1
|
Surkar SM, Lin CC, Trotter B, Phinizy T, Sylcott B. Effects of dual-task training on cognitive-motor learning and cortical activation: A non-randomized clinical trial in healthy young adults. PLoS One 2025; 20:e0322036. [PMID: 40338969 PMCID: PMC12061167 DOI: 10.1371/journal.pone.0322036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 05/10/2025] Open
Abstract
Dual-task (DT) training, which involves the simultaneous execution of cognitive and motor tasks, has been shown to influence task performance and cortical activation, yet evidence on the effects of DT training and cortical activation for complex postural control tasks remains limited. This study investigated the immediate and retention effects of a one-week DT training program on DT learning, performance in DT and single-task conditions, and activation in bilateral prefrontal (PFC) and vestibular cortices in healthy young adults. Eighteen individuals (age = 22.39 ± 1.73 years) participated in the study. The DT paradigm involved a dynamic stability platform (motor task) paired with either a simple or complex auditory reaction time (RT) task (cognitive). Participants completed 20-25 minutes of DT training (18 trials/day) across five consecutive days. DT performance was measured by the duration participants maintained the stability platform within 3 degrees of the horizontal while responding to auditory stimuli. Single-task motor and cognitive performances were also assessed. Cortical activation in the PFC and vestibular cortices was measured using functional near infrared spectroscopy (fNIRS), tracking changes in oxygenated hemoglobin (HbO) concentrations. Pre-training, post-training, and one-week follow-up testing was conducted. The results demonstrate that DT training significantly improves and retains DT performance, likely due to a reduction in cognitive-motor interference. Additionally, DT training led to decreased activation in the bilateral PFC and vestibular cortices, specifically for complex DT condition, suggesting enhanced attentional resource allocation and optimized vestibular input processing, indicative of neural efficiency. Notably, these training effects also transferred to single-task cognitive and motor performances, with corresponding reductions in PFC and vestibular cortex activation, despite the lack of direct training on these tasks. This study advances our understanding of the neural mechanisms underlying DT training and underscores the critical role of practice in optimizing cognitive-motor efficiency.
Collapse
Affiliation(s)
- Swati M. Surkar
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States of America
| | - Chia-Cheng Lin
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina, United States of America
| | - Brittany Trotter
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, United States of America
| | - Tyler Phinizy
- Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brian Sylcott
- Department of Engineering, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
2
|
Schulleri KH, Feizian F, Steinböck M, Lee D, Johannsen L. Does vibrotactile biofeedback for postural control interfere with cognitive processes? J Neuroeng Rehabil 2024; 21:184. [PMID: 39425162 PMCID: PMC11488272 DOI: 10.1186/s12984-024-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Directional vibrotactile biofeedback for balance control can be instructed in the form of Repulsive (to move in the opposite direction of vibrations) or Attractive (to move in the direction of vibrations) stimulus encodings. However, which of these encodings is less cognitively demanding and poses less interference with high-level cognitive processes of conflict resolution remains unresolved. METHODS In two between-subject studies with 30 (16 females) and 35 (23 females) healthy young adults, respectively, we investigated the cognitive load of Attractive and Repulsive vibrotactile biofeedback on 1) working memory (Study I) and 2) cognitive conflict resolution (Study II). Both studies also examined the effectiveness of both feedback stimulus encodings on balance control during quiet standing with eyes closed. RESULTS Both Attractive and Repulsive vibrotactile biofeedback increased balance stability (reduced trunk sway variability) in both the working memory and the conflict resolution study (Study I and II, respectively) with a greater increase of stability for the Repulsive encoding during multitasking demanding cognitive conflict resolution (Study II). Cognitive costs, measured in terms of the Linear Integrated Speed-Accuracy Score (LISAS), were greater for the Attractive encoding during multitasking with working memory demands. When cognitive conflict resolution was required as a secondary cognitive task, both stimulus encodings increased cognitive costs equally. CONCLUSIONS The effects of instructed Repulsive and Attractive stimulus encodings for the response-related interpretation of vibrotactile biofeedback of body sway were contrasted with respect to cognitive processing demands and balance stabilisation benefits. Both encodings improved balance stability but at certain cognitive costs. Regarding interference with specific high-level cognitive processes, however, a distinction has to be made between both encodings. Repulsive feedback encoding seems to cause less cognitive costs on working memory load and slightly greater stabilisation when cognitive conflict resolution is required. These results are discussed in the context of the known benefits of avoidance actions on cognitive control.
Collapse
Affiliation(s)
- Katrin H Schulleri
- Human-centered Assistive Robotics, Technical University of Munich, Karlstraße, 80333, Munich, Bavaria, Germany.
| | - Farbod Feizian
- Human-centered Assistive Robotics, Technical University of Munich, Karlstraße, 80333, Munich, Bavaria, Germany
| | - Martina Steinböck
- Department Health and Sport Sciences, Technical University of Munich, Georg-Brauchle-Ring, 80992, Munich, Bavaria, Germany
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Kolbermoorer Straße, 83043, Bad Aibling, Bavaria, Germany
| | - Dongheui Lee
- Autonomous Systems, Technische Universität Wien, Gusshausstrasse, 1040, Vienna, Austria
- Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Münchener Straße, 82234, Wessling, Bavaria, Germany
| | - Leif Johannsen
- Department Health and Sport Sciences, Technical University of Munich, Georg-Brauchle-Ring, 80992, Munich, Bavaria, Germany
- Institute of Psychology, RWTH Aachen University, Jaegerstrasse 17/19, 52066, Aachen, Germany
| |
Collapse
|
3
|
Pan S, Hu Y, Zhang H, He Y, Tian C, Lei J. The Current Status and Trends of Research Related to Vestibular Disorders, Vertigo, and Cognitive Impairment in the Elderly Population: A Bibliometric Analysis. EAR, NOSE & THROAT JOURNAL 2024:1455613241257396. [PMID: 38818829 DOI: 10.1177/01455613241257396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Background: The vestibular system not only supports reflex function at the brainstem level, but is also associated with higher levels of cognitive function. Vertigo due to vestibular disorders may lead to or be associated with cognitive dysfunction. Patients with deficits of both vestibular as well as cognitive function may be at particularly high risk for events like falls or certain diseases, such as Alzheimer's. Objective: To analyze the current state of research and trends in the global research literature regarding the correlation between vestibular disorders, vertigo, and cognitive impairment. Methods: We utilized Bibliometrix package to search databases including PubMed, Web of Science, etc for search terms. Results: Databases were searched up to December 15, 2022, and a total of 2222 publications were retrieved. Ultimately, 53 studies were included. A total of 261 authors published in 38 journals and conferences with an overall increasing annual growth rate of 6.94%. The most-published journal was Frontiers in Neurology. The most-published country was the United States, followed by Italy and Brazil. The most-published institution was Johns Hopkins University with a total of 13 articles. On performing trend analysis, we found that the most frequent focus of research in this field include the testing of vestibular perception, activation of the brain-related cortex, and the influence of stimulus-triggered vestibular snail reflex on visual space. The potential focal points are the risk of falling and the ability to extract spatial memory information, and the focus of research in recent decades has revolved around balance, falling, and Alzheimer's disease. Conclusions: Vestibular impairment in older adults affects cognitive function, particularly immediate memory, visuospatial cognition, and attention, with spatial cognition being the most significantly affected. In the future, virtual reality-based vestibular rehabilitation techniques and caloric stimulation could be potential interventions for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Sijia Pan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanjia Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiying Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunfan He
- School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenghua Tian
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianbo Lei
- Institute of Medical Technology, Health Science Center, Peking University, Beijing, China
- Center for Medical Informatics, Health Science Center, Peking University, Beijing, China
- School of Medical Informatics and Engineering, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Lee BC, Choi J, Ahn J, Martin BJ. The different contributions of the eight prefrontal cortex subregions to reactive responses after unpredictable slip perturbations and vibrotactile cueing. Front Hum Neurosci 2023; 17:1236065. [PMID: 37746054 PMCID: PMC10513030 DOI: 10.3389/fnhum.2023.1236065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Recent advancements in functional near-infrared spectroscopy technology have offered a portable, wireless, wearable solution to measure the activity of the prefrontal cortex (PFC) in the human neuroscience field. This study is the first to validate the different contributions made by the PFC's eight subregions in healthy young adults to the reactive recovery responses following treadmill-induced unpredictable slip perturbations and vibrotactile cueing (i.e., precues). Methods Our fall-inducing technology platform equipped with a split-belt treadmill provided unpredictable slip perturbations to healthy young adults while walking at their self-selected walking speed. A portable, wireless, wearable, and multi-channel (48 channels) functional near-infrared spectroscopy system evaluated the activity of PFC's eight subregions [i.e., right and left dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), frontopolar prefrontal cortex (FPFC), and orbitofrontal cortex (OFC)] as quantified by oxyhemoglobin and deoxyhemoglobin concentrations. A motion capture system and two force plates beneath the split-belt treadmill were used to quantify participants' kinematic and kinetic behavior. All participants completed 6 trials: 2 consecutive trials without vibrotactile cueing and with a slip perturbation (control trials); 3 trials with vibrotactile cueing [2 trials with the slip perturbation (cueing trial) and 1 trial without the slip perturbation (catch trial)], and 1 trial without vibrotactile cueing and with a slip perturbation (post-control trial). The PFC subregions' activity and kinematic behavior were assessed during the three periods (i.e., standing, walking, and recovery periods). Results Compared to the walkers' standing and walking periods, recovery periods showed significantly higher and lower levels of oxyhemoglobin and deoxyhemoglobin concentrations, respectively, in the right and left DLPFC, VLPFC, and FPFC, regardless of the presence of vibrotactile cueing. However, there was no significant difference in the right and left OFC between the three periods. Kinematic analyses confirmed that vibrotactile cueing significantly improved reactive recovery responses without requiring more involvement by the PFC subregions, which suggests that the sum of attentional resources is similar in cued and non-cued motor responses. Discussion The results could inform the design of wearable technologies that alert their users to the risks of falling and assist with the development of new gait perturbation paradigms that prompt reactive responses.
Collapse
Affiliation(s)
- Beom-Chan Lee
- Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, United States
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea
| | | | - Jooeun Ahn
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Bernard J. Martin
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Anctil N, Malenfant Z, Cyr JP, Turcot K, Simoneau M. Less Vibrotactile Feedback Is Effective to Improve Human Balance Control during Sensory Cues Alteration. SENSORS (BASEL, SWITZERLAND) 2022; 22:6432. [PMID: 36080897 PMCID: PMC9460360 DOI: 10.3390/s22176432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
For individuals with altered sensory cues, vibrotactile feedback improves their balance control. However, should vibrotactile feedback be provided every time balance control is compromised, or only one-third of the time their balance is compromised? We hypothesized that vibrotactile feedback would improve balance control more when provided every time their balance is compromised. Healthy young adults were randomly assigned to two groups: group 33% feedback (6 males and 6 females) and group 100% feedback (6 males and 6 females). Vibrotactile feedbacks related to the body's sway angle amplitude and direction were provided, while participants stood upright on a foam surface with their eyes closed. Then, we assessed if balance control improvement lasted when the vibrotactile feedback was removed (i.e., post-vibration condition). Finally, we verified whether or not vibrotactile feedback unrelated to the body's sway angle and direction (sham condition) altered balance control. The results revealed no significant group difference in balance control improvement during vibrotactile feedback. Immediately following vibrotactile feedback, both groups reduced their balance control commands; body sway velocity and the ground reaction forces variability decreased. For both groups, unrelated vibrotactile feedback worsened balance control. These results confirmed that participants processed and implemented vibrotactile feedback to control their body sways. Less vibrotactile feedback was effective in improving balance control.
Collapse
Affiliation(s)
- Noémie Anctil
- Faculté de Médecine, Département de Kinésiologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris) du CIUSSS de la Capitale Nationale, Quebec, QC G1M 2S8, Canada
| | - Zachary Malenfant
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris) du CIUSSS de la Capitale Nationale, Quebec, QC G1M 2S8, Canada
- Faculté des Sciences et de Génie, Département de Génie Électrique et de Génie Informatique, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Jean-Philippe Cyr
- Faculté de Médecine, Département de Kinésiologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris) du CIUSSS de la Capitale Nationale, Quebec, QC G1M 2S8, Canada
| | - Katia Turcot
- Faculté de Médecine, Département de Kinésiologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris) du CIUSSS de la Capitale Nationale, Quebec, QC G1M 2S8, Canada
| | - Martin Simoneau
- Faculté de Médecine, Département de Kinésiologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris) du CIUSSS de la Capitale Nationale, Quebec, QC G1M 2S8, Canada
| |
Collapse
|
6
|
Michelini A, Sivasambu H, Andrysek J. The Short-Term Effects of Rhythmic Vibrotactile and Auditory Biofeedback on the Gait of Individuals After Weight-Induced Asymmetry. CANADIAN PROSTHETICS & ORTHOTICS JOURNAL 2022; 5:36223. [PMID: 37614474 PMCID: PMC10443516 DOI: 10.33137/cpoj.v5i1.36223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 01/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Biofeedback (BFB), the practice of providing real-time sensory feedback has been shown to improve gait rehabilitation outcomes. BFB training through rhythmic stimulation has the potential to improve spatiotemporal gait asymmetries while minimizing cognitive load by encouraging a synchronization between the user's gait cycle and an external rhythm. OBJECTIVE The purpose of this work was to evaluate if rhythmic stimulation can improve the stance time symmetry ratio (STSR) and to compare vibrotactile to auditory stimulation. Gait parameters including velocity, cadence, stride length, double support time, and step length symmetry, were also examined. METHODOLOGY An experimental rhythmic stimulation system was developed, and twelve healthy adults (5 males), age 28.42 ± 10.93 years, were recruited to participate in walking trials. A unilateral ankle weight was used to induce a gait asymmetry to simulate asymmetry as commonly exhibited by individuals with lower limb amputation and other clinical disorders. Four conditions were evaluated: 1) No ankle weight baseline, 2) ankle weight without rhythmic stimulation, 3) ankle weight + rhythmic vibrotactile stimulation (RVS) using alternating motors and 4) ankle weight + rhythmic auditory stimulation (RAS) using a singletone metronome at the participant's self-selected cadence. FINDINGS As expected the STSR became significantly more asymmetrical with the ankle weight (i.e. induced asymmetry condition). STSR improved significantly with RVS and RAS when compared to the ankle weight without rhythmic stimulation. Cadence also significantly improved with RVS and RAS compared to ankle weight without rhythmic stimulation. With the exception of double support time, the other gait parameters were unchanged from the ankle weight condition. There were no statistically significant differences between RVS and RAS. CONCLUSION This study found that rhythmic stimulation can improve the STSR when an asymmetry is induced. Moreover, RVS is at least as effective as auditory stimulation in improving STSR in healthy adults with an induced gait asymmetry. Future work should be extended to populations with mobility impairments and outside of laboratory settings.
Collapse
Affiliation(s)
- A. Michelini
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - H. Sivasambu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - J. Andrysek
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| |
Collapse
|
7
|
Tannert I, Schulleri KH, Michel Y, Villa S, Johannsen L, Hermsdorfer J, Lee D. Immediate Effects of Vibrotactile Biofeedback Instructions on Human Postural Control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7426-7432. [PMID: 34892813 DOI: 10.1109/embc46164.2021.9630992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vibrotactile biofeedback can improve balance and consequently be helpful in fall prevention. However, it remains unclear how different types of stimulus presentations affect not only trunk tilt, but also Center of Pressure (CoP) displacements, and whether an instruction on how to move contributes to a better understanding of vibrotactile feedback.Based on lower back tilt angles (L5), we applied individualized multi-directional vibrotactile feedback to the upper torso by a haptic vest in 30 healthy young adults. Subjects were equally distributed to three instruction groups (attractive - move in the direction of feedback, repulsive - move in the opposite direction of feedback & no instruction - with attractive stimuli). We conducted four conditions with eyes closed (feedback on/off, Narrow Stance with head extended, Semi-Tandem stance), with seven trials of 45s each. For CoP and L5, we computed Root Mean Square (RMS) of position/angle and standard deviation (SD) of velocity, and for L5 additionally, the percentage in time above threshold. The analysis consisted of mixed model ANOVAs and t-tests (α-level: 0.05).In the attractive and repulsive groups feedback significantly decreased the percentage above threshold (p<0.05). Feedback decreased RMS of L5, whereas RMS of CoP and SD of velocity in L5 and COP increased (p<0.05). Finally, an instruction on how to move contributed to a better understanding of the vibrotactile biofeedback.
Collapse
|
8
|
Azbell J, Park J, Chang SH, Engelen MPKG, Park H. Plantar or Palmar Tactile Augmentation Improves Lateral Postural Balance With Significant Influence from Cognitive Load. IEEE Trans Neural Syst Rehabil Eng 2021; 29:113-122. [PMID: 33170781 DOI: 10.1109/tnsre.2020.3037128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although it seems intuitive to address the issue of reduced plantar cutaneous feedback by augmenting it, many approaches have adopted compensatory sensory cues, such as tactile input from another part of the body, for multiple reasons including easiness and accessibility. The efficacy of the compensatory approaches might be limited due to the cognitive involvement to interpret such compensatory sensory cues. The objective of this study is to test the hypothesis that the plantar cutaneous augmentation is more effective than providing compensatory sensory cues on improving postural regulation, when plantar cutaneous feedback is reduced. In our experiments, six healthy human subjects were asked to maintain their balance on a lateral balance board for as long as possible, until the balance board contacted the ground, for 240 trials with five interventions. During these experiments, subjects were instructed to close their eyes to increase dependency on plantar cutaneous feedback for balancing. Foam pad was also added on the board to emulate the condition of reduced plantar cutaneous feedback. The effects of tactile augmentation from the foot sole or the palm on standing balance were tested by applying transcutaneous electrical stimulation on calcaneal or ulnar nerve during the balance board tests, with and without a cognitively-challenging counting task. Experimental results indicate that the plantar cutaneous augmentation was effective on improving balance only with cognitive load, while the palmar cutaneous augmentation was effective only without cognitive load. This result suggests that the location of sensory augmentation should be carefully determined according to the attentional demands.
Collapse
|
9
|
Magnard J, Berrut G, Couturier C, Cattagni T, Cornu C, Deschamps T. Perceptual Inhibition Is Not a Specific Component of the Sensory Integration Process Necessary for a Rapid Voluntary Step Initiation in Healthy Older Adults. J Gerontol B Psychol Sci Soc Sci 2020; 75:1921-1929. [PMID: 31074828 DOI: 10.1093/geronb/gbz060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES We investigated whether performing step initiation during a proprioceptive perturbation would require greater perceptual or motor inhibitory control in older adults. METHOD Fifty-two healthy adults (young: n = 26, mean age 22.5 years vs. older: n = 26, mean age 70.1 years) performed a stepping reaction time task, with different inhibition requirements (i.e., perceptual vs. motor inhibitory conflict), with two proprioceptive configurations: with and without application of Achilles tendon vibrations. RESULTS Beyond a systematically greater stepping reaction time in older adults (p < .01), no difference was found between the perceptual versus motor inhibitory conflict resolution, regardless of age and proprioceptive configuration. Furthermore, slower reaction time was observed for young participants in the presence of Achilles tendon vibrations unlike older adults, who showed the same reactive stepping performance with or without vibrations (p < .05). DISCUSSION These findings show that perceptual inhibition cannot be considered as specifically involved in the central processing of proprioceptive signals, at least not in active older adults. Rather than motor system malfunctioning or a reduced amount of proprioceptive afference, we propose that cortical-proprioceptive processing in older adults remains as effective as in young adults, regardless of the high attentional requirements for step responses.
Collapse
Affiliation(s)
- Justine Magnard
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France
| | - Gilles Berrut
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France.,Department of Geriatrics, Nantes University Hospital, France
| | | | - Thomas Cattagni
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France
| | - Christophe Cornu
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France
| | - Thibault Deschamps
- Laboratory "Movement, Interactions, Performance" (E.A.), University of Nantes, France
| |
Collapse
|
10
|
Nataletti S, Leo F, Seminara L, Trompetto C, Valle M, Dosen S, Brayda L. Temporal Asynchrony but Not Total Energy Nor Duration Improves the Judgment of Numerosity in Electrotactile Stimulation. Front Bioeng Biotechnol 2020; 8:555. [PMID: 32656190 PMCID: PMC7325877 DOI: 10.3389/fbioe.2020.00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Stroke patients suffer from impairments of both motor and somatosensory functions. The functional recovery of upper extremities is one of the primary goals of rehabilitation programs. Additional somatosensory deficits limit sensorimotor function and significantly affect its recovery after the neuromotor injury. Sensory substitution systems, providing tactile feedback, might facilitate manipulation capability, and improve patient's dexterity during grasping movements. As a first step toward this aim, we evaluated the ability of healthy subjects in exploiting electrotactile feedback on the shoulder to determine the number of perceived stimuli in numerosity judgment tasks. During the experiment, we compared four different stimulation patterns (two simultaneous: short and long, intermittent and sequential) differing in total duration, total energy, or temporal synchrony. The experiment confirmed that the subject ability to enumerate electrotactile stimuli decreased with increasing the number of active electrodes. Furthermore, we found that, in electrotactile stimulation, the temporal coding schemes, and not total energy or duration modulated the accuracy in numerosity judgment. More precisely, the sequential condition resulted in significantly better numerosity discrimination than intermittent and simultaneous stimulation. These findings, together with the fact that the shoulder appeared to be a feasible stimulation site to communicate tactile information via electrotactile feedback, can serve as a guide to deliver tactile feedback to proximal areas in stroke survivors who lack sensory integrity in distal areas of their affected arm, but retain motor skills.
Collapse
Affiliation(s)
- Sara Nataletti
- Robotics, Brain and Cognitive Science Department, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics Bioengineering Robotics, and System Engineering, University of Genoa, Genoa, Italy
| | - Fabrizio Leo
- Robotics, Brain and Cognitive Science Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lucia Seminara
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Genoa, Italy
| | - Carlo Trompetto
- Department of Neuroscience, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Sciences, University of Genoa, Genoa, Italy
| | - Maurizio Valle
- Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Genoa, Italy
| | - Strahinja Dosen
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Luca Brayda
- Robotics, Brain and Cognitive Science Department, Istituto Italiano di Tecnologia, Genoa, Italy.,Acoesis Inc., Genoa, Italy
| |
Collapse
|
11
|
Lin CC, Whitney SL, Loughlin PJ, Furman JM, Redfern MS, Sienko KH, Sparto PJ. The Use of Vibrotactile Feedback During Dual-Task Standing Balance Conditions in People With Unilateral Vestibular Hypofunction. Otol Neurotol 2019; 39:e349-e356. [PMID: 29595580 DOI: 10.1097/mao.0000000000001764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS People with unilateral vestibular hypofunction (UVH) would have increased postural sway and slower reaction times while using vibrotactile feedback (VTF) during dual-task conditions compared with age-matched controls. BACKGROUND VTF has been shown to improve real-time balance performance in persons with vestibular disorders. Future use of this technology outside of the laboratory environment as a real-time balance aid requires that using VTF during dual-tasking scenarios be studied. METHOD Nine people with UVH and nine age-matched controls participated in a study focused on assessing the effects of a secondary cognitive task and sensory integration conditions on the root-mean-square of center of pressure (RMS COP) while using VTF. Reaction times from the secondary cognitive task were used to assess the effects of VTF, and sensory integration conditions on the attention required to perform the task. RESULTS The results showed that there was no group difference between individuals with UVH and age-matched controls on balance performance while using VTF during dual-task conditions. Using VTF significantly degraded the reaction time performance in both groups, and the participants with UVH had slower reaction times compared with controls. CONCLUSION People with UVH showed the ability to use VTF to control balance during dual-task conditions, but more attentional resources were needed to perform the secondary cognitive tasks while using VTF.
Collapse
Affiliation(s)
- Chia-Cheng Lin
- Department of Physical Therapy, University of Pittsburgh, Pennsylvania.,Department of Physical Therapy, East Carolina University, North Carolina
| | - Susan L Whitney
- Department of Physical Therapy, University of Pittsburgh, Pennsylvania.,Department of Otolaryngology
| | | | - Joseph M Furman
- Department of Physical Therapy, University of Pittsburgh, Pennsylvania.,Department of Otolaryngology.,Department of Bioengineering, University of Pittsburgh, Pennsylvania
| | - Mark S Redfern
- Department of Otolaryngology.,Department of Bioengineering, University of Pittsburgh, Pennsylvania
| | - Kathleen H Sienko
- Departments of Mechanical and Biomedical Engineering, University of Michigan, Michigan
| | - Patrick J Sparto
- Department of Physical Therapy, University of Pittsburgh, Pennsylvania.,Department of Otolaryngology.,Department of Bioengineering, University of Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Bao T, Su L, Kinnaird C, Kabeto M, Shull PB, Sienko KH. Vibrotactile display design: Quantifying the importance of age and various factors on reaction times. PLoS One 2019; 14:e0219737. [PMID: 31398207 PMCID: PMC6688825 DOI: 10.1371/journal.pone.0219737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/02/2019] [Indexed: 11/19/2022] Open
Abstract
Numerous factors affect reaction times to vibrotactile cues. Therefore, it is important to consider the relative magnitudes of these time delays when designing vibrotactile displays for real-time applications. The objectives of this study were to quantify reaction times to typical vibrotactile stimuli parameters through direct comparison within a single experimental setting, and to determine the relative importance of these factors on reaction times. Young (n = 10, 21.9 ± 1.3 yrs) and older adults (n = 13, 69.4 ± 5.0 yrs) performed simple reaction time tasks by responding to vibrotactile stimuli using a thumb trigger while frequency, location, auditory cues, number of tactors in the same location, and tactor type were varied. Participants also performed a secondary task in a subset of the trials. The factors investigated in this study affected reaction times by 20-300 ms (reaction time findings are noted in parentheses) depending on the specific stimuli condition. In general, auditory cues generated by the tactors (<20 ms), vibration frequency (<20 ms), number of tactors in the same location (<30 ms) and tactor type (<50 ms) had relatively small effects on reaction times, while stimulus location (20-120 ms) and secondary cognitive task (>130 ms) had relatively large effects. Factors affected young and older adults' reaction times in a similar manner, but with different magnitudes. These findings can inform the development of vibrotactile displays by enabling designers to directly compare the relative effects of key factors on reaction times.
Collapse
Affiliation(s)
- Tian Bao
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lydia Su
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Catherine Kinnaird
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mohammed Kabeto
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter B. Shull
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Kathleen H. Sienko
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
13
|
Shah VA, Casadio M, Scheidt RA, Mrotek LA. Spatial and temporal influences on discrimination of vibrotactile stimuli on the arm. Exp Brain Res 2019; 237:2075-2086. [PMID: 31175382 PMCID: PMC6640119 DOI: 10.1007/s00221-019-05564-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/18/2019] [Indexed: 11/29/2022]
Abstract
Body-machine interfaces (BMIs) provide a non-invasive way to control devices. Vibrotactile stimulation has been used by BMIs to provide performance feedback to the user, thereby reducing visual demands. To advance the goal of developing a compact, multivariate vibrotactile display for BMIs, we performed two psychophysical experiments to determine the acuity of vibrotactile perception across the arm. The first experiment assessed vibration intensity discrimination of sequentially presented stimuli within four dermatomes of the arm (C5, C7, C8, and T1) and on the ulnar head. The second experiment compared vibration intensity discrimination when pairs of vibrotactile stimuli were presented simultaneously vs. sequentially within and across dermatomes. The first experiment found a small but statistically significant difference between dermatomes C7 and T1, but discrimination thresholds at the other three locations did not differ. Thus, while all tested dermatomes of the arm and hand could serve as viable sites of vibrotactile stimulation for a practical BMI, ideal implementations should account for small differences in perceptual acuity across dermatomes. The second experiment found that sequential delivery of vibrotactile stimuli resulted in better intensity discrimination than simultaneous delivery, independent of whether the pairs were located within the same dermatome or across dermatomes. Taken together, our results suggest that the arm may be a viable site to transfer multivariate information via vibrotactile feedback for body-machine interfaces. However, user training may be needed to overcome the perceptual disadvantage of simultaneous vs. sequentially presented stimuli.
Collapse
Affiliation(s)
- Valay A Shah
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Maura Casadio
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- DIBRIS, University of Genova, Genova, Italy
| | - Robert A Scheidt
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Civil, Mechanical and Manufacturing Innovation, National Science Foundation, Alexandria, VA, USA
| | - Leigh A Mrotek
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
Sienko KH, Seidler RD, Carender WJ, Goodworth AD, Whitney SL, Peterka RJ. Potential Mechanisms of Sensory Augmentation Systems on Human Balance Control. Front Neurol 2018; 9:944. [PMID: 30483209 PMCID: PMC6240674 DOI: 10.3389/fneur.2018.00944] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
Abstract
Numerous studies have demonstrated the real-time use of visual, vibrotactile, auditory, and multimodal sensory augmentation technologies for reducing postural sway during static tasks and improving balance during dynamic tasks. The mechanism by which sensory augmentation information is processed and used by the CNS is not well understood. The dominant hypothesis, which has not been supported by rigorous experimental evidence, posits that observed reductions in postural sway are due to sensory reweighting: feedback of body motion provides the CNS with a correlate to the inputs from its intact sensory channels (e.g., vision, proprioception), so individuals receiving sensory augmentation learn to increasingly depend on these intact systems. Other possible mechanisms for observed postural sway reductions include: cognition (processing of sensory augmentation information is solely cognitive with no selective adjustment of sensory weights by the CNS), “sixth” sense (CNS interprets sensory augmentation information as a new and distinct sensory channel), context-specific adaptation (new sensorimotor program is developed through repeated interaction with the device and accessible only when the device is used), and combined volitional and non-volitional responses. This critical review summarizes the reported sensory augmentation findings spanning postural control models, clinical rehabilitation, laboratory-based real-time usage, and neuroimaging to critically evaluate each of the aforementioned mechanistic theories. Cognition and sensory re-weighting are identified as two mechanisms supported by the existing literature.
Collapse
Affiliation(s)
- Kathleen H Sienko
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Wendy J Carender
- Michigan Balance Vestibular Testing and Rehabilitation, Department of Otolaryngology, Michigan Medicine, Ann Arbor, MI, United States
| | - Adam D Goodworth
- Department of Rehabilitation Sciences, University of Hartford, Hartford, CT, United States
| | - Susan L Whitney
- Departments of Physical Therapy and Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert J Peterka
- Department of Neurology, Oregon Health & Science University and National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
15
|
Quick KM, Mischel JL, Loughlin PJ, Batista AP. The critical stability task: quantifying sensory-motor control during ongoing movement in nonhuman primates. J Neurophysiol 2018; 120:2164-2181. [PMID: 29947593 DOI: 10.1152/jn.00300.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Everyday behaviors require that we interact with the environment, using sensory information in an ongoing manner to guide our actions. Yet, by design, many of the tasks used in primate neurophysiology laboratories can be performed with limited sensory guidance. As a consequence, our knowledge about the neural mechanisms of motor control is largely limited to the feedforward aspects of the motor command. To study the feedback aspects of volitional motor control, we adapted the critical stability task (CST) from the human performance literature (Jex H, McDonnell J, Phatak A. IEEE Trans Hum Factors Electron 7: 138-145, 1966). In the CST, our monkey subjects interact with an inherently unstable (i.e., divergent) virtual system and must generate sensory-guided actions to stabilize it about an equilibrium point. The difficulty of the CST is determined by a single parameter, which allows us to quantitatively establish the limits of performance in the task for different sensory feedback conditions. Two monkeys learned to perform the CST with visual or vibrotactile feedback. Performance was better under visual feedback, as expected, but both monkeys were able to utilize vibrotactile feedback alone to successfully perform the CST. We also observed changes in behavioral strategy as the task became more challenging. The CST will have value for basic science investigations of the neural basis of sensory-motor integration during ongoing actions, and it may also provide value for the design and testing of bidirectional brain computer interface systems. NEW & NOTEWORTHY Currently, most behavioral tasks used in motor neurophysiology studies require primates to make short-duration, stereotyped movements that do not necessitate sensory feedback. To improve our understanding of sensorimotor integration, and to engineer meaningful artificial sensory feedback systems for brain-computer interfaces, it is crucial to have a task that requires sensory feedback for good control. The critical stability task demands that sensory information be used to guide long-duration movements.
Collapse
Affiliation(s)
- Kristin M Quick
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition , Pittsburgh, Pennsylvania
| | - Jessica L Mischel
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition , Pittsburgh, Pennsylvania
| | - Patrick J Loughlin
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition , Pittsburgh, Pennsylvania
| | - Aaron P Batista
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition , Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Shah VA, Risi N, Ballardini G, Mrotek LA, Casadio M, Scheidt RA. Effect of Dual Tasking on Vibrotactile Feedback Guided Reaching - a Pilot Study. HAPTICS : SCIENCE, TECHNOLOGY, AND APPLICATIONS : 11TH INTERNATIONAL CONFERENCE, EUROHAPTICS 2018, PISA, ITALY, JUNE 13-16, 2018, PROCEEDINGS. EUROHAPTICS CONFERENCE (11TH : 2018 : PISA, ITALY) 2018; 10893:3-14. [PMID: 31179445 PMCID: PMC6555617 DOI: 10.1007/978-3-319-93445-7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vibrotactile feedback (VTF) has been proposed as a non-invasive way to augment impaired or lost kinesthetic feedback in certain patient populations, thereby enhancing the real-time control of purposeful limb movements and quality of life. We used a dual tasking scenario to investigate the effects of cognitive load and short-term VTF training on VTF-guided reaching. Participants grasped the handle of a planar manipulandum with one hand and received VTF of its motion via a vibrotactile display attached to the non-moving arm. We asked participants to simultaneously perform VTF-guided reaching and a choice reaction time task both before and after training with VTF-guided reaching. Participants readily used VTF to guide goal-directed hand movements in the absence of visual feedback in the dual-task setting, even prior to training. This capability came at the cost of increased movement completion time. Short-term training on VTF-guided reaching induced significant improvements in target capture errors. Pre- and post-training comparisons of dual-task performance found training-related improvements in VTF-guided reach accuracy were resistant to dual-task interference. We found no training-related improvements in movement completion time or button press performance. These results indicate that VTF can be used to complete goal-directed reaches in a dual task situation, and that a single short bout of training sufficed for participants to begin the transition between the cognitive and associative phases of learning for the integration of VTF into the planning and ongoing control of reaching movements.
Collapse
Affiliation(s)
- Valay A Shah
- Dept Biomedical Engineering, Marquette University, Milwaukee, WI, USA
- DIBRIS, University of Genoa, Genoa, Italy
| | - Nicoletta Risi
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Leigh A Mrotek
- Dept Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Maura Casadio
- Dept Biomedical Engineering, Marquette University, Milwaukee, WI, USA
- DIBRIS, University of Genoa, Genoa, Italy
| | - Robert A Scheidt
- Dept Biomedical Engineering, Marquette University, Milwaukee, WI, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical College of Wisconsin, Milwaukee, WI, USA
- Div. of Civil, Mechanical and Manufacturing Innovation, National Science Foundation, USA
| |
Collapse
|
17
|
Sienko KH, Whitney SL, Carender WJ, Wall C. The role of sensory augmentation for people with vestibular deficits: Real-time balance aid and/or rehabilitation device? J Vestib Res 2018; 27:63-76. [PMID: 28387692 DOI: 10.3233/ves-170606] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This narrative review highlights findings from the sensory augmentation field for people with vestibular deficits and addresses the outstanding questions that are critical to the translation of this technology into clinical and/or personal use. Prior research has demonstrated that the real-time use of visual, vibrotactile, auditory, and multimodal sensory augmentation technologies can improve balance during static and dynamic stance tasks within a laboratory setting. However, its application in improving gait requires additional investigation, as does its efficacy as a rehabilitation device for people with vestibular deficits. In some locomotor studies involving sensory augmentation, gait velocity decreased and secondary task performance worsened, and subjects negatively altered their segmental control strategies when cues were provided following short training sessions. A further question is whether the retention and/or carry-over effects of training with a sensory augmentation technology exceed the retention and/or carry-over effects of training alone, thereby supporting its use as a rehabilitation device. Preliminary results suggest that there are short-term improvements in balance performance following a small number of training sessions with a sensory augmentation device. Long-term clinical and home-based controlled training studies are needed. It is hypothesized that sensory augmentation provides people with vestibular deficits with additional sensory input to promote central compensation during a specific exercise/activity; however, research is needed to substantiate this theory. Major obstacles standing in the way of its use for these critical applications include determining exercise/activity specific feedback parameters and dosage strategies. This paper summarizes the reported findings that support sensory augmentation as a balance aid and rehabilitation device, but does not critically examine efficacy or the quality of the research methods used in the reviewed studies.
Collapse
Affiliation(s)
- K H Sienko
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - S L Whitney
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, USA.,Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - W J Carender
- Department of Otolaryngology, University of Michigan Health System, Ann Arbor, MI, USA
| | - C Wall
- Jenks Vestibular Diagnostic Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Allum JHJ, Honegger F. Vibro-tactile and auditory balance biofeedback changes muscle activity patterns: Possible implications for vestibular implants. J Vestib Res 2018; 27:77-87. [PMID: 28387687 DOI: 10.3233/ves-170601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The two different types of balance prostheses being developed, implants and vibro-tactile/auditory feedback prostheses, rely on different measures to prove efficacy (those based on vestibular ocular reflexes versus balance control, respectively). Here we provide evidence that examining muscle activity might provide a useful alternative for both. METHODS The muscle activity of 6 bilateral vestibular loss (BVL) and 7 age-matched healthy controls (HC) was examined while standing eyes closed on a foam support surface. Pelvis and upper trunk angular movements were recorded in the roll and pitch planes. Surface EMG was recorded from the lower leg, trunk and upper arm muscles. BVL subjects were first assessed without feedback of pelvis sway, then received training with combined vibro-tactile and auditory feedback, before being re-assessed with feedback. RESULTS Feedback reduced the amplitudes of pelvis and shoulder sway to values of HC without feedback. Both the level of background EMG activity and the EMG area amplitudes changed when feedback was provided in a manner consistent with the reduced amplitude modulation of muscle synergies of HC. CONCLUSIONS The results of this study indicate that changed muscle synergy amplitudes underlie improvements in sway achieved by BVL subjects. The concept of this investigation may provide a means to prove efficacy for different types of balance prostheses, including implants.
Collapse
|
19
|
Williams AD, Boser QA, Kumawat AS, Agarwal K, Rouhani H, Vette AH. Design and Evaluation of an Instrumented Wobble Board for Assessing and Training Dynamic Seated Balance. J Biomech Eng 2018; 140:2666620. [DOI: 10.1115/1.4038747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Indexed: 11/08/2022]
Abstract
Methods that effectively assess and train dynamic seated balance are critical for enhancing functional independence and reducing risk of secondary health complications in the elderly and individuals with neuromuscular impairments. The objective of this research was to devise and validate a portable tool for assessing and training dynamic seated balance. An instrumented wobble board was designed and constructed that (1) elicits multidirectional perturbations in seated individuals, (2) quantifies seated balance proficiency, and (3) provides real-time, kinematics-based vibrotactile feedback. After performing a technical validation study to compare kinematic wobble board measurements against a gold-standard motion capture system, 15 nondisabled participants performed a dynamic sitting task using the wobble board. Our results demonstrate that the tilt angle measurements were highly accurate throughout the range of wobble board dynamics. Furthermore, the posturographic analyses for the dynamic sitting task revealed that the wobble board can effectively discriminate between the different conditions of perturbed balance, demonstrating its potential to serve as a clinical tool for the assessment and training of seated balance. Vibrotactile feedback decreased the variance of wobble board tilt, demonstrating its potential for use as a balance training tool. Unlike similar instrumented tools, the wobble board is portable, requires no laboratory equipment, and can be adjusted to meet the user's balance abilities. While future work is warranted, obtained findings will aid in effective translation of assessment and training techniques to a clinical setting, which has the potential to enhance the diagnosis and prognosis for individuals with seated balance impairments.
Collapse
Affiliation(s)
- Andrew D. Williams
- Department of Biomedical Engineering, Research Transition Facility, University of Alberta, 8308-114 Street, Edmonton, AB T6G 2V2, Canada e-mail:
| | - Quinn A. Boser
- Department of Biomedical Engineering, Research Transition Facility, University of Alberta, 8308-114 Street, Edmonton, AB T6G 2V2, Canada e-mail:
| | - Animesh Singh Kumawat
- Faculty of Kinesiology and Physical Education, University of Toronto, WS2021F, 55 Harbord Street, Toronto, ON M5S 2W6, Canada e-mail:
| | - Kshitij Agarwal
- Department of Biomedical Engineering, Research Transition Facility, University of Alberta, 8308-114 Street, Edmonton, AB T6G 2V2, Canada e-mail:
| | - Hossein Rouhani
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada e-mail:
| | - Albert H. Vette
- Mem. ASME Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada e-mail:
| |
Collapse
|
20
|
Magnard J, Cornu C, Berrut G, Deschamps T. Examination of reactive motor responses to Achilles tendon vibrations during an inhibitory stepping reaction time task. Hum Mov Sci 2017; 56:119-128. [PMID: 29121491 DOI: 10.1016/j.humov.2017.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022]
Abstract
Inhibition is known to influence balance, step initiation and gait control. A specific subcomponent of inhibition, the perceptual inhibition process, has been suggested to be specifically involved in the integration of proprioceptive information that is necessary for efficient postural responses. This study aimed to investigate the inhibition requirements of planning and executing a choice step initiation task in young adults following experimental perturbation of proprioceptive information using Achilles tendon vibrations. We developed an inhibitory stepping reaction time task in which participants had to step in response to visual arrows that manipulated specific perceptual or motor inhibition according to two proprioceptive configurations: without or with application of vibrations. Performance of twenty-eight participants (mean age 21 years) showed that Achilles tendon vibrations induced an increase in attentional demands (higher reaction time and longer motor responses). Further, this increase in attentional demands did not affect specifically the different inhibitory processes tested in this reactive stepping task. It suggests that attentional demands associated with the vibratory perturbation to postural control do not lead to a shift from automatic to more attentional inhibition processes, at least in young adults.
Collapse
Affiliation(s)
- Justine Magnard
- Laboratory "Movement, Interactions, Performance" (E.A. 4334), University of Nantes, France
| | - Christophe Cornu
- Laboratory "Movement, Interactions, Performance" (E.A. 4334), University of Nantes, France
| | - Gilles Berrut
- Laboratory "Movement, Interactions, Performance" (E.A. 4334), University of Nantes, France; Investigations Clinical Center of Gerontology Department, Teaching Nantes Hospital, France
| | - Thibault Deschamps
- Laboratory "Movement, Interactions, Performance" (E.A. 4334), University of Nantes, France.
| |
Collapse
|
21
|
Sprenger A, Wojak JF, Jandl NM, Helmchen C. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input. Front Neurol 2017; 8:444. [PMID: 28919878 PMCID: PMC5585141 DOI: 10.3389/fneur.2017.00444] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/14/2017] [Indexed: 02/04/2023] Open
Abstract
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided.
Collapse
Affiliation(s)
- Andreas Sprenger
- Department of Neurology, University of Lübeck, Lubeck, Germany.,Institute of Psychology II, University of Lübeck, Lubeck, Germany
| | - Jann F Wojak
- Department of Neurology, University of Lübeck, Lubeck, Germany
| | - Nico M Jandl
- Department of Neurology, University of Lübeck, Lubeck, Germany
| | | |
Collapse
|
22
|
Lim SB, Horslen BC, Davis JR, Allum JHJ, Carpenter MG. Benefits of multi-session balance and gait training with multi-modal biofeedback in healthy older adults. Gait Posture 2016; 47:10-7. [PMID: 27264396 DOI: 10.1016/j.gaitpost.2016.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 02/02/2023]
Abstract
Real-time balance-relevant biofeedback from a wearable sensor can improve balance in many patient populations, however, it is unknown if balance training with biofeedback has lasting benefits for healthy older adults once training is completed and biofeedback removed. This study was designed to determine if multi-session balance training with and without biofeedback leads to changes in balance performance in healthy older adults; and if changes persist after training. 36 participants (age 60-88) were randomly divided into two groups. Both groups trained on seven stance and gait tasks for 2 consecutive weeks (3×/week) while trunk angular sway and task duration were monitored. One group received real-time multi-modal biofeedback of trunk sway and a control group trained without biofeedback. Training effects were assessed at the last training session, with biofeedback available to the feedback group. Post-training effects (without biofeedback) were assessed immediately after, 1-week, and 1-month post-training. Both groups demonstrated training effects; participants swayed less when standing on foam with eyes closed (EC), maintained tandem-stance EC longer, and completed 8 tandem-steps EC faster and with less sway at the last training session. Changes in sway and duration, indicative of faster walking, were also observed after training for other gait tasks. While changes in walking speed persisted post-training, few other post-training effects were observed. These data suggest there is little added benefit to balance training with biofeedback, beyond training without, in healthy older adults. However, transient use of wearable balance biofeedback systems as balance aides remains beneficial for challenging balance situations and some clinical populations.
Collapse
Affiliation(s)
- Shannon B Lim
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Brian C Horslen
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Justin R Davis
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - John H J Allum
- Department of ORL, University Hospital, Basel, Switzerland
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|