transduction responses to platelet agonists under near-physiological conditions. The adaptation of this technique to marine mammals represents a methodological advance for basic and clinical veterinary applications but also for general environmental studies on these species.
Collapse
Affiliation(s)
- Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | | | - Consuelo Rubio-Guerri
- Research Department, Fundació Oceanogràfic de la Comunitat Valenciana, Valencia, Spain.,Department of Pharmacy, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Teresa Álvaro-Álvarez
- Veterinary Services, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Domingo Gil
- Cytomics Technological Service, Príncipe Felipe Research Center, Valencia, Spain
| | - Daniel García-Párraga
- Research Department, Fundació Oceanogràfic de la Comunitat Valenciana, Valencia, Spain.,Veterinary Services, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - José-Enrique O'Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Desruelle AV, de Maistre S, Gaillard S, Richard S, Tardivel C, Martin JC, Blatteau JE, Boussuges A, Rives S, Risso JJ, Vallee N. Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression? Front Physiol 2022; 13:882944. [PMID: 35655958 PMCID: PMC9152359 DOI: 10.3389/fphys.2022.882944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1β and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sébastien de Maistre
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | | | | | - Catherine Tardivel
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Eric Blatteau
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | - Alain Boussuges
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sarah Rives
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Nicolas Vallee
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
- *Correspondence: Nicolas Vallee,
| |
Collapse
|
4
|
Affiliation(s)
- Simon J Mitchell
- From the School of Medicine, University of Auckland, and the Department of Anaesthesia, Auckland City Hospital - both in Auckland, New Zealand (S.J.M.); Prince of Wales Clinical School, University of New South Wales, and Wales Anaesthesia, Prince of Wales Hospital - both in Sydney (M.H.B.); and the Departments of Anesthesiology and Medicine, Duke University Medical Center, and the Center for Hyperbaric Medicine and Environmental Physiology, Duke University - both in Durham, North Carolina (R.E.M.)
| | - Michael H Bennett
- From the School of Medicine, University of Auckland, and the Department of Anaesthesia, Auckland City Hospital - both in Auckland, New Zealand (S.J.M.); Prince of Wales Clinical School, University of New South Wales, and Wales Anaesthesia, Prince of Wales Hospital - both in Sydney (M.H.B.); and the Departments of Anesthesiology and Medicine, Duke University Medical Center, and the Center for Hyperbaric Medicine and Environmental Physiology, Duke University - both in Durham, North Carolina (R.E.M.)
| | - Richard E Moon
- From the School of Medicine, University of Auckland, and the Department of Anaesthesia, Auckland City Hospital - both in Auckland, New Zealand (S.J.M.); Prince of Wales Clinical School, University of New South Wales, and Wales Anaesthesia, Prince of Wales Hospital - both in Sydney (M.H.B.); and the Departments of Anesthesiology and Medicine, Duke University Medical Center, and the Center for Hyperbaric Medicine and Environmental Physiology, Duke University - both in Durham, North Carolina (R.E.M.)
| |
Collapse
|
5
|
Levenez M, Lambrechts K, Mrakic-Sposta S, Vezzoli A, Germonpré P, Pique H, Virgili F, Bosco G, Lafère P, Balestra C. Full-Face Mask Use during SCUBA Diving Counters Related Oxidative Stress and Endothelial Dysfunction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020965. [PMID: 35055791 PMCID: PMC8776018 DOI: 10.3390/ijerph19020965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022]
Abstract
Impaired flow mediated dilation (FMD), an index of vascular stress, is known after SCUBA diving. This is related to a dysfunction of nitric oxide (NO) availability and a disturbance of the redox status, possibly induced by hyperoxic/hyperbaric gas breathing. SCUBA diving is usually performed with a mask only covering “half face” (HF) and therefore forcing oral breathing. Nasal NO production is involved in vascular homeostasis and, as consequence, can significantly reduce NO possibly promoting vascular dysfunction. More recently, the utilization of “full-face” (FF) mask, allowing nasal breathing, became more frequent, but no reports are available describing their effects on vascular functions in comparison with HF masks. In this study we assessed and compared the effects of a standard shallow dive (20 min at 10 m) wearing either FF or a HF mask on different markers of vascular function (FMD), oxidative stress (ROS, 8-iso-PGF2α) and NO availability and metabolism (NO2, NOx and 3-NT and iNOS expression). Data from a dive breathing a hypoxic (16% O2 at depth) gas mixture with HF mask are shown allowing hyperoxic/hypoxic exposure. Our data suggest that nasal breathing might significantly reduce the occurrence of vascular dysfunction possibly due to better maintenance of NO production and bioavailability, resulting in a better ability to counter reactive oxygen and nitrogen species. Besides the obvious outcomes in terms of SCUBA diving safety, our data permit a better understanding of the effects of oxygen concentrations, either in normal conditions or as a strategy to induce selected responses in health and disease.
Collapse
Affiliation(s)
- Morgan Levenez
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 20162 Milano, Italy; (S.M.-S.); (A.V.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza dell’Ospedale Maggiore, 20162 Milano, Italy; (S.M.-S.); (A.V.)
| | - Peter Germonpré
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- Hyperbaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
| | - Hadrien Pique
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
| | - Fabio Virgili
- Council for Agricultural Research and Economics—Food and Nutrition Research Centre (CREA-AN), Via Ardeatina 548, 00187 Rome, Italy
- Correspondence: (F.V.); (C.B.)
| | - Gerardo Bosco
- Environmental Physiology & Medicine Laboratory, Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy;
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium; (M.L.); (K.L.); (P.G.); (H.P.); (P.L.)
- DAN Europe Research Division, Contrada Padune, 64026 Roseto, Italy
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence: (F.V.); (C.B.)
| |
Collapse
|
6
|
Bao XC, Shen Q, Fang YQ, Wu JG. Human Physiological Responses to a Single Deep Helium-Oxygen Diving. Front Physiol 2021; 12:735986. [PMID: 34650446 PMCID: PMC8510140 DOI: 10.3389/fphys.2021.735986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of this study was to explore whether a single deep helium-oxygen (heliox) dive affects physiological function. Methods: A total of 40 male divers performed an open-water heliox dive to 80 m of seawater (msw). The total diving time was 280 min, and the breathing helium-oxygen time was 20 min. Before and after the dive, blood and saliva samples were collected, and blood cell counts, cardiac damage, oxidative stress, vascular endothelial activation, and hormonal biomarkers were assayed. Results: An 80 msw heliox dive induced a significant increase in the percentage of granulocytes (GR %), whereas the percentage of lymphocytes (LYM %), percentage of intermediate cells (MID %), red blood cell number (RBC), hematocrit (hCT), and platelets (PLT) decreased. During the dive, concentrations of creatine kinase (CK), a myocardial-specific isoenzyme of creatine kinase (CK-MB) in serum and amylase alpha 1 (AMY1), and testosterone levels in saliva increased, in contrast, IgA levels in saliva decreased. Diving caused a significant increase in serum glutathione (GSH) levels and reduced vascular cell adhesion molecule-1 (VCAM-1) levels but had no effect on malondialdehyde (MDA) and endothelin-1 (ET-1) levels. Conclusion: A single 80 msw heliox dive activates the endothelium, causes skeletal-muscle damage, and induces oxidative stress and physiological stress responses, as reflected in changes in biomarker concentrations.
Collapse
Affiliation(s)
- Xiao-Chen Bao
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| | - Quan Shen
- Department of Hyperbaric Medicine, Naval Hospital of Eastern Theater, Zhejiang, China
| | - Yi-Qun Fang
- Department of Diving and Hyperbaric Medicine, Naval Medical Center, Shanghai, China
| | - Jian-Guo Wu
- Department of Hyperbaric Medicine, Naval Hospital of Eastern Theater, Zhejiang, China
| |
Collapse
|
7
|
Berenji Ardestani S, Matchkov VV, Hansen K, Jespersen NR, Pedersen M, Eftedal I. Extensive Simulated Diving Aggravates Endothelial Dysfunction in Male Pro-atherosclerotic ApoE Knockout Rats. Front Physiol 2021; 11:611208. [PMID: 33424633 PMCID: PMC7786538 DOI: 10.3389/fphys.2020.611208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction The average age of the diving population is rising, and the risk of atherosclerosis and cardiovascular disease in divers are accordingly increasing. It is an open question whether this risk is altered by diving per se. In this study, we examined the effect of 7-weeks simulated diving on endothelial function and mitochondrial respiration in atherosclerosis-prone rats. Methods Twenty-four male ApoE knockout (KO) rats (9-weeks-old) were fed a Western diet for 8 weeks before 12 rats were exposed to simulated heliox dry-diving in a pressure chamber (600 kPa for 60 min, decompression of 50 kPa/min). The rats were dived twice-weekly for 7 weeks, resulting in a total of 14 dives. The remaining 12 non-diving rats served as controls. Endothelial function of the pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. Mitochondrial respiration in cardiac muscle tissues was measured using high-resolution respirometry. Results and Conclusion Both ApoE KO diving and non-diving rats showed changes in endothelial function at the end of the intervention, but the extent of these changes was larger in the diving group. Altered nitric oxide signaling was primarily involved in these changes. Mitochondrial respiration was unaltered. In this pro-atherosclerotic rat model of cardiovascular changes, extensive diving appeared to aggravate endothelial dysfunction rather than promote adaptation to oxidative stress.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Vladimir V Matchkov
- MEMBRANES, Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.,Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
8
|
Lautridou J, Dugrenot E, Amérand A, Guernec A, Pichavant-Rafini K, Goanvec C, Inizan M, Albacete G, Belhomme M, Galinat H, Lafère P, Balestra C, Moisan C, Buzzacott P, Guerrero F. Physiological characteristics associated with increased resistance to decompression sickness in male and female rats. J Appl Physiol (1985) 2020; 129:612-625. [PMID: 32702269 DOI: 10.1152/japplphysiol.00324.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Decompression sickness (DCS) is a complex and poorly understood systemic disease with wide interindividual resistance variability. We selectively bred rats with a threefold greater resistance to DCS than standard ones. To investigate possible physiological mechanisms underlying the resistance to DCS, including sex-related differences in these mechanisms, 15 males and 15 females resistant to DCS were compared with aged-matched standard Wistar males (n = 15) and females (n = 15). None of these individuals had been previously exposed to hyperbaric treatment. Comparison of the allelic frequencies of single nucleotide polymorphisms (SNPs) showed a difference of one SNP located on the X chromosome. Compared with nonresistant rats, the neutrophil-to-lymphocyte ratio and the plasmatic activity of coagulation factor X were significantly higher in DCS-resistant individuals regardless of their sex. The maximal relaxation elicited by sodium nitroprusside was lower in DCS-resistant individuals regardless of their sex. Males but not females resistant to DCS exhibited higher neutrophil and lymphocyte counts and higher prothrombin time but lower mitochondrial basal O2 consumption and citrate synthase activity. Principal components analysis showed that two principal components discriminate the DCS-resistant males but not females from the nonresistant ones. These components were loaded with activated partial thromboplastin time, monocyte-to-lymphocyte ratio, prothrombin time, factor X, and fibrinogen for PC1 and red blood cells count and neutrophils count for PC2. In conclusion, the mechanisms that drive the resistance to DCS appear different between males and females; lower coagulation tendency and enhanced inflammatory response to decompression stress might be key for resistance in males. The involvement of these physiological adaptations in resistance to DCS must now be confirmed.NEW & NOTEWORTHY By selective breeding of individuals resistant to decompression sickness (DCS) we previously obtained a rat model of inherited resistance to this pathology. Comparison of these individuals with nonresistant animals revealed differences in leukocyte counts, coagulation, and mitochondrial and vascular functions, but not resistance to oxidative stress. This study also reveals sex-related differences in the physiological changes associated with DCS resistance. A principal components analysis of our data allowed us to discriminate DCS-resistant males from standard ones, but not females. These differences represent possible mechanisms driving resistance to DCS. Although still far from the diver, this opens a pathway to future adaptation of personalized decompression procedures for "DCS-prone" individuals.
Collapse
Affiliation(s)
| | - Emmanuel Dugrenot
- University of Brest, ORPHY, IBSAM, Brest, France.,TEK Diving, Brest, France
| | | | | | | | | | - Manon Inizan
- University of Brest, ORPHY, IBSAM, Brest, France
| | | | | | - Hubert Galinat
- Hematology Laboratory, CHRU Cavale Blanche, Brest, France
| | - Pierre Lafère
- University of Brest, ORPHY, IBSAM, Brest, France.,DAN Europe Research Division, Brussels, Belgium
| | - Costantino Balestra
- Environmental & Occupational Physiology Laboratory, Haute Ecole Bruxelles-Brabant, Brussels, Belgium.,DAN Europe Research Division, Brussels, Belgium
| | | | - Peter Buzzacott
- School of Nursing, Midwifery and Paramedicine, Curtin University, Perth, Australia
| | | |
Collapse
|
9
|
Arregui M, Fernández A, Paz-Sánchez Y, Santana Á, Sacchini S, Sierra E, Arbelo M, de Quirós YB. Comparison of Three Histological Techniques for Fat Emboli Detection in Lung Cetacean's Tissue. Sci Rep 2020; 10:8251. [PMID: 32427895 PMCID: PMC7237497 DOI: 10.1038/s41598-020-64821-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/20/2020] [Indexed: 11/23/2022] Open
Abstract
Fat embolism is the mechanical blockage of blood vessels by circulating fat particles. It is frequently related to traumas involving soft tissues and fat-containing bones. Different techniques have been used for decades to demonstrate histologically fat emboli, being the extremely toxic post-fixation with osmium tetroxide one of the most used techniques in the last decades. In the present study, the osmium tetroxide technique was compared qualitatively and quantitatively, for the first time, with chromic acid and Oil Red O frozen techniques for histological fat emboli detection in the lungs of eight sperm whales that died due to ship strikes. This was also the first time that chromic acid technique was tested in cetaceans. Results showed that the three techniques were valuable for the histological detection of fat embolism in cetaceans, even when tissues presented advanced autolysis and had been stored in formaldehyde for years. Although quantitative differences could not be established, the Oil Red O frozen technique showed the lowest quality for fat emboli staining. On the contrary, the chromic acid technique was proven to be a good alternative to osmium tetroxide due to its slightly lower toxicity, its equivalent or even superior capacity of fat emboli detection, and its significantly lower economic cost.
Collapse
Affiliation(s)
- Marina Arregui
- Atlantic Cetacean Research Center, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Arucas, Las Palmas, Spain
| | - Antonio Fernández
- Atlantic Cetacean Research Center, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Arucas, Las Palmas, Spain.
| | - Yania Paz-Sánchez
- Atlantic Cetacean Research Center, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Arucas, Las Palmas, Spain
| | - Ángelo Santana
- Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira s/n, 35017, Las Palmas, Spain
| | - Simona Sacchini
- Atlantic Cetacean Research Center, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Arucas, Las Palmas, Spain
| | - Eva Sierra
- Atlantic Cetacean Research Center, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Arucas, Las Palmas, Spain
| | - Manuel Arbelo
- Atlantic Cetacean Research Center, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Arucas, Las Palmas, Spain
| | - Yara Bernaldo de Quirós
- Atlantic Cetacean Research Center, Institute of Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Arucas, Las Palmas, Spain
| |
Collapse
|
10
|
Berenji Ardestani S, Matchkov VV, Eftedal I, Pedersen M. A Single Simulated Heliox Dive Modifies Endothelial Function in the Vascular Wall of ApoE Knockout Male Rats More Than Females. Front Physiol 2019; 10:1342. [PMID: 31695628 PMCID: PMC6817487 DOI: 10.3389/fphys.2019.01342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction The number of divers is rising every year, including an increasing number of aging persons with impaired endothelial function and concomitant atherosclerosis. While diving is an independent modulator of endothelial function, little is known about how diving affects already impaired endothelium. In this study, we questioned whether diving exposure leads to further damage of an already impaired endothelium. Methods A total of 5 male and 5 female ApoE knockout (KO) rats were exposed to simulated diving to an absolute pressure of 600 kPa in heliox gas (80% helium, 20% oxygen) for 1 h in a dry pressure chamber. 10 ApoE KO rats (5 males, 5 females) and 8 male Sprague-Dawley rats served as controls. Endothelial function was examined in vitro by isometric myography of pulmonary and mesenteric arteries. Lipid peroxidation in blood plasma, heart and lung tissue was used as measures of oxidative stress. Expression and phosphorylation of endothelial NO synthase were quantified by Western blot. Results and Conclusion A single simulated dive was found to induce endothelial dysfunction in the pulmonary arteries of ApoE KO rats, and this was more profound in male than female rats. Endothelial dysfunction in males was associated with changing in production or bioavailability of NO; while in female pulmonary arteries an imbalance in prostanoid signaling was observed. No effect of diving was found on mesenteric arteries from rats of either sex. Our findings suggest that changes in endothelial dysfunction were specific for pulmonary circulation. In future, human translation of these findings may suggest caution for divers who are elderly or have prior reduced endothelial function.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU: Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU: Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Michael Pedersen
- Department of Clinical Medicine, Comparative Medicine Lab, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Zhang R, Yu Y, Manaenko A, Bi H, Zhang N, Zhang L, Zhang T, Ye Z, Sun X. Effect of helium preconditioning on neurological decompression sickness in rats. J Appl Physiol (1985) 2019; 126:934-940. [PMID: 30653414 DOI: 10.1152/japplphysiol.00275.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Decompression sickness (DCS) occurs because of an excessively rapid and extensive reduction of the ambient pressure. Bubble-induced spinal cord ischemia is generally considered as a part of neurological DCS pathogenesis. Because helium preconditioning (HPC) recently demonstrated beneficial properties against ischemic damage, we hypothesized that HPC may decrease the neurological deficits of DCS in rats. Seventy-five male Sprague-Dawley rats were divided into a non-HPC group ( n = 25) and a HPC group ( n = 25) and 25 naive animals that were euthanized for histological examination ( n = 5) or anesthetized for baseline somatosensory evoked potential (SSEP) recordings ( n = 20). To induce DCS, rats were compressed with air to a pressure of 709 kPa for 60 min and decompressed at a rate of 203 kPa/min. HPC was administered as three episodes of 79% helium-21% oxygen mixture inhalation for 5 min interspersed with 5 min of air breathing. We found that HPC resulted in significantly decreased DCS incidence and delay of DCS onset. HPC also improved animal performance on the grip test after decompression and significantly ameliorated decompression-induced decrease of platelet number. Furthermore, the incidence of abnormal SSEP waves and histological spinal lesions was significantly reduced by HPC. We conclude that HPC can decrease the occurrence of DCS and ameliorate decompression-induced neurological deficits. NEW & NOTEWORTHY Helium preconditioning ameliorates decompression-induced neurological deficits in rats. Helium breathing before air dives may prevent neurological deficit and attenuate symptoms after decompression.
Collapse
Affiliation(s)
- Rongjia Zhang
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Second Military Medical University , Shanghai , People's Republic of China
| | - Yongchao Yu
- Department of Cardiac Surgery, Changhai Hospital, Second Military Medical University , Shanghai , People's Republic of China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg , Erlangen , Germany
| | - Hongda Bi
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University , Shanghai , People's Republic of China
| | - Ning Zhang
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Second Military Medical University , Shanghai , People's Republic of China
| | - Ling Zhang
- Department of Medical Genetics, Second Military Medical University , Shanghai , People's Republic of China
| | - Ting Zhang
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Second Military Medical University , Shanghai , People's Republic of China
| | - Zhouheng Ye
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Second Military Medical University , Shanghai , People's Republic of China
| | - Xuejun Sun
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Second Military Medical University , Shanghai , People's Republic of China
| |
Collapse
|
12
|
Lambrechts K, de Maistre S, Abraini JH, Blatteau JE, Risso JJ, Vallée N. Tirofiban, a Glycoprotein IIb/IIIa Antagonist, Has a Protective Effect on Decompression Sickness in Rats: Is the Crosstalk Between Platelet and Leukocytes Essential? Front Physiol 2018; 9:906. [PMID: 30050468 PMCID: PMC6050390 DOI: 10.3389/fphys.2018.00906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
In its severest forms, decompression sickness (DCS) may extend systemically and/or induce severe neurological deficits, including paralysis or even death. It seems that the sterile and ischemic inflammatory phenomena are consecutive to the reaction of the bubbles with the organism and that the blood platelet activation plays a determinant role in the development of DCS. According to the hypotheses commonly put forward, the bubbles could either activate the platelets by direct contact or be the cause of abrasion of the vascular epithelium, which would expose the basal plate glycogen and then prompt the platelets to activate. The purpose of this study is to confirm anti-platelet drugs specific to GPIIb/IIIa integrin could prevent DCS, using a rat model. There is a significant difference concerning the incidence of the drug on the clinical status of the rats (p = 0.016), with a better clinical outcome for rats treated with tirofiban (TIR) compared with the control rats (p = 0.027), even if the three anti-GPIIb/IIIa agents used have limited respiratory distress. TIR limited the decrease in platelet counts following the hyperbaric exposure. TIR help to prevent from DCS. TIR is specific to GPIIb/IIIa whereas eptifibatide and abciximab could inhibit αVβ3 and αMβ2 involved in communication with the immune system. While inhibiting GPIIb/IIIa could highlight a platelet-dependent inflammatory pathway that improves DCS outcomes, we wonder whether inhibiting the αVβ3 and αMβ2 communications is not a wrong approach for limiting mortality in DCS.
Collapse
Affiliation(s)
- Kate Lambrechts
- Département Environnement Opérationnel, Unité Environnements Extrêmes, Institut de Recherche Biomédicale des Armées - Equipe Résidente de Recherche Subaquatique Opérationnelle (Armed Forces Biomedical Research Institute - Resident Operational Subaquatic Research Team), Toulon, France.,Laboratoire Motricité Humaine Expertise Sport Santé (LAMHESS - Human Motricity, Education, Sport and Health Laboratory), Université du Sud Toulon Var, La Garde, France
| | - Sébastien de Maistre
- Hôpital d'Instruction des Armées - Service de Médecine Hyperbare et Expertise Plongée (Military Teaching Hospital - Hyperbaric Medicine and Diving Expertise Department), Toulon, France
| | - Jacques H Abraini
- Département Environnement Opérationnel, Unité Environnements Extrêmes, Institut de Recherche Biomédicale des Armées - Equipe Résidente de Recherche Subaquatique Opérationnelle (Armed Forces Biomedical Research Institute - Resident Operational Subaquatic Research Team), Toulon, France.,Département d'Anesthésiologie, Université Laval, Laval, QC, Canada.,Faculté de Médecine, Université de Caen Normandie (UNICAEN), Caen, France
| | - Jean-Eric Blatteau
- Hôpital d'Instruction des Armées - Service de Médecine Hyperbare et Expertise Plongée (Military Teaching Hospital - Hyperbaric Medicine and Diving Expertise Department), Toulon, France
| | - Jean-Jacques Risso
- Département Environnement Opérationnel, Unité Environnements Extrêmes, Institut de Recherche Biomédicale des Armées - Equipe Résidente de Recherche Subaquatique Opérationnelle (Armed Forces Biomedical Research Institute - Resident Operational Subaquatic Research Team), Toulon, France
| | - Nicolas Vallée
- Département Environnement Opérationnel, Unité Environnements Extrêmes, Institut de Recherche Biomédicale des Armées - Equipe Résidente de Recherche Subaquatique Opérationnelle (Armed Forces Biomedical Research Institute - Resident Operational Subaquatic Research Team), Toulon, France
| |
Collapse
|
13
|
Arieli R, Marmur A. A biophysical vascular bubble model for devising decompression procedures. Physiol Rep 2017; 5:5/6/e13191. [PMID: 28320890 PMCID: PMC5371562 DOI: 10.14814/phy2.13191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/07/2017] [Accepted: 02/11/2017] [Indexed: 12/14/2022] Open
Abstract
Vascular bubble models, which present a realistic biophysical approach, hold great promise for devising suitable diver decompression procedures. Nanobubbles were found to nucleate on a flat hydrophobic surface, expanding to form bubbles after decompression. Such active hydrophobic spots (AHS) were formed from lung surfactants on the luminal aspect of ovine blood vessels. Many of the phenomena observed in these bubbling vessels correlated with those known to occur in diving. On the basis of our previous studies, which proposed a new model for the formation of arterial bubbles, we now suggest the biophysical model presented herein. There are two phases of bubble expansion after decompression. The first is an extended initiation phase, during which nanobubbles are transformed into gas micronuclei and begin to expand. The second, shorter phase is one of simple diffusion‐driven growth, the inert gas tension in the blood remaining almost constant during bubble expansion. Detachment of the bubble occurs when its buoyancy exceeds the intermembrane force. Three mechanisms underlying the appearance of arterial bubbles should be considered: patent foramen ovale, intrapulmonary arteriovenous anastomoses, and the evolution of bubbles in the distal arteries with preference for the spinal cord. Other parameters that may be quantified include age, acclimation, distribution of bubble volume, AHS, individual sensitivity, and frequency of bubble formation. We believe that the vascular bubble model we propose adheres more closely to proven physiological processes. Its predictability may therefore be higher than other models, with appropriate adjustments for decompression illness (DCI) data.
Collapse
Affiliation(s)
- Ran Arieli
- Israel Naval Medical Institute, Haifa, and Eliachar Research Laboratory, Western Galilee Medical Center, Nahariya, Israel
| | - Abraham Marmur
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Spisni E, Marabotti C, De Fazio L, Valerii MC, Cavazza E, Brambilla S, Hoxha K, L'Abbate A, Longobardi P. A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ratio deco. Diving Hyperb Med 2017; 47:9-16. [PMID: 28357819 DOI: 10.28920/dhm47.1.9-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The aim of this study was to compare two decompression procedures commonly adopted by technical divers: the ZH-L16 algorithm modified by 30/85 gradient factors (compartmental decompression model, CDM) versus the 'ratio decompression strategy' (RDS). The comparison was based on an analysis of changes in diver circulating inflammatory profiles caused by decompression from a single dive. METHODS Fifty-one technical divers performed a single trimix dive to 50 metres' sea water (msw) for 25 minutes followed by enriched air (EAN50) and oxygen decompression. Twenty-three divers decompressed according to a CDM schedule and 28 divers decompressed according to a RDS schedule. Peripheral blood for detection of inflammatory markers was collected before and 90 min after diving. Venous gas emboli were measured 30 min after diving using 2D echocardiography. Matched groups of 23 recreational divers (dive to 30 msw; 25 min) and 25 swimmers were also enrolled as control groups to assess the effects of decompression from a standard air dive or of exercise alone on the inflammatory profile. RESULTS Echocardiography at the single 30 min observation post dive showed no significant differences between the two decompression procedures. Divers adopting the RDS showed a worsening of post-dive inflammatory profile compared to the CDM group, with significant increases in circulating chemokines CCL2 (P = 0.001) and CCL5 (P = 0.006) levels. There was no increase in chemokines following the CDM decompression. The air scuba group also showed a statistically significant increase in CCL2 (P < 0.001) and CCL5 (P = 0.003) levels post dive. No cases of decompression sickness occurred. CONCLUSION The ratio deco strategy did not confer any benefit in terms of bubbles but showed the disadvantage of increased decompression-associated secretion of inflammatory chemokines involved in the development of vascular damage.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, Translational Physiology and Nutrition Unit, University of Bologna, Via Selmi 3, 40126 Bologna, Italy,
| | - Claudio Marabotti
- Department of Biological, Geological and Environmental, Sciences, University of Bologna, Italy.,Department of Cardiology, Civic Hospital Cecina, Italy
| | - Luigia De Fazio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Elena Cavazza
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Stefano Brambilla
- Institute for Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Klarida Hoxha
- Hyperbaric Center of Ravenna, Via Augusto Torre 3, Ravenna, Italy
| | - Antonio L'Abbate
- Institute for Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Pasquale Longobardi
- Institute for Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Hyperbaric Center of Ravenna, Via Augusto Torre 3, Ravenna, Italy
| |
Collapse
|
15
|
The effect of the perfluorocarbon emulsion Oxycyte on platelet count and function in the treatment of decompression sickness in a swine model. Blood Coagul Fibrinolysis 2017; 27:702-10. [PMID: 26650458 DOI: 10.1097/mbc.0000000000000481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Decompression from elevated ambient pressure is associated with platelet activation and decreased platelet counts. Standard treatment for decompression sickness (DCS) is hyperbaric oxygen therapy. Intravenous perfluorocarbon (PFC) emulsion is a nonrecompressive therapy being examined that improves mortality in animal models of DCS. However, PFC emulsions are associated with a decreased platelet count. We used a swine model of DCS to study the effect of PFC therapy on platelet count, function, and hemostasis. Castrated male swine (n = 50) were fitted with a vascular port, recovered, randomized, and compressed to 180 feet of sea water (fsw) for 31 min followed by decompression at 30 fsw/min. Animals were observed for DCS, administered 100% oxygen, and treated with either emulsified PFC Oxycyte (DCS-PFC) or isotonic saline (DCS-NS). Controls underwent the same procedures, but were not compressed (Sham-PFC and Sham-NS). Measurements of platelet count, thromboelastometry, and coagulation were obtained 1 h before compression and 1, 24, 48, 96, 168 and 192 h after treatment. No significant changes in normalized platelet counts were observed. Prothrombin time was elevated in DCS-PFC from 48 to 192 h compared with DCS-NS, and from 96 to 192 h compared with Sham-PFC. Normalized activated partial thromboplastin time was also elevated in DCS-PFC from 168 to 192 h compared with Sham-PFC. No bleeding events were noted. DCS treated with PFC (Oxycyte) does not impact platelet numbers, whole blood clotting by thromboelastometry, or clinical bleeding. Late changes in prothrombin time and activated partial thromboplastin time associated with PFC use in both DCS therapy and controls warrant further investigation.
Collapse
|
16
|
Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction. Eur J Appl Physiol 2017; 117:335-344. [DOI: 10.1007/s00421-017-3537-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
17
|
Pierrakos C, Collot V, Van Lieshout H, De Doncker M, Delcourt S, Gottignies P, Devriendt J, De Bels D. Injection of agitated saline to detect recirculation with transthoracic echocardiography during venovenous extracorporeal oxygenation: A pilot study. J Crit Care 2016; 37:60-64. [PMID: 27632800 DOI: 10.1016/j.jcrc.2016.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE We assessed the security and efficiency of intravenously injected agitated saline in conjunction with transthoracic echocardiography to identify recirculation in patients supported with a venovenous extracorporeal membrane oxygenation (VV ECMO) device. MATERIALS AND METHODS We injected agitated saline 4 consecutive times separated by an interval of 5 minutes in 2 patients supported by VV ECMO. In both patients, the drainage cannula was placed in the left femoral vein, and the return cannula was placed in the right internal jugular vein. Echocardiography was performed during the injection and until the bubbles disappeared. The security of the method was assessed by evaluating the mechanical function of the ECMO and the efficiency of the oxygenator. The value of this method was assessed by visualizing the increase of inferior vena cava's echogenicity as well as by measuring the time required for this change to occur after the injection of agitated saline at different ECMO output levels. RESULTS We did not observe any change in ECMO, oxygenation function, or the hemodynamic status of patients after the 4 injections of agitated saline. The echogenicity of the inferior vena cava increased more rapidly as the ECMO's output increased. The recirculation phenomenon was noted even with low levels of ECMO output (<2 L/min). CONCLUSIONS Transthoracic echocardiography in conjunction with agitated saline administration may be a safe and easily applicable method to evaluate a recirculation phenomenon in patients supported with VV ECMO.
Collapse
Affiliation(s)
- Charalampos Pierrakos
- Department of Intensive Care Unit, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Vincent Collot
- Department of Intensive Care Unit, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Hemlata Van Lieshout
- Department of Intensive Care Unit, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Monique De Doncker
- Department of Intensive Care Unit, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Stephanie Delcourt
- Department of Intensive Care Unit, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Gottignies
- Department of Intensive Care Unit, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Devriendt
- Department of Intensive Care Unit, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - David De Bels
- Department of Intensive Care Unit, Brugmann University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
18
|
Arieli R, Khatib S, Vaya J. Presence of dipalmitoylphosphatidylcholine from the lungs at the active hydrophobic spots in the vasculature where bubbles are formed on decompression. J Appl Physiol (1985) 2016; 121:811-815. [PMID: 27516538 DOI: 10.1152/japplphysiol.00649.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 11/22/2022] Open
Abstract
Most severe cases of decompression illness are caused by vascular bubbles. We showed that there are active hydrophobic spots (AHS) on the luminal aspect of ovine blood vessels where bubbles are produced after decompression. It has been suggested that AHS may be composed of lung surfactant. Dipalmitoylphosphatidylcholine (DPPC) is the main component of lung surfactants. Blood samples and four blood vessels, the aorta, superior vena cava, pulmonary vein, and pulmonary artery, were obtained from 11 slaughtered sheep. Following exposure to 1,013 kPa for 20.4 h, we started photographing the blood vessels 15 min after the end of decompression for a period of 30 min to determine AHS by observing bubble formation. Phospholipids were extracted from AHS and from control tissue and plasma for determination of DPPC. DPPC was found in all blood vessel samples and all samples of plasma. The concentration of DPPC in the plasma samples (n = 8) was 2.04 ± 0.90 μg/ml. The amount of DPPC in the AHS which produced four or more bubbles (n = 16) was 1.59 ± 0.92 μg. This was significantly higher than the value obtained for AHS producing less than four bubbles and for control samples (n = 19) (0.97 ± 0.61 μg, P = 0.027). DPPC leaks from the lungs into the blood, settling on the luminal aspect of the vasculature to create AHS. Determining the constituents of the AHS might pave the way for their removal, resulting in a dramatic improvement in diver safety.
Collapse
Affiliation(s)
- Ran Arieli
- Israel Naval Medical Institute, Haifa, Israel; and
| | - Soliman Khatib
- Department of Oxidative Stress and Human Diseases, MIGAL - Galilee Research Institute and Tel Hai College, Kiryat Shmona, Israel
| | - Jacob Vaya
- Department of Oxidative Stress and Human Diseases, MIGAL - Galilee Research Institute and Tel Hai College, Kiryat Shmona, Israel
| |
Collapse
|
19
|
Could some aviation deep vein thrombosis be a form of decompression sickness? J Thromb Thrombolysis 2016; 42:346-51. [PMID: 27106903 DOI: 10.1007/s11239-016-1368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aviation deep vein thrombosis is a challenge poorly understood in modern aviation. The aim of the present project was to determine if cabin decompression might favor formation of vascular bubbles in commercial air travelers. Thirty commercial flights were taken. Cabin pressure was noted at take-off and at every minute following, until the pressure stabilized. These time-pressure profiles were imported into the statistics program R and analyzed using the package SCUBA. Greatest pressure differentials between tissues and cabin pressures were estimated for 20, 40, 60, 80 and 120 min half-time compartments. Time to decompress ranged from 11 to 47 min. The greatest drop in cabin pressure was from 1022 to 776 mBar, equivalent to a saturated diver ascending from 2.46 msw depth. Mean pressure drop in flights >2 h duration was 193 mBar, while mean pressure drop in flights <2 h was 165 mBar. The greatest drop in pressure over 1 min was 28 mBar. Over 30 commercial flights it was found that the drop in cabin pressure was commensurate with that found to cause bubbles in man. Both the US Navy and the Royal Navy mandate far slower decompression from states of saturation, being 1.7 and 1.9 mBar/min respectively. The median overall rate of decompression found in this study was 8.5 mBar/min, five times the rate prescribed for USN saturation divers. The tissues associated with hypobaric bubble formation are likely slower than those associated with bounce diving, with 60 min a potentially useful index.
Collapse
|
20
|
Lambrechts K, Pontier JM, Mazur A, Theron M, Buzzacott P, Wang Q, Belhomme M, Guerrero F. Mechanism of action of antiplatelet drugs on decompression sickness in rats: a protective effect of anti-GPIIbIIIa therapy. J Appl Physiol (1985) 2015; 118:1234-9. [PMID: 25792711 DOI: 10.1152/japplphysiol.00125.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/13/2015] [Indexed: 11/22/2022] Open
Abstract
Literature highlights the involvement of disseminated thrombosis in the pathophysiology of decompression sickness (DCS). We examined the effect of several antithrombotic treatments targeting various pathways on DCS outcome: acetyl salicylate, prasugrel, abciximab, and enoxaparin. Rats were randomly assigned to six groups. Groups 1 and 2 were a control nondiving group (C; n = 10) and a control diving group (CD; n = 30). Animals in Groups 3 to 6 were treated before hyperbaric exposure (HBE) with either prasugrel (n = 10), acetyl salicylate (n = 10), enoxaparin (n = 10), or abciximab (n = 10). Blood samples were taken for platelet factor 4 (PF4), thiobarbituric acid reactive substances (TBARS), and von Willebrand factor analysis. Onset of DCS symptoms and death were recorded during a 60-min observation period after HBE. Although we observed fewer outcomes of DCS in all treated groups compared with the CD, statistical significance was reached in abciximab only (20% vs. 73%, respectively, P = 0.007). We also observed significantly higher levels of plasmatic PF4 in abciximab (8.14 ± 1.40 ng/ml; P = 0.004) and enoxaparin groups (8.01 ± 0.80 ng/ml; P = 0.021) compared with the C group (6.45 ± 1.90 ng/ml) but not CD group (8.14 ± 1.40 ng/ml). Plasmatic levels of TBARS were significantly higher in the CD group than the C group (49.04 ± 11.20 μM vs. 34.44 ± 5.70 μM, P = 0.002). This effect was prevented by all treatments. Our results suggest that abciximab pretreatment, a powerful glycoprotein IIb/IIIa receptor antagonist, has a strong protective effect on decompression risk by significantly improving DCS outcome. Besides its powerful inhibitory action on platelet aggregation, we suggest that abciximab could also act through its effects on vascular function, oxidative stress, and/or inflammation.
Collapse
Affiliation(s)
- Kate Lambrechts
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France; Université de Toulon, LAMHESS, La Garde, France; and Université Nice Sophia Antipolis, LAMHESS, Nice, France
| | | | - Aleksandra Mazur
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Michaël Theron
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Peter Buzzacott
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Qiong Wang
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Marc Belhomme
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | | |
Collapse
|
21
|
Peng HT, Cameron BA, Rhind SG. Effects of Hyperbaric and Decompression Stress on Blood Coagulation and Fibrinolysis. Clin Appl Thromb Hemost 2015; 22:327-39. [DOI: 10.1177/1076029614568712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hyperbaric and decompression stress from diving impairs blood coagulation and fibrinolysis. We hypothesized that thromboelastography (TEG) and rotational thromboelastometry (ROTEM) were suitable to characterize the effects of stress on global hemostatic profiles. We thus conducted a comparative study of the hyperbaric effects on human coagulation using TEG and ROTEM. Maximum clot strength (maximum amplitude [MA]) and clot lysis (lysis index at time 30 minutes [LI30]) were reduced as indicated by TEG MA and EXTEM LI30, respectively. The relative changes in coagulation and fibrinolysis by the hyperbaric effects of diving were indicated by reduced TEG reaction time R at 5 hours, MA at 24 hours postdive, and reduced EXTEM coagulation time at 15 minutes postdive as well as decreased fibrinolysis (EXTEM LI30) at all postdiving time points investigated. Comparison of the parameter values and the diving-induced changes in each parameter between TEG and ROTEM showed both differences and correlations. The discrepancies between the 2 systems may be due to the different assay reagents used. Future studies will seek to further elucidate the changes in blood coagulation and fibrinolysis following varying levels of hyperbaric and decompression stress.
Collapse
Affiliation(s)
- Henry T. Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, Ontario, Canada
| | - Bruce A. Cameron
- Defence Research and Development Canada, Toronto Research Centre, Toronto, Ontario, Canada
| | - Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Randsoe T, Meehan CF, Broholm H, Hyldegaard O. Effect of nitric oxide on spinal evoked potentials and survival rate in rats with decompression sickness. J Appl Physiol (1985) 2014; 118:20-8. [PMID: 25377881 DOI: 10.1152/japplphysiol.00260.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) releasing agents have, in experimental settings, been shown to decrease intravascular nitrogen bubble formation and to increase the survival rate during decompression sickness (DCS) from diving. The effect has been ascribed to a possible removal of preexisting micronuclei or an increased nitrogen washout on decompression through augmented blood flow rate. The present experiments were conducted to investigate whether a short- or long-acting NO donor [glycerol trinitrate (GTN) or isosorbide-5-mononitrate (ISMN), respectively] would offer the same protection against spinal cord DCS evaluated by means of spinal evoked potentials (SEPs). Anesthetized rats were decompressed from a 1-h hyperbaric air dive at 506.6 kPa (40 m of seawater) for 3 min and 17 s, and spinal cord conduction was studied by measurements of SEPs. Histological samples of the spinal cord were analyzed for lesions of DCS. In total, 58 rats were divided into 6 different treatment groups. The first three received either saline (group 1), 300 mg/kg iv ISMN (group 2), or 10 mg/kg ip GTN (group 3) before compression. The last three received either 300 mg/kg iv ISMN (group 4), 1 mg/kg iv GTN (group 5), or 75 μg/kg iv GTN (group 6) during the dive, before decompression. In all groups, decompression caused considerable intravascular bubble formation. The ISMN groups showed no difference compared with the control group, whereas the GTN groups showed a tendency toward faster SEP disappearance and shorter survival times. In conclusion, neither a short- nor long-acting NO donor had any protective effect against fatal DCS by intravenous bubble formation. This effect is most likely due to a fast ascent rate overriding the protective effects of NO, rather than the total inert tissue gas load.
Collapse
Affiliation(s)
- T Randsoe
- Laboratory of Hyperbaric Medicine, Department of Anaesthesiology, Centre of Head and Orthopaedics, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark;
| | - C F Meehan
- Department of Neuroscience and Pharmacology, Faculty of Health Science, Panum Institute, Copenhagen University, Copenhagen, Denmark; and
| | - H Broholm
- Department of Neuropathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - O Hyldegaard
- Laboratory of Hyperbaric Medicine, Department of Anaesthesiology, Centre of Head and Orthopaedics, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Pontier JM, Buzzacott P, Nastorg J, Dinh-Xuan A, Lambrechts K. Exhaled nitric oxide concentration and decompression-induced bubble formation: An index of decompression severity in humans? Nitric Oxide 2014; 39:29-34. [DOI: 10.1016/j.niox.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 12/21/2022]
|
24
|
Pontier JM, Lambrechts K. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression. Eur J Appl Physiol 2014; 114:1175-81. [PMID: 24563091 DOI: 10.1007/s00421-014-2841-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/30/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. METHODS Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. RESULTS Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p < 0.001). After the dive with an air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. CONCLUSIONS The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.
Collapse
Affiliation(s)
- J-M Pontier
- Diving and Hyperbaric Department, French Navy Diving School, BP 311, 83800, Toulon, France
| | | |
Collapse
|
25
|
Vallée N, Gaillard S, Peinnequin A, Risso JJ, Blatteau JE. Evidence of cell damages caused by circulating bubbles: high level of free mitochondrial DNA in plasma of rats. J Appl Physiol (1985) 2013; 115:1526-32. [DOI: 10.1152/japplphysiol.00025.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bubble formation can occur in the vascular system after diving, leading to decompression sickness (DCS). DCS signs and symptoms range from minor to death. Too often, patients are admitted to a hyperbaric center with atypical symptoms, as bubbles cannot be detected anymore. In the absence of a relevant biomarker for humans, the therapeutic management remains difficult. As circulating DNA was found in the blood of healthy humans and animals, our study was made to correlate the extracellular mitochondrial DNA (mDNA) concentration with the occurrence of clinical DCS symptoms resulting from initial bubble-induced damages. Therefore, 109 rats were subjected to decompression from a simulated 90-m sea water dive, after which, 78 rats survived (71.6%). Among the survivors, 15.6% exhibited typical DCS symptoms (DCS group), whereas the remaining 56% showed no detectable symptoms (noDCS group). Here, we report that the symptomatic rats displayed both a circulating mDNA level (DNADCS → 2.99 ± 2.62) and a bubble grade (median Spencer score = 3) higher than rats from the noDCS group (DNAnoDCS → 1.49 ± 1.27; Spencer score = 1). These higher levels could be correlated with the platelet and leukocyte consumption induced by the pathogenic decompression. Rats with no detectable bubble had lower circulating mDNA than those with higher bubble scores. We determined that in rats, a level of circulating mDNA >1.91 was highly predictive of DCS with a positive-predictive value of 87.3% and an odds ratio of 4.57. Thus circulating mDNA could become a relevant biomarker to diagnose DCS and should be investigated further to confirm its potential application in humans.
Collapse
Affiliation(s)
- Nicolas Vallée
- Equipe Résidante de Recherche Subaquatique Opérationnelle, Institut de Recherche Biomédicale des Armées, Toulon, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon Cedex, France; and
| | - Sandrine Gaillard
- Plateforme Technologique BioTechServices, Université du Sud Toulon Var, La Garde Cedex, France
| | - André Peinnequin
- Equipe Résidante de Recherche Subaquatique Opérationnelle, Institut de Recherche Biomédicale des Armées, Toulon, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon Cedex, France; and
| | - Jean-Jacques Risso
- Equipe Résidante de Recherche Subaquatique Opérationnelle, Institut de Recherche Biomédicale des Armées, Toulon, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon Cedex, France; and
| | - Jean-Eric Blatteau
- Equipe Résidante de Recherche Subaquatique Opérationnelle, Institut de Recherche Biomédicale des Armées, Toulon, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon Cedex, France; and
| |
Collapse
|
26
|
Lambrechts K, Pontier JM, Mazur A, Buzzacott P, Morin J, Wang Q, Theron M, Guerrero F. Effect of decompression-induced bubble formation on highly trained divers microvascular function. Physiol Rep 2013; 1:e00142. [PMID: 24400144 PMCID: PMC3871457 DOI: 10.1002/phy2.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/14/2022] Open
Abstract
We previously showed microvascular alteration of both endothelium-dependent and -independent reactivity after a single SCUBA dive. We aimed to study mechanisms involved in this postdive vascular dysfunction. Ten divers each completed three protocols: (1) a SCUBA dive at 400 kPa for 30 min; (2) a 41-min duration of seawater surface head immersed finning exercise to determine the effect of immersion and moderate physical activity; and (3) a simulated 41-min dive breathing 100% oxygen (hyperbaric oxygen [HBO]) at 170 kPa in order to analyze the effect of diving-induced hyperoxia. Bubble grades were monitored with Doppler. Cutaneous microvascular function was assessed by laser Doppler. Endothelium-dependent (acetylcholine, ACh) and -independent (sodium nitroprusside, SNP) reactivity was tested by iontophoresis. Endothelial cell activation was quantified by plasma Von Willebrand factor and nitric oxide (NO). Inactivation of NO by oxidative stress was assessed by plasma nitrotyrosine. Platelet factor 4 (PF4) was assessed in order to determine platelet aggregation. Blood was also analyzed for measurement of platelet count. Cutaneous vascular conductance (CVC) response to ACh delivery was not significantly decreased by the SCUBA protocol (23 ± 9% before vs. 17 ± 7% after; P = 0.122), whereas CVC response to SNP stimulation decreased significantly (23 ± 6% before vs. 10 ± 1% after; P = 0.039). The HBO and immersion protocols did not affect either endothelial-dependent or -independent function. The immersion protocol induced a significant increase in NO (0.07 ± 0.01 vs. 0.12 ± 0.02 μg/mL; P = 0.035). This study highlighted change in microvascular endothelial-independent but not -dependent function in highly trained divers after a single air dive. The results suggest that the effects of decompression on microvascular function may be modified by diving acclimatization.
Collapse
Affiliation(s)
- Kate Lambrechts
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Jean-Michel Pontier
- Diving and Hyperbaric Department, French Navy Diving School BP 311, 83800, Toulon, France
| | - Aleksandra Mazur
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Peter Buzzacott
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Jean Morin
- Diving and Hyperbaric Department, French Navy Diving School BP 311, 83800, Toulon, France
| | - Qiong Wang
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Michael Theron
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| | - Francois Guerrero
- Orphy Laboratory, Université de Bretagne Occidentale 29200, Brest, France
| |
Collapse
|
27
|
Effect of a single, open-sea, air scuba dive on human micro- and macrovascular function. Eur J Appl Physiol 2013; 113:2637-45. [DOI: 10.1007/s00421-013-2676-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/31/2013] [Indexed: 11/26/2022]
|
28
|
Eftedal I, Jørgensen A, Røsbjørgen R, Flatberg A, Brubakk AO. Early genetic responses in rat vascular tissue after simulated diving. Physiol Genomics 2012; 44:1201-7. [PMID: 23132759 DOI: 10.1152/physiolgenomics.00073.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diving causes a transient reduction of vascular function, but the mechanisms behind this are largely unknown. The aim of this study was therefore to analyze genetic reactions that may be involved in acute changes of vascular function in divers. Rats were exposed to 709 kPa of hyperbaric air (149 kPa Po(2)) for 50 min followed by postdive monitoring of vascular bubble formation and full genome microarray analysis of the aorta from diving rats (n = 8) and unexposed controls (n = 9). Upregulation of 23 genes was observed 1 h after simulated diving. The differential gene expression was characteristic of cellular responses to oxidative stress, with functions of upregulated genes including activation and fine-tuning of stress-responsive transcription, cytokine/cytokine receptor signaling, molecular chaperoning, and coagulation. By qRT-PCR, we verified increased transcription of neuron-derived orphan receptor-1 (Nr4a3), plasminogen activator inhibitor 1 (Serpine1), cytokine TWEAK receptor FN14 (Tnfrsf12a), transcription factor class E basic helix-loop-helix protein 40 (Bhlhe40), and adrenomedullin (Adm). Hypoxia-inducible transcription factor HIF1 subunit HIF1-α was stabilized in the aorta 1 h after diving, and after 4 h there was a fivefold increase in total protein levels of the procoagulant plasminogen activator inhibitor 1 (PAI1) in blood plasma from diving rats. The study did not have sufficient power for individual assessment of effects of hyperoxia and decompression-induced bubbles on postdive gene expression. However, differential gene expression in rats without venous bubbles was similar to that of all the diving rats, indicating that elevated Po(2) instigated the observed genetic reactions.
Collapse
Affiliation(s)
- Ingrid Eftedal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
29
|
Pontier JM, Gempp E, Ignatescu M. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive. Appl Physiol Nutr Metab 2012; 37:888-92. [PMID: 22735037 DOI: 10.1139/h2012-067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bubble-induced platelet aggregation offers an index for evaluating decompression severity in humans and in a rat model of decompression sickness. Endothelial cells, blood platelets, or leukocytes shed microparticles (MP) upon activation and during cell apoptosis. The aim was to study blood platelet MP (PMP) release and bubble formation after a scuba-air dive in field conditions. Healthy, experienced divers were assigned to 1 experimental group (n = 10) with an open-sea air dive to 30 msw for 30 min and 1 control group (n = 5) during head-out water immersion for the same period. Bubble grades were monitored with a pulsed doppler according to Kissman Integrated Severity Score (KISS). Blood samples for platelet count (PC) and PMP (annexin V and CD41) were taken 1 h before and after exposure in both groups. The result showed a decrease in post-dive PC compared with pre-dive values in experimental group with no significant change in the control group. We observed a significant increase in PMP values after the dive while no change was revealed in the control group. There was a significant positive correlation between the PMP values after the dive and the KISS bubble score. The present study highlighted a relationship between the post-dive decrease in PC, platelet MP release, and bubble formation. Release of platelet MPs could reflect bubble-induced platelet aggregation and could play a key role in alteration of the coagulation. Further studies must investigate endothelial and leukocyte MP release in the same field conditions.
Collapse
Affiliation(s)
- Jean-Michel Pontier
- French Navy Diving School, Diving Medicine Department, BP 311, 83041 Toulon, France
- UMR MD2 Physiologie et physiopathologie en condition d’oxygénation extrême, IRBA and IFR Jean Roche, France
| | - Emmanuel Gempp
- Diving and Hyperbaric Medicine Department, St Anne’s Military Hospital, BP 20545, 83041 Toulon, France
| | - Mihaela Ignatescu
- Diving Diseases Research Centre (DDRC), Tamar Science Park, Plymouth, UK
| |
Collapse
|
30
|
Thom SR, Milovanova TN, Bogush M, Bhopale VM, Yang M, Bushmann K, Pollock NW, Ljubkovic M, Denoble P, Dujic Z. Microparticle production, neutrophil activation, and intravascular bubbles following open-water SCUBA diving. J Appl Physiol (1985) 2012; 112:1268-78. [PMID: 22323646 DOI: 10.1152/japplphysiol.01305.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to evaluate annexin V-positive microparticles (MPs) and neutrophil activation in humans following decompression from open-water SCUBA diving with the hypothesis that changes are related to intravascular bubble formation. Sixteen male volunteer divers followed a uniform profile of four daily SCUBA dives to 18 m of sea water for 47 min. Blood was obtained prior to and at 80 min following the first and fourth dives to evaluate the impact of repetitive diving, and intravascular bubbles were quantified by trans-thoracic echocardiography carried out at 20-min intervals for 2 h after each dive. MPs increased by 3.4-fold after each dive, neutrophil activation occurred as assessed by surface expression of myeloperoxidase and the CD18 component of β2-integrins, and there was an increased presence of the platelet-derived CD41 protein on the neutrophil surface indicating interactions with platelet membranes. Intravascular bubbles were detected in all divers. Surprisingly, significant inverse correlations were found among postdiving bubble scores and MPs, most consistently at 80 min or more after the dive on the fourth day. There were significant positive correlations between MPs and platelet-neutrophil interactions after the first dive and between platelet-neutrophil interactions and neutrophil activation documented as an elevation in β2-integrin expression after the fourth dive. We conclude that MPs- and neutrophil-related events in humans are consistent with findings in an animal decompression model. Whether there are causal relationships among bubbles, MPs, platelet-neutrophil interactions, and neutrophil activation remains obscure and requires additional study.
Collapse
Affiliation(s)
- Stephen R. Thom
- Institute for Environmental Medicine,
- Department of Emergency Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | | | | | | | - Ming Yang
- Institute for Environmental Medicine,
| | - Kim Bushmann
- Department of Emergency Medicine, University of California, San Diego, California
| | | | - Marko Ljubkovic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | | | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
31
|
SCHVED JF, DE HARO M, DRAPEAU M, SCHVED M. Scuba diving is possible and safe for patients with haemophilia. Haemophilia 2011; 18:75-9. [DOI: 10.1111/j.1365-2516.2011.02541.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Pontier JM, Vallée N, Ignatescu M, Bourdon L. Pharmacological intervention against bubble-induced platelet aggregation in a rat model of decompression sickness. J Appl Physiol (1985) 2011; 110:724-9. [PMID: 21212250 DOI: 10.1152/japplphysiol.00230.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Decompression sickness (DCS) with alterations in coagulation system and formation of platelet thrombi occurs when a subject is subjected to a reduction in environmental pressure. Blood platelet consumption after decompression is clearly linked to bubble formation in humans and offers an index for evaluating DCS severity in animal models. Previous studies highlighted a predominant involvement of platelet activation and thrombin generation in bubble-induced platelet aggregation (BIPA). To study the mechanism of the BIPA in DCS, we examined the effect of acetylsalicylic acid (ASA), heparin (Hep), and clopidogrel (Clo), with anti-thrombotic dose pretreatment in a rat model of DCS. Male Sprague-Dawley rats (n = 208) were randomly assigned to one experimental group treated before the hyperbaric exposure and decompression protocol either with ASA (3×100 mg·kg(-1)·day(-1), n = 30), Clo (50 mg·kg(-1)·day(-1), n = 60), Hep (500 IU/kg, n = 30), or to untreated group (n = 49). Rats were first compressed to 1,000 kPa (90 msw) for 45 min and then decompressed to surface in 38 min. In a control experiment, rats were treated with ASA (n = 13), Clo (n = 13), or Hep (n = 13) and maintained at atmospheric pressure for an equivalent period of time. Onset of DCS symptoms and death were recorded during a 60-min observation period after surfacing. DCS evaluation included pulmonary and neurological signs. Blood samples for platelet count (PC) were taken 30 min before hyperbaric exposure and 30 min after surfacing. Clo reduces the DCS mortality risk (mortality rate: 3/60 with Clo, 15/30 with ASA, 21/30 with Hep, and 35/49 in the untreated group) and DCS severity (neurological DCS incidence: 9/60 with Clo, 6/30 with ASA, 5/30 with Hep, and 12/49 in the untreated group). Clo reduced fall in platelet count and BIPA (-4,5% with Clo, -19.5% with ASA, -19,9% with Hep, and -29,6% in the untreated group). ASA, which inhibits the thromboxane A2 pathway, and Hep, which inhibits thrombin generation, have no protective effect on DCS incidence. Clo, a specific ADP-receptor antagonist, reduces post-decompression platelet consumption. These results point to the predominant involvement of the ADP release in BIPA but cannot differentiate definitively between bubble-induced vessel wall injury and bubble-blood component interactions in DCS.
Collapse
|
33
|
Prise en charge des accidents de décompression médullaire en plongée sous-marine : actualités en 2010. Presse Med 2010; 39:778-85. [DOI: 10.1016/j.lpm.2010.02.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/25/2010] [Accepted: 02/08/2010] [Indexed: 11/19/2022] Open
|
34
|
Bosco G, Yang ZJ, Di Tano G, Camporesi EM, Faralli F, Savini F, Landolfi A, Doria C, Fanò G. Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation. J Appl Physiol (1985) 2010; 108:1077-83. [PMID: 20185629 DOI: 10.1152/japplphysiol.01058.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation in scuba divers was evaluated. Six volunteers participated in four diving protocols, with 2 wk of recovery between dives. On dive 1, before diving, all divers breathed normally for 20 min at the surface of the sea (Air). On dive 2, before diving, all divers breathed 100% oxygen for 20 min at the surface of the sea [normobaric oxygenation (NBO)]. On dive 3, before diving, all divers breathed 100% O2 for 20 min at 6 m of seawater [msw; hyperbaric oxygenation (HBO) 1.6 atmospheres absolute (ATA)]. On dive 4, before diving, all divers breathed 100% O2 for 20 min at 12 msw (HBO 2.2 ATA). Then they dove to 30 msw (4 ATA) for 20 min breathing air from scuba. After each dive, blood samples were collected as soon as the divers surfaced. Bubbles were measured at 20 and 50 min after decompression and converted to bubble count estimate (BCE) and numeric bubble grade (NBG). BCE and NBG were significantly lower in NBO than in Air [0.142+/-0.034 vs. 0.191+/-0.066 (P<0.05) and 1.61+/-0.25 vs. 1.89+/-0.31 (P<0.05), respectively] at 20 min, but not at 50 min. HBO at 1.6 ATA and 2.2 ATA has a similar significant effect of reducing BCE and NBG. BCE was 0.067+/-0.026 and 0.040+/-0.018 at 20 min and 0.030+/-0.022 and 0.020+/-0.020 at 50 min. NBG was 1.11+/-0.17 and 0.92+/-0.16 at 20 min and 0.83+/-0.18 and 0.75+/-0.16 at 50 min. Prebreathing NBO and HBO significantly alleviated decompression-induced platelet activation. Activation of CD62p was 3.0+/-0.4, 13.5+/-1.3, 10.7+/-0.9, 4.5+/-0.7, and 7.6+/-0.8% for baseline, Air, NBO, HBO at 1.6 ATA, and HBO at 2.2 ATA, respectively. The data show that prebreathing oxygen, more effective with HBO than NBO, decreases air bubbles and platelet activation and, therefore, may be beneficial in reducing the development of decompression sickness.
Collapse
Affiliation(s)
- Gerardo Bosco
- Department of Basic and Applied Medical Sciences, Ud'A Chieti-Pescara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|