1
|
Chen P, Zhang M, Zhang Y, Li J, Wan X, Lv T, Chen Y, Zhao Z, Ma Z, Zhu Z, Chen L, Li Z, Wang Z, Qiao G. Cyprinid herpesvirus 2 infection changes microbiota and metabolites in the gibel carp ( Carassius auratus gibelio) midgut. Front Cell Infect Microbiol 2023; 12:1017165. [PMID: 36817692 PMCID: PMC9933507 DOI: 10.3389/fcimb.2022.1017165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/23/2022] [Indexed: 02/05/2023] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) infects gibel carp (Carassius auratus gibelio) and causes severe losses. Microbiota in animal guts involves nutrition intake, development, immunity, and disease resistance. However, the relationship between gibel carp gut microbiota and CyHV-2 infection is not well known. Herein, we analyzed the gut microbiota composition and metabolite profiles in CyHV-2-infected and -uninfected fish using high-throughput sequencing and gas chromatography/mass spectrometry. Results showed that CyHV-2 infection significantly changed gut microbiota and metabolite profiles (p < 0.05). High-throughput sequencing demonstrated that the relative abundance of Aeromonas in the midgut increased dramatically while Cetobacterium decreased. Time-course analysis showed that the number of Aeromonas in the midgut of infected fish increased more than 1,000 times within 5 days post infection. Metabolome analysis illustrated that CyHV-2 infection significantly altered 24 metabolites in the midgut of gibel carp, annotating to the anomaly of digestion and metabolisms of amino acids, carbohydrates, and lipids, such as tryptophan (Trp) metabolism. The Mantel test demonstrated that gut microbiota and metabolite profiles were well related (r = 0.89). Furthermore, Trp metabolism responded to CyHV-2 infection closely was taken as one example to prove the correlation among CyHV-2 infection, metabolites and microbiota in the midgut, and host immunity. Results showed that modulating Trp metabolism could affect the relative abundance of Aeromonas in the midgut of fish, transcription of antiviral cytokines, and CyHV-2 infection. Therefore, we can conclude that CyHV-2 infection significantly perturbed the gut microbiome, disrupted its' metabolic functions, and caused the proliferation of the opportunistic pathogen Aeromonas. This study also suggests that modulation of the gut microbiome will open a therapeutic opportunity to control CyHV-2 infection in gibel carp.
Collapse
Affiliation(s)
- Peng Chen
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Mingming Zhang
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Yichan Zhang
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Jun Li
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Xihe Wan
- Central Key Laboratory of Jiangsu Institute of Marine Fisheries, Nantong, Jiangsu, China
| | - Tingli Lv
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Yiyue Chen
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Zhigang Zhao
- Heilongjiang Provincial Key Laboratory of Cold Water Fish Germplasm Resources and Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China,*Correspondence: Guo Qiao, ; Zhigang Zhao, ; Zisheng Wang,
| | - Zhihao Ma
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Zhu Zhu
- Center of Fisheries technology popularization Sheyang Agricultural and Rural Bureau, Yancheng, Jiangsu, China
| | - Lihua Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Zhen Li
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Zisheng Wang
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China,*Correspondence: Guo Qiao, ; Zhigang Zhao, ; Zisheng Wang,
| | - Guo Qiao
- Research Center of Aquatic Animal Immunity and Disease Control, Yancheng Institute of Technology, Yancheng, Jiangsu, China,*Correspondence: Guo Qiao, ; Zhigang Zhao, ; Zisheng Wang,
| |
Collapse
|
2
|
Haburčák M, Harrison J, Buyukozturk MM, Sona S, Bates S, Birren SJ. Heightened sympathetic neuron activity and altered cardiomyocyte properties in spontaneously hypertensive rats during the postnatal period. Front Synaptic Neurosci 2022; 14:995474. [PMID: 36247695 PMCID: PMC9561918 DOI: 10.3389/fnsyn.2022.995474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
The Spontaneously Hypertensive Rat (SHR) has increased sympathetic drive to the periphery that precedes and contributes to the development of high blood pressure, making it a useful model for the study of neurogenic hypertension. Comparisons to the normotensive Wistar Kyoto (WKY) rat have demonstrated altered active and intrinsic properties of SHR sympathetic neurons shortly before the onset of hypertension. Here we examine the structural and functional plasticity of postnatal SHR and WKY sympathetic neurons cultured alone or co-cultured with cardiomyocytes under conditions of limited extrinsic signaling. SHR neurons have an increased number of structural synaptic sites compared to age-matched WKY neurons, measured by the co-localization of presynaptic vesicular acetylcholine transporter and postsynaptic shank proteins. Whole cell recordings show that SHR neurons have a higher synaptic charge than WKY neurons, demonstrating that the increase in synaptic sites is associated with increased synaptic transmission. Differences in synaptic properties are not associated with altered firing rates between postnatal WKY and SHR neurons and are not influenced by interactions with target cardiomyocytes from either strain. Both SHR and WKY neurons show tonic firing patterns in our cultures, which are depleted of non-neuronal ganglionic cells and provide limited neurotrophic signaling. This suggests that the normal mature, phasic firing of sympathetic neurons requires extrinsic signaling, with potentially differential responses in the prehypertensive SHR, which have been reported to maintain tonic firing at later developmental stages. While cardiomyocytes do not drive neuronal differences in our cultures, SHR cardiomyocytes display decreased hypertrophy compared to WKY cells and altered responses to co-cultured sympathetic neurons. These experiments suggest that altered signaling in SHR neurons and cardiomyocytes contributes to changes in the cardiac-sympathetic circuit in prehypertensive rats as early as the postnatal period.
Collapse
Affiliation(s)
- Marián Haburčák
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Joshua Harrison
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Melda M. Buyukozturk
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Surbhi Sona
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Samuel Bates
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Susan J. Birren
- Biology Department, Brandeis University, Waltham, MA, United States,Volen Center for Complex Systems, Brandeis University, Waltham, MA, United States,*Correspondence: Susan J. Birren
| |
Collapse
|
3
|
Gaitán JM, Moon HY, Stremlau M, Dubal DB, Cook DB, Okonkwo OC, van Praag H. Effects of Aerobic Exercise Training on Systemic Biomarkers and Cognition in Late Middle-Aged Adults at Risk for Alzheimer's Disease. Front Endocrinol (Lausanne) 2021; 12:660181. [PMID: 34093436 PMCID: PMC8173166 DOI: 10.3389/fendo.2021.660181] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that physical activity and exercise training may delay or prevent the onset of Alzheimer's disease (AD). However, systemic biomarkers that can measure exercise effects on brain function and that link to relevant metabolic responses are lacking. To begin to address this issue, we utilized blood samples of 23 asymptomatic late middle-aged adults, with familial and genetic risk for AD (mean age 65 years old, 50% female) who underwent 26 weeks of supervised treadmill training. Systemic biomarkers implicated in learning and memory, including the myokine Cathepsin B (CTSB), brain-derived neurotrophic factor (BDNF), and klotho, as well as metabolomics were evaluated. Here we show that aerobic exercise training increases plasma CTSB and that changes in CTSB, but not BDNF or klotho, correlate with cognitive performance. BDNF levels decreased with exercise training. Klotho levels were unchanged by training, but closely associated with change in VO2peak. Metabolomic analysis revealed increased levels of polyunsaturated free fatty acids (PUFAs), reductions in ceramides, sphingo- and phospholipids, as well as changes in gut microbiome metabolites and redox homeostasis, with exercise. Multiple metabolites (~30%) correlated with changes in BDNF, but not CSTB or klotho. The positive association between CTSB and cognition, and the modulation of lipid metabolites implicated in dementia, support the beneficial effects of exercise training on brain function. Overall, our analyses indicate metabolic regulation of exercise-induced plasma BDNF changes and provide evidence that CTSB is a marker of cognitive changes in late middle-aged adults at risk for dementia.
Collapse
Affiliation(s)
- Julian M. Gaitán
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Hyo Youl Moon
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Department of Education, Seoul National University, Seoul, South Korea
- Institute of Sport Science, Seoul National University, Seoul, South Korea
- Institute on Aging, Seoul National University, Seoul, South Korea
| | - Matthew Stremlau
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin School of Education, Madison, WI, United States
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer’s Disease Research Center and Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Henriette van Praag
- Lab of Neurosciences, National Institute on Aging (NIA), Baltimore, MD, United States
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
4
|
Enes J, Haburčák M, Sona S, Gerard N, Mitchell AC, Fu W, Birren SJ. Satellite glial cells modulate cholinergic transmission between sympathetic neurons. PLoS One 2020; 15:e0218643. [PMID: 32017764 PMCID: PMC6999876 DOI: 10.1371/journal.pone.0218643] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
Postganglionic sympathetic neurons and satellite glial cells are the two major cell types of the peripheral sympathetic ganglia. Sympathetic neurons project to and provide neural control of peripheral organs and have been implicated in human disorders ranging from cardiovascular disease to peripheral neuropathies. Here we show that satellite glia regulate synaptic activity of cultured postnatal sympathetic neurons, providing evidence for local ganglionic control of sympathetic drive. In addition to modulating neuron-to-neuron cholinergic neurotransmission, satellite glia promote synapse formation and contribute to neuronal survival. Examination of the cellular architecture of the rat sympathetic ganglia in vivo shows this regulation of neuronal properties takes place during a developmental period in which neuronal morphology and density are actively changing and satellite glia enwrap sympathetic neuronal somata. Cultured satellite glia make and release factors that promote neuronal activity and that can partially rescue the neurons from cell death following nerve growth factor deprivation. Thus, satellite glia play an early and ongoing role within the postnatal sympathetic ganglia, expanding our understanding of the contributions of local and target-derived factors in the regulation of sympathetic neuron function.
Collapse
Affiliation(s)
- Joana Enes
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Marián Haburčák
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Surbhi Sona
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Nega Gerard
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Alexander C. Mitchell
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Wenqi Fu
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Susan J. Birren
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kumar A, Pareek V, Faiq MA, Kumar P, Raza K, Prasoon P, Dantham S, Mochan S. Regulatory role of NGFs in neurocognitive functions. Rev Neurosci 2017; 28:649-673. [DOI: 10.1515/revneuro-2016-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
AbstractNerve growth factors (NGFs), especially the prototype NGF and brain-derived neurotrophic factor (BDNF), have a diverse array of functions in the central nervous system through their peculiar set of receptors and intricate signaling. They are implicated not only in the development of the nervous system but also in regulation of neurocognitive functions like learning, memory, synaptic transmission, and plasticity. Evidence even suggests their role in continued neurogenesis and experience-dependent neural network remodeling in adult brain. They have also been associated extensively with brain disorders characterized by neurocognitive dysfunction. In the present article, we aimed to make an exhaustive review of literature to get a comprehensive view on the role of NGFs in neurocognitive functions in health and disease. Starting with historical perspective, distribution in adult brain, implied molecular mechanisms, and developmental basis, this article further provides a detailed account of NGFs’ role in specified neurocognitive functions. Furthermore, it discusses plausible NGF-based homeostatic and adaptation mechanisms operating in the pathogenesis of neurocognitive disorders and has presents a survey of such disorders. Finally, it elaborates on current evidence and future possibilities in therapeutic applications of NGFs with an emphasis on recent research updates in drug delivery mechanisms. Conclusive remarks of the article make a strong case for plausible role of NGFs in comprehensive regulation of the neurocognitive functions and pathogenesis of related disorders and advocate that future research should be directed to explore use of NGF-based mechanisms in the prevention of implicated diseases as well as to target these molecules pharmacologically.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, Puducherry 609602, India
| | - Vikas Pareek
- Computational Neuroscience and Neuroimaging Division, National Brain Research Centre (NBRC), Manesar, Haryana 122051, India
| | - Muneeb A. Faiq
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pavan Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Khursheed Raza
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pranav Prasoon
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sankat Mochan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
6
|
Valle-Leija P, Cancino-Rodezno A, Sánchez-Tafolla BM, Arias E, Elinos D, Feria J, Zetina ME, Morales MA, Cifuentes F. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion. Front Physiol 2017; 8:474. [PMID: 28744222 PMCID: PMC5504415 DOI: 10.3389/fphys.2017.00474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/21/2017] [Indexed: 02/02/2023] Open
Abstract
Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Pablo Valle-Leija
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Angeles Cancino-Rodezno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Berardo M Sánchez-Tafolla
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Erwin Arias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Diana Elinos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Jessica Feria
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - María E Zetina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Miguel A Morales
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Fredy Cifuentes
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| |
Collapse
|
7
|
Saur T, Cohen BM, Ma Q, Babb SM, Buttner EA, Yao WD. Acute and chronic effects of clozapine on cholinergic transmission in cultured mouse superior cervical ganglion neurons. J Neurogenet 2016; 30:297-305. [PMID: 27627024 PMCID: PMC6061957 DOI: 10.1080/01677063.2016.1229779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
Cholinergic dysfunction contributes to cognitive deficits in schizophrenia. The atypical antipsychotic clozapine improves cognition in patients with schizophrenia, possibly through modulation of the cholinergic system. However, little is known about specific underlying mechanisms. We investigated the acute and chronic effects of clozapine on cholinergic synaptic transmission in cultured superior cervical ganglion (SCG) neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) were detected and were reversibly inhibited by the nicotinic receptor antagonist d-tubocurarine, confirming that the synaptic responses were primarily mediated by nicotinic receptors. Bath application of clozapine at therapeutic concentrations rapidly and reversely inhibited both the amplitude and frequency of sEPSCs in a concentration-dependent manner, without changing either rise or decay time, suggesting that clozapine effects have both presynaptic and postsynaptic origins. The acute effects of clozapine on sEPSCs were recapitulated by chronic treatment of SCG cultures with similar concentrations of clozapine, as clozapine treatment for 4 d reduced the frequency and amplitude of sEPSCs without affecting their kinetics. Cell survival analysis indicated that SCG neuron cell counts after chronic clozapine treatment were comparable to the control group. These results demonstrate that therapeutic concentrations of clozapine suppress nicotinic synaptic transmission in SCG cholinergic synapses, a simple in vitro preparation of cholinergic transmission.
Collapse
Affiliation(s)
- Taixiang Saur
- a McLean Hospital/Harvard Medical School , Belmont , MA , USA
| | - Bruce M Cohen
- a McLean Hospital/Harvard Medical School , Belmont , MA , USA
| | - Qi Ma
- b New England Primate Research Center, Harvard Medical School , Southborough , MA , USA
| | - Suzann M Babb
- a McLean Hospital/Harvard Medical School , Belmont , MA , USA
| | - Edgar A Buttner
- a McLean Hospital/Harvard Medical School , Belmont , MA , USA
| | - Wei-Dong Yao
- b New England Primate Research Center, Harvard Medical School , Southborough , MA , USA
| |
Collapse
|
8
|
Oiwa K, Shimba K, Numata T, Takeuchi A, Kotani K, Jimbo Y. A device for co-culturing autonomic neurons and cardiomyocytes using micro-fabrication techniques. Integr Biol (Camb) 2016; 8:341-8. [DOI: 10.1039/c5ib00273g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a device for co-culturing sympathetic neurons, parasympathetic neurons, and cardiomyocytes using micro-fabrication techniques.
Collapse
Affiliation(s)
- Kosuke Oiwa
- Graduate School of Frontier Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kenta Shimba
- Graduate School of Frontier Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Takashi Numata
- Graduate School of Frontier Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
- Hitachi, Ltd
| | - Akimasa Takeuchi
- Graduate School of Frontier Sciences
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology
- The University of Tokyo
- Meguro-ku
- Japan
- PRESTO
| | - Yasuhiko Jimbo
- Department of Precision Engineering
- School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
9
|
Kreipke RE, Birren SJ. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal. J Physiol 2015; 593:5057-73. [PMID: 26420487 DOI: 10.1113/jp270917] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/07/2015] [Indexed: 12/28/2022] Open
Abstract
Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size.
Collapse
Affiliation(s)
- R E Kreipke
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| | - S J Birren
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA, USA
| |
Collapse
|
10
|
Keifer J, Zheng Z. Coincidence detection in a neural correlate of classical conditioning is initiated by bidirectional 3-phosphoinositide-dependent kinase-1 signalling and modulated by adenosine receptors. J Physiol 2015; 593:1581-95. [PMID: 25639253 DOI: 10.1113/jphysiol.2014.282947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/07/2015] [Indexed: 01/24/2023] Open
Abstract
How the neural substrates for detection of paired stimuli are distinct from unpaired stimuli is poorly understood and a fundamental question for understanding the signalling mechanisms for coincidence detection during associative learning. To address this question, we used a neural correlate of eyeblink classical conditioning in an isolated brainstem from the turtle, in which the cranial nerves are directly stimulated in place of using a tone or airpuff. A bidirectional response is activated in <5 min of training, in which phosphorylated 3-phosphoinositide-dependent kinase-1 (p-PDK1) is increased in response to paired and decreased in response to unpaired nerve stimulation and is mediated by the opposing actions of neurotrophin receptors TrkB and p75(NTR) . Surprisingly, blockade of adenosine 2A (A2A ) receptors inhibits both of these responses. Pairing also induces substantially increased surface expression of TrkB that is inhibited by Src family tyrosine kinase and A2A receptor antagonists. Finally, the acquisition of conditioning is blocked by a PDK1 inhibitor. The unique action of A2A receptors to function directly as G proteins and in receptor transactivation to control distinct TrkB and p75(NTR) signalling pathways allows for convergent activation of PDK1 and protein kinase A during paired stimulation to initiate classical conditioning.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, 57010, USA
| | | |
Collapse
|
11
|
Papathanassoglou EDE, Miltiadous P, Karanikola MN. May BDNF Be Implicated in the Exercise-Mediated Regulation of Inflammation? Critical Review and Synthesis of Evidence. Biol Res Nurs 2014; 17:521-39. [DOI: 10.1177/1099800414555411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Exercise attenuates inflammation and enhances levels of brain-derived neurotrophic factor (BDNF). Exercise also enhances parasympathetic tone, although its role in activating the cholinergic anti-inflammatory pathway is unclear. The physiological pathways of exercise’s effect on inflammation are obscure. Aims: To critically review the evidence on the role of BDNF in the anti-inflammatory effects of exercise and its potential involvement in the cholinergic anti-inflammatory pathway. Methods: Critical literature review of studies published in MEDLINE, PubMed, CINAHL, Embase, and Cochrane databases. Results: BDNF is critically involved in the bidirectional signaling between immune and neurosensory cells and in the regulation of parasympathetic system responses. BDNF is also intricately involved in the inflammatory response: inflammation induces BDNF production, and, in turn, BDNF exerts pro- and/or anti-inflammatory effects. Although exercise modulates BDNF and its receptors in lymphocytes, data on BDNF’s immunoregulatory/anti-inflammatory effects in relation to exercise are scarce. Moreover, BDNF increases cholinergic activity and is modulated by parasympathetic system activation. However, its involvement in the cholinergic anti-inflammatory pathway has not been investigated. Conclusion: Converging lines of evidence implicate BDNF in exercise-mediated regulation of inflammation; however, data are insufficient to draw concrete conclusions. We suggest that there is a need to investigate BDNF as a potential modulator/mediator of the anti-inflammatory effects of exercise and of the cholinergic anti-inflammatory pathway during exercise. Such research would have implications for a wide range of inflammatory diseases and for planning targeted exercise protocols.
Collapse
|
12
|
Mantilla CB, Stowe JM, Sieck DC, Ermilov LG, Greising SM, Zhang C, Shokat KM, Sieck GC. TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions. J Appl Physiol (1985) 2014; 117:910-20. [PMID: 25170066 DOI: 10.1152/japplphysiol.01386.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the tropomyosin-related kinase receptor B (TrkB) by brain-derived neurotrophic factor acutely regulates synaptic transmission at adult neuromuscular junctions (NMJs). The role of TrkB kinase activity in the maintenance of NMJ function and structure at diaphragm muscle NMJs was explored using a chemical-genetic approach that permits reversible inactivation of TrkB kinase activity in TrkB(F616A) mice by 1NMPP1. Inhibiting TrkB kinase activity for 7 days resulted in significant, yet reversible, impairments in neuromuscular transmission at diaphragm NMJs. Neuromuscular transmission failure following 2 min of repetitive phrenic nerve stimulation increased from 42% in control to 59% in 1NMPP1-treated TrkB(F616A) mice (P = 0.010). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment improved neuromuscular transmission (P = 0.006). Electrophysiological measurements at individual diaphragm NMJs documented lack of differences in quantal content in control and 1NMPP1-treated mice (P = 0.845). Morphological changes at diaphragm NMJs were modest following inhibition and recovery of TrkB kinase activity. Three-dimensional reconstructions of diaphragm NMJs revealed no differences in volume at motor end plates (labeled by α-bungarotoxin; P = 0.982) or presynaptic terminals (labeled by synaptophysin; P = 0.515). Inhibition of TrkB kinase activity by 1NMPP1 resulted in more compact NMJs, with increased apposition of presynaptic terminals and motor end plates (P = 0.017) and reduced fragmentation of motor end plates (P = 0.005). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment resulted in postsynaptic remodeling likely reflecting increased gutter depth (P = 0.007), without significant presynaptic changes. These results support an essential role for TrkB kinase activity in maintaining synaptic function and structural integrity at NMJs in the adult mouse diaphragm muscle.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Jessica M Stowe
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Dylan C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Leonid G Ermilov
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Chao Zhang
- Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Kevan M Shokat
- Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| |
Collapse
|
13
|
Arias ER, Valle-Leija P, Morales MA, Cifuentes F. Differential contribution of BDNF and NGF to long-term potentiation in the superior cervical ganglion of the rat. Neuropharmacology 2014; 81:206-14. [DOI: 10.1016/j.neuropharm.2014.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 01/28/2014] [Accepted: 02/01/2014] [Indexed: 11/28/2022]
|
14
|
Gill BC, Damaser MS, Vasavada SP, Goldman HB. Stress incontinence in the era of regenerative medicine: reviewing the importance of the pudendal nerve. J Urol 2013; 190:22-8. [PMID: 23376143 DOI: 10.1016/j.juro.2013.01.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE Regenerative medicine will likely facilitate improved stress urinary incontinence treatment via the restoration of its neurogenic, myogenic and structural etiologies. Understanding these pathophysiologies and how each can optimally benefit from cellular, molecular and minimally invasive therapies will become necessary. While stem cells in sphincteric deficiency dominate the regenerative urology literature, little has been published on pudendal nerve regeneration or other regenerative targets. We discuss regenerative therapies for pudendal nerve injury in stress urinary incontinence. MATERIALS AND METHODS A PubMed® search for pudendal nerve combined individually with regeneration, injury, electrophysiology, measurement and activity produced a combined but nonindependent 621 results. English language articles were reviewed by title for relevance, which identified a combined but nonindependent 68 articles. A subsequent Google Scholar™ search and a review of the references of the articles obtained aided in broadening the discussion. RESULTS Electrophysiological studies have associated pudendal nerve dysfunction with stress urinary incontinence clinically and assessed pudendal nerve regeneration functionally, while animal models have provided physiological insight. Stem cell treatment has improved continence clinically, and ex vivo sphincteric bulk and muscle function gains have been noted in the laboratory. Stem cells, neurotrophic factors and electrical stimulation have benefited pudendal nerve regeneration in animal models. CONCLUSIONS Most regenerative studies to date have focused on stem cells restoring sphincteric function and bulk but whether a sphincter denervated by pudendal nerve injury will benefit is unclear. Pudendal nerve regeneration appears possible through minimally invasive therapies that show significant clinical potential. Treating poor central control and coordination of the neuromuscular continence mechanism remains another challenge.
Collapse
Affiliation(s)
- Bradley C Gill
- Glickman Urological and Kidney Institute and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|