1
|
Blouin J, Saradjian AH, Pialasse JP, Manson GA, Mouchnino L, Simoneau M. Two Neural Circuits to Point Towards Home Position After Passive Body Displacements. Front Neural Circuits 2019; 13:70. [PMID: 31736717 PMCID: PMC6831616 DOI: 10.3389/fncir.2019.00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/15/2019] [Indexed: 12/02/2022] Open
Abstract
A challenge in motor control research is to understand the mechanisms underlying the transformation of sensory information into arm motor commands. Here, we investigated these transformation mechanisms for movements whose targets were defined by information issued from body rotations in the dark (i.e., idiothetic information). Immediately after being rotated, participants reproduced the amplitude of their perceived rotation using their arm (Experiment 1). The cortical activation during movement planning was analyzed using electroencephalography and source analyses. Task-related activities were found in regions of interest (ROIs) located in the prefrontal cortex (PFC), dorsal premotor cortex, dorsal region of the anterior cingulate cortex (ACC) and the sensorimotor cortex. Importantly, critical regions for the cognitive encoding of space did not show significant task-related activities. These results suggest that arm movements were planned using a sensorimotor-type of spatial representation. However, when a 8 s delay was introduced between body rotation and the arm movement (Experiment 2), we found that areas involved in the cognitive encoding of space [e.g., ventral premotor cortex (vPM), rostral ACC, inferior and superior posterior parietal cortex (PPC)] showed task-related activities. Overall, our results suggest that the use of a cognitive-type of representation for planning arm movement after body motion is necessary when relevant spatial information must be stored before triggering the movement.
Collapse
Affiliation(s)
- Jean Blouin
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | - Anahid H Saradjian
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | | | - Gerome A Manson
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France.,Centre for Motor Control, University of Toronto, Toronto, ON, Canada
| | - Laurence Mouchnino
- Aix-Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | - Martin Simoneau
- Faculté de Médecine, Département de Kinésiologie, Université Laval, Québec, QC, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Québec, QC, Canada
| |
Collapse
|
2
|
Perdreau F, Cooke JRH, Koppen M, Medendorp WP. Causal inference for spatial constancy across whole body motion. J Neurophysiol 2019; 121:269-284. [PMID: 30461369 DOI: 10.1152/jn.00473.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain uses self-motion information to internally update egocentric representations of locations of remembered world-fixed visual objects. If a discrepancy is observed between this internal update and reafferent visual feedback, this could be either due to an inaccurate update or because the object has moved during the motion. To optimally infer the object's location it is therefore critical for the brain to estimate the probabilities of these two causal structures and accordingly integrate and/or segregate the internal and sensory estimates. To test this hypothesis, we designed a spatial updating task involving passive whole body translation. Participants, seated on a vestibular sled, had to remember the world-fixed position of a visual target. Immediately after the translation, the reafferent visual feedback was provided by flashing a second target around the estimated "updated" target location, and participants had to report the initial target location. We found that the participants' responses were systematically biased toward the position of the second target position for relatively small but not for large differences between the "updated" and the second target location. This pattern was better captured by a Bayesian causal inference model than by alternative models that would always either integrate or segregate the internally updated target location and the visual feedback. Our results suggest that the brain implicitly represents the posterior probability that the internally updated estimate and the visual feedback come from a common cause and uses this probability to weigh the two sources of information in mediating spatial constancy across whole body motion. NEW & NOTEWORTHY When we move, egocentric representations of object locations require internal updating to keep them in register with their true world-fixed locations. How does this mechanism interact with reafferent visual input, given that objects typically do not disappear from view? Here we show that the brain implicitly represents the probability that both types of information derive from the same object and uses this probability to weigh their contribution for achieving spatial constancy across whole body motion.
Collapse
Affiliation(s)
- Florian Perdreau
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University , Nijmegen , The Netherlands
| | - James R H Cooke
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University , Nijmegen , The Netherlands
| | - Mathieu Koppen
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University , Nijmegen , The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University , Nijmegen , The Netherlands
| |
Collapse
|
3
|
Moreau-Debord I, Martin CZ, Landry M, Green AM. Evidence for a reference frame transformation of vestibular signal contributions to voluntary reaching. J Neurophysiol 2014; 111:1903-19. [DOI: 10.1152/jn.00419.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To contribute appropriately to voluntary reaching during body motion, vestibular signals must be transformed from a head-centered to a body-centered reference frame. We quantitatively investigated the evidence for this transformation during online reach execution by using galvanic vestibular stimulation (GVS) to simulate rotation about a head-fixed, roughly naso-occipital axis as human subjects made planar reaching movements to a remembered location with their head in different orientations. If vestibular signals that contribute to reach execution have been transformed from a head-centered to a body-centered reference frame, the same stimulation should be interpreted as body tilt with the head upright but as vertical-axis rotation with the head inclined forward. Consequently, GVS should perturb reach trajectories in a head-orientation-dependent way. Consistent with this prediction, GVS applied during reach execution induced trajectory deviations that were significantly larger with the head forward compared with upright. Only with the head forward were trajectories consistently deviated in opposite directions for rightward versus leftward simulated rotation, as appropriate to compensate for body vertical-axis rotation. These results demonstrate that vestibular signals contributing to online reach execution have indeed been transformed from a head-centered to a body-centered reference frame. Reach deviation amplitudes were comparable to those predicted for ideal compensation for body rotation using a biomechanical limb model. Finally, by comparing the effects of application of GVS during reach execution versus prior to reach onset we also provide evidence that spatially transformed vestibular signals contribute to at least partially distinct compensation mechanisms for body motion during reach planning versus execution.
Collapse
Affiliation(s)
- Ian Moreau-Debord
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | | | - Marianne Landry
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Andrea M. Green
- Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Mackrous I, Simoneau M. Generalization of vestibular learning to earth-fixed targets is possible but limited when the polarity of afferent vestibular information is changed. Neuroscience 2014; 260:12-22. [DOI: 10.1016/j.neuroscience.2013.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
5
|
Absence of spatial updating when the visuomotor system is unsure about stimulus motion. J Neurosci 2011; 31:10558-68. [PMID: 21775600 DOI: 10.1523/jneurosci.0998-11.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How does the visuomotor system decide whether a target is moving or stationary in space or whether it moves relative to the eyes or head? A visual flash during a rapid eye-head gaze shift produces a brief visual streak on the retina that could provide information about target motion, when appropriately combined with eye and head self-motion signals. Indeed, double-step experiments have demonstrated that the visuomotor system incorporates actively generated intervening gaze shifts in the final localization response. Also saccades to brief head-fixed flashes during passive whole-body rotation compensate for vestibular-induced ocular nystagmus. However, both the amount of retinal motion to invoke spatial updating and the default strategy in the absence of detectable retinal motion remain unclear. To study these questions, we determined the contribution of retinal motion and the vestibular canals to spatial updating of visual flashes during passive whole-body rotation. Head- and body-restrained humans made saccades toward very brief (0.5 and 4 ms) and long (100 ms) visual flashes during sinusoidal rotation around the vertical body axis in total darkness. Stimuli were either attached to the chair (head-fixed) or stationary in space and were always well localizable. Surprisingly, spatial updating only occurred when retinal stimulus motion provided sufficient information: long-duration stimuli were always appropriately localized, thus adequately compensating for vestibular nystagmus and the passive head movement during the saccade reaction time. For the shortest stimuli, however, the target was kept in retinocentric coordinates, thus ignoring intervening nystagmus and passive head displacement, regardless of whether the target was moving with the head or not.
Collapse
|
6
|
Medendorp WP. Spatial constancy mechanisms in motor control. Philos Trans R Soc Lond B Biol Sci 2011; 366:476-91. [PMID: 21242137 DOI: 10.1098/rstb.2010.0089] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye-head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals.
Collapse
Affiliation(s)
- W Pieter Medendorp
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, PO Box 9104, NL-6500 HE Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Smith PF, Darlington CL, Zheng Y. Move it or lose it--is stimulation of the vestibular system necessary for normal spatial memory? Hippocampus 2010; 20:36-43. [PMID: 19405142 DOI: 10.1002/hipo.20588] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies in both experimental animals and human patients have demonstrated that peripheral vestibular lesions, especially bilateral lesions, are associated with spatial memory impairment that is long-lasting and may even be permanent. Electrophysiological evidence from animals indicates that bilateral vestibular loss causes place cells and theta activity to become dysfunctional; the most recent human evidence suggests that the hippocampus may cause atrophy in patients with bilateral vestibular lesions. Taken together, these studies suggest that self-motion information provided by the vestibular system is important for the development of spatial memory by areas of the brain such as the hippocampus, and when it is lost, spatial memory is impaired. This naturally suggests the converse possibility that activation of the vestibular system may enhance memory. Surprisingly, there is some human evidence that this may be the case. This review considers the relationship between the vestibular system and memory and suggests that the evolutionary age of this primitive sensory system as well as how it detects self-motion (i.e., detection of acceleration vs. velocity) may be the reasons for its unique contribution to spatial memory.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand.
| | | | | |
Collapse
|
8
|
Daye PM, Blohm G, Lefèvre P. Saccadic Compensation for Smooth Eye and Head Movements During Head-Unrestrained Two-Dimensional Tracking. J Neurophysiol 2010; 103:543-56. [DOI: 10.1152/jn.00656.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spatial updating is the ability to keep track of the position of world-fixed objects while we move. In the case of vision, this phenomenon is called spatial constancy and has been studied in head-restraint conditions. During head-restrained smooth pursuit, it has been shown that the saccadic system has access to extraretinal information from the pursuit system to update the objects' position in the surrounding environment. However, during head-unrestrained smooth pursuit, the saccadic system needs to keep track of three different motor commands: the ocular smooth pursuit command, the vestibuloocular reflex (VOR), and the head movement command. The question then arises whether saccades compensate for these movements. To address this question, we briefly presented a target during sinusoidal head-unrestrained smooth pursuit in darkness. Subjects were instructed to look at the flash as soon as they saw it. We observed that subjects were able to orient their gaze to the memorized (and spatially updated) position of the flashed target generally using one to three successive saccades. Similar to the behavior in the head-restrained condition, we found that the longer the gaze saccade latency, the better the compensation for intervening smooth gaze displacements; after about 400 ms, 62% of the smooth gaze displacement had been compensated for. This compensation depended on two independent parameters: the latency of the saccade and the eye contribution to the gaze displacement during this latency period. Separating gaze into eye and head contributions, we show that the larger the eye contribution to the gaze displacement, the better the overall compensation. Finally, we found that the compensation was a function of the head oscillation frequency and we suggest that this relationship is linked to the modulation of VOR gain. We conclude that the general mechanisms of compensation for smooth gaze displacements are similar to those observed in the head-restrained condition.
Collapse
Affiliation(s)
- P. M. Daye
- Center for Systems Engineering and Applied Mechanics, Université catholique de Louvain, Louvain-la-Neuve
- Laboratory of Neurophysiology, Université catholique de Louvain, Brussels, Belgium; and
| | - G. Blohm
- Centre for Neurosciences Studies, Queen's University, Kingston, Ontario, Canada
| | - P. Lefèvre
- Center for Systems Engineering and Applied Mechanics, Université catholique de Louvain, Louvain-la-Neuve
- Laboratory of Neurophysiology, Université catholique de Louvain, Brussels, Belgium; and
| |
Collapse
|
9
|
Angelaki DE, Klier EM, Snyder LH. A vestibular sensation: probabilistic approaches to spatial perception. Neuron 2009; 64:448-61. [PMID: 19945388 DOI: 10.1016/j.neuron.2009.11.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
The vestibular system helps maintain equilibrium and clear vision through reflexes, but it also contributes to spatial perception. In recent years, research in the vestibular field has expanded to higher-level processing involving the cortex. Vestibular contributions to spatial cognition have been difficult to study because the circuits involved are inherently multisensory. Computational methods and the application of Bayes theorem are used to form hypotheses about how information from different sensory modalities is combined together with expectations based on past experience in order to obtain optimal estimates of cognitive variables like current spatial orientation. To test these hypotheses, neuronal populations are being recorded during active tasks in which subjects make decisions based on vestibular and visual or somatosensory information. This review highlights what is currently known about the role of vestibular information in these processes, the computations necessary to obtain the appropriate signals, and the benefits that have emerged thus far.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
10
|
Klier EM, Angelaki DE. Spatial updating and the maintenance of visual constancy. Neuroscience 2008; 156:801-18. [PMID: 18786618 PMCID: PMC2677727 DOI: 10.1016/j.neuroscience.2008.07.079] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/16/2022]
Abstract
Spatial updating is the means by which we keep track of the locations of objects in space even as we move. Four decades of research have shown that humans and non-human primates can take the amplitude and direction of intervening movements into account, including saccades (both head-fixed and head-free), pursuit, whole-body rotations and translations. At the neuronal level, spatial updating is thought to be maintained by receptive field locations that shift with changes in gaze, and evidence for such shifts has been shown in several cortical areas. These regions receive information about the intervening movement from several sources including motor efference copies when a voluntary movement is made and vestibular/somatosensory signals when the body is in motion. Many of these updating signals arise from brainstem regions that monitor our ongoing movements and subsequently transmit this information to the cortex via pathways that likely include the thalamus. Several issues of debate include (1) the relative contribution of extra-retinal sensory and efference copy signals to spatial updating, (2) the source of an updating signal for real life, three-dimensional motion that cannot arise from brain areas encoding only two-dimensional commands, and (3) the reference frames used by the brain to integrate updating signals from various sources. This review highlights the relevant spatial updating studies and provides a summary of the field today. We find that spatial constancy is maintained by a highly evolved neural mechanism that keeps track of our movements, transmits this information to relevant brain regions, and then uses this information to change the way in which single neurons respond. In this way, we are able to keep track of relevant objects in the outside world and interact with them in meaningful ways.
Collapse
Affiliation(s)
- E M Klier
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
11
|
Abe C, Tanaka K, Awazu C, Morita H. The vestibular system is integral in regulating plastic alterations in the pressor response to free drop mediated by the nonvestibular system. Neurosci Lett 2008; 445:149-52. [PMID: 18804148 DOI: 10.1016/j.neulet.2008.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/09/2008] [Accepted: 09/09/2008] [Indexed: 11/17/2022]
Abstract
Microgravity resulting from free drop elicits a pressor response that involves both vestibular and nonvestibular pathways. In rats reared under a 3G environment for 2 weeks, plastic alterations in both vestibular- and nonvestibular-mediated responses are induced; specifically, the pressor responses involving both pathways are reduced [C. Abe, K. Tanaka, C. Awazu, H. Chen, H. Morita, Plastic alteration of vestibulo-cardiovascular reflex induced by 2 weeks of 3-G load in conscious rats, Exp. Brain Res. 181 (2007) 639-646]. It is currently unknown whether plastic alterations in the nonvestibular system depend on the vestibular system. To examine this topic, the pressor response to free drop was compared between rats with and without vestibular lesion (VL) reared under 1G or 3G environments. The pressor response to free drop was 34+/-3mmHg in vestibular intact rats reared under 1G, and was significantly attenuated in rats reared under a 3G environment for 2 weeks (13+/-3mmHg); however, the pressor response was similar between VL-1G (18+/-3mmHg) and VL-3G (19+/-3mmHg) rats. Therefore, the 3G environment induced plastic alterations in the pressor response to free drop mediated by both the vestibular and nonvestibular systems, and the vestibular system is indispensable for induction of the plastic alteration of the nonvestibular-meidated pressor response to free drop.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | |
Collapse
|
12
|
Medendorp WP, Beurze SM, Van Pelt S, Van Der Werf J. Behavioral and cortical mechanisms for spatial coding and action planning. Cortex 2008; 44:587-97. [DOI: 10.1016/j.cortex.2007.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/04/2007] [Accepted: 06/26/2007] [Indexed: 11/29/2022]
|
13
|
Klier EM, Hess BJM, Angelaki DE. Human visuospatial updating after passive translations in three-dimensional space. J Neurophysiol 2008; 99:1799-809. [PMID: 18256164 DOI: 10.1152/jn.01091.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To maintain a stable representation of the visual environment as we move, the brain must update the locations of targets in space using extra-retinal signals. Humans can accurately update after intervening active whole-body translations. But can they also update for passive translations (i.e., without efference copy signals of an outgoing motor command)? We asked six head-fixed subjects to remember the location of a briefly flashed target (five possible targets were located at depths of 23, 33, 43, 63, and 150 cm in front of the cyclopean eye) as they moved 10 cm left, right, up, down, forward, or backward while fixating a head-fixed target at 53 cm. After the movement, the subjects made a saccade to the remembered location of the flash with a combination of version and vergence eye movements. We computed an updating ratio where 0 indicates no updating and 1 indicates perfect updating. For lateral and vertical whole-body motion, where updating performance is judged by the size of the version movement, the updating ratios were similar for leftward and rightward translations, averaging 0.84 +/- 0.28 (mean +/- SD) as compared with 0.51 +/- 0.33 for downward and 1.05 +/- 0.50 for upward translations. For forward/backward movements, where updating performance is judged by the size of the vergence movement, the average updating ratio was 1.12 +/- 0.45. Updating ratios tended to be larger for far targets than near targets, although both intra- and intersubject variabilities were smallest for near targets. Thus in addition to self-generated movements, extra-retinal signals involving otolith and proprioceptive cues can also be used for spatial constancy.
Collapse
Affiliation(s)
- Eliana M Klier
- Department of Neurobiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | | | |
Collapse
|