1
|
Vallverdú J, Talanov M, Leukhin A, Fatykhova E, Erokhin V. Hormonal computing: a conceptual approach. Front Chem 2023; 11:1232949. [PMID: 37663143 PMCID: PMC10469008 DOI: 10.3389/fchem.2023.1232949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
This paper provides a conceptual roadmap for the use of hormonal bioinspired models in a broad range of AI, neuroengineering, or computational systems. The functional signaling nature of hormones provides an example of a reliable multidimensional information management system that can solve parallel multitasks. Two existing examples of hormonal computing bioinspired possibilities are shortly reviewed, and two novel approaches are introduced, with a special emphasis on what researchers propose as hormonal computing for neurorehabilitation in patients with complete spinal cord injuries. They extend the use of epidural electrical stimulation (EES) by applying sequential stimulations to limbs through prostheses. The prostheses include various limb models and are connected to a neurostimulation bus called the central pattern generator (CPG). The CPG bus utilizes hormonal computing principles to coordinate the stimulation of the spinal cord and muscles.
Collapse
Affiliation(s)
- Jordi Vallverdú
- ICREA Academia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Max Talanov
- Institute for Artificial Intelligence R&D, Novi Sad, Serbia
- Laboratory of Neuromorphic Computing and Neurosimulatons, Kazan Federal University, Kazan, Russia
| | - Alexey Leukhin
- Laboratory of Neuromorphic Computing and Neurosimulatons, Kazan Federal University, Kazan, Russia
- B-Rain Labs LLC, Kazan, Russi
| | - Elsa Fatykhova
- Children’s Republican Clinical Hospital, Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | - Victor Erokhin
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, National Research Council (CNR), Parma, Italy
| |
Collapse
|
2
|
Masaev DN, Suleimanova AA, Prudnikov NV, Serenko MV, Emelyanov AV, Demin VA, Lavrov IA, Talanov MO, Erokhin VV. Memristive circuit-based model of central pattern generator to reproduce spinal neuronal activity in walking pattern. Front Neurosci 2023; 17:1124950. [PMID: 36925742 PMCID: PMC10011148 DOI: 10.3389/fnins.2023.1124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Existing methods of neurorehabilitation include invasive or non-invasive stimulators that are usually simple digital generators with manually set parameters like pulse width, period, burst duration, and frequency of stimulation series. An obvious lack of adaptation capability of stimulators, as well as poor biocompatibility and high power consumption of prosthetic devices, highlights the need for medical usage of neuromorphic systems including memristive devices. The latter are electrical devices providing a wide range of complex synaptic functionality within a single element. In this study, we propose the memristive schematic capable of self-learning according to bio-plausible spike-timing-dependant plasticity to organize the electrical activity of the walking pattern generated by the central pattern generator.
Collapse
Affiliation(s)
- Dinar N. Masaev
- ITIS, IFMB, Kazan Federal University, Kazan, Russia
- B-Rain Labs LLC, Kazan, Russia
| | | | - Nikita V. Prudnikov
- National Research Centre Kurchatov Institute, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Moscow, Russia
| | - Mariia V. Serenko
- National Research Centre Kurchatov Institute, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Moscow, Russia
| | - Andrey V. Emelyanov
- National Research Centre Kurchatov Institute, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Moscow, Russia
| | | | - Igor A. Lavrov
- ITIS, IFMB, Kazan Federal University, Kazan, Russia
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Max O. Talanov
- ITIS, IFMB, Kazan Federal University, Kazan, Russia
- Institute for Artificial Intelligence R&D, Novi Sad, Serbia
| | - Victor V. Erokhin
- Consiglio Nazionale delle Ricerche at Istituto dei Materiali per l'Elettronica ed il Magnetismo, Rome, Italy
| |
Collapse
|
3
|
Edgerton VR, Gad P. Spinal automaticity of movement control and its role in recovering function after spinal injury. Expert Rev Neurother 2022; 22:655-667. [PMID: 36043398 DOI: 10.1080/14737175.2022.2115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The significance of the spinal circuitry in controlling postural and locomotor functions largely re-emerged in the mid-1970s under the leadership of Sten Grillner, demonstrating key phenomena of "central pattern generation" and "fictive locomotion" with an evolutionary perspective. These concepts raised the question of how much function can be recovered after paralysis, given the intrinsic automaticity of spinal networks in injured and uninjured states in adults. AREAS COVERED This review explores biological mechanisms governing spinal control of movements such as posture and locomotion. We focus on concepts that have evolved from experiments performed over the past decade. Rather than a comprehensive review of the vast literature on the neural control of posture and locomotion, we focus on the various mechanisms underlying functional automaticity, and their clinical relevance. EXPERT OPINION We propose that multiple combinations of sensory mechanoreceptors linked to proprioception generate an infinite number of different sensory ensembles, having species-specific meaning and extensive influence in controlling posture and locomotion. These sensory ensembles are translated as a probabilistic phenomenon into highly specific but indeterminate actions. Therefore, we opine that spinal translation of these ensembles in real-time plays a central role in the automaticity of motor control in individuals with and without severe neuromotor dysfunction.
Collapse
Affiliation(s)
- V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, CA 90095 USA.,Department of Neurosurgery, University of California, Los Angeles, CA 90095 USA.,Brain Research Institute, University of California, Los Angeles, CA 90095 USA.,Institut Guttmann. Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, 08916 Badalona, Spain
| | - Parag Gad
- Department of Neurobiology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
4
|
Novel Noninvasive Spinal Neuromodulation Strategy Facilitates Recovery of Stepping after Motor Complete Paraplegia. J Clin Med 2022; 11:jcm11133670. [PMID: 35806954 PMCID: PMC9267673 DOI: 10.3390/jcm11133670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
It has been suggested that neuroplasticity-promoting neuromodulation can restore sensory-motor pathways after spinal cord injury (SCI), reactivating the dormant locomotor neuronal circuitry. We introduce a neuro-rehabilitative approach that leverages locomotor training with multi-segmental spinal cord transcutaneous electrical stimulation (scTS). We hypothesized that scTS neuromodulates spinal networks, complementing the neuroplastic effects of locomotor training, result in a functional progression toward recovery of locomotion. We conducted a case-study to test this approach on a 27-year-old male classified as AIS A with chronic SCI. The training regimen included task-driven non-weight-bearing training (1 month) followed by weight-bearing training (2 months). Training was paired with multi-level continuous and phase-dependent scTS targeting function-specific motor pools. Results suggest a convergence of cross-lesional networks, improving kinematics during voluntary non-weight-bearing locomotor-like stepping. After weight-bearing training, coordination during stepping improved, suggesting an important role of afferent feedback in further improvement of voluntary control and reorganization of the sensory-motor brain-spinal connectome.
Collapse
|
5
|
Siddiqui AM, Islam R, Cuellar CA, Silvernail JL, Knudsen B, Curley DE, Strickland T, Manske E, Suwan PT, Latypov T, Akhmetov N, Zhang S, Summer P, Nesbitt JJ, Chen BK, Grahn PJ, Madigan NN, Yaszemski MJ, Windebank AJ, Lavrov IA. Newly regenerated axons via scaffolds promote sub-lesional reorganization and motor recovery with epidural electrical stimulation. NPJ Regen Med 2021; 6:66. [PMID: 34671050 PMCID: PMC8528837 DOI: 10.1038/s41536-021-00176-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Here, we report the effect of newly regenerated axons via scaffolds on reorganization of spinal circuitry and restoration of motor functions with epidural electrical stimulation (EES). Motor recovery was evaluated for 7 weeks after spinal transection and following implantation with scaffolds seeded with neurotrophin producing Schwann cell and with rapamycin microspheres. Combined treatment with scaffolds and EES-enabled stepping led to functional improvement compared to groups with scaffold or EES, although, the number of axons across scaffolds was not different between groups. Re-transection through the scaffold at week 6 reduced EES-enabled stepping, still demonstrating better performance compared to the other groups. Greater synaptic reorganization in the presence of regenerated axons was found in group with combined therapy. These findings suggest that newly regenerated axons through cell-containing scaffolds with EES-enabled motor training reorganize the sub-lesional circuitry improving motor recovery, demonstrating that neuroregenerative and neuromodulatory therapies cumulatively enhancing motor function after complete SCI.
Collapse
Affiliation(s)
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Carlos A Cuellar
- School of Sport Sciences, Universidad Anáhuac México, Campus Norte, Huixquilucan, State of Mexico, Mexico
| | | | - Bruce Knudsen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dallece E Curley
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | | | - Emilee Manske
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Scripps College, Claremont, CA, USA
| | - Parita T Suwan
- Paracelsus Medical Private University, Salzburg, Austria
| | - Timur Latypov
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nafis Akhmetov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shuya Zhang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Priska Summer
- Paracelsus Medical Private University, Salzburg, Austria
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Sharma P, Shah PK. In vivo electrophysiological mechanisms underlying cervical epidural stimulation in adult rats. J Physiol 2021; 599:3121-3150. [PMID: 33894695 DOI: 10.1113/jp281146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS To electrophysiologically determine the predominant neural structures activated with cervical epidural stimulation (ES), well-established electrophysiological protocols (single-pulse, paired-pulse and multiple frequency stimulation) were delivered at rest, during motor activity and under anaesthesia in adult rats. Cervical ES resulted in spinal evoked motor responses with three different waveforms - early response (ER), middle response (MR) and late response (LR). ERs remained unmodulated by repeated stimulation protocols. In contrast, MRs and LRs were modulated by repeated stimulation protocols and volitional motor activity. ERs are consequential to the direct activation of motor efferents; MRs are secondary to type-I sensory afferent activation and LRs result from the engagement of wider spinal interneuronal circuitry with potential influence from supraspinal pathways. Evidence from this work is fundamental in enhancing our understanding of cervical ES, and critical in refining the design of neuromodulation-based rehabilitative strategies and in the construction of neuroprosthetics. ABSTRACT Epidural stimulation (ES) of the lumbar spinal cord has demonstrated significant improvements in various physiological functions after a traumatic spinal cord injury in humans. Electrophysiological evidence from rodent, human and computational studies collectively suggest that the functional recovery following lumbar ES is mediated via direct activation of sensory afferent fibres. However, the mechanisms underlying cervical ES have not been comprehensively studied, which greatly limits our understanding of its effectiveness in restoring upper limb function. In this work, we determined the predominant neural structures that are activated with cervical ES using in vivo cervical spinal evoked motor responses (SEMRs). Standard electrophysiological protocols (single-pulse, paired-pulse and multiple frequency stimulation) were implemented in 11 awake and anaesthetized rats in four experimental stages. Three distinct types of cervical SEMRs were identified based on latency of their appearance: early response (ER), middle response (MR) and late response (LR). ERs remained unmodulated by repeated stimulation protocols. MRs and LRs were modulated by repeated stimulation protocols and volitional motor activity. Except for LRs being completely abolished under urethane, ketamine or urethane anaesthesia did not affect the appearance of cervical SEMRs. Our data, backed by literature, suggest that ERs are secondary to the direct activation of motor efferents, MRs are elicited by activation of type-I sensory afferents and LRs result from the engagement of interneuronal circuitry with potential influence from supraspinal pathways. The gathered information paves the way to designing motor rehabilitation strategies that can utilize cervical ES to recover upper limb function following neurological deficits.
Collapse
Affiliation(s)
- Pawan Sharma
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Prithvi K Shah
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, 11727, USA
| |
Collapse
|
7
|
Gill ML, Linde MB, Hale RF, Lopez C, Fautsch KJ, Calvert JS, Veith DD, Beck LA, Garlanger KL, Sayenko DG, Lavrov IA, Thoreson AR, Grahn PJ, Zhao KD. Alterations of Spinal Epidural Stimulation-Enabled Stepping by Descending Intentional Motor Commands and Proprioceptive Inputs in Humans With Spinal Cord Injury. Front Syst Neurosci 2021; 14:590231. [PMID: 33584209 PMCID: PMC7875885 DOI: 10.3389/fnsys.2020.590231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Regaining control of movement following a spinal cord injury (SCI) requires utilization and/or functional reorganization of residual descending, and likely ascending, supraspinal sensorimotor pathways, which may be facilitated via task-specific training through body weight supported treadmill (BWST) training. Recently, epidural electrical stimulation (ES) combined with task-specific training demonstrated independence of standing and stepping functions in individuals with clinically complete SCI. The restoration of these functions may be dependent upon variables such as manipulation of proprioceptive input, ES parameter adjustments, and participant intent during step training. However, the impact of each variable on the degree of independence achieved during BWST stepping remains unknown. Objective: To describe the effects of descending intentional commands and proprioceptive inputs, specifically body weight support (BWS), on lower extremity motor activity and vertical ground reaction forces (vGRF) during ES-enabled BWST stepping in humans with chronic sensorimotor complete SCI. Furthermore, we describe perceived changes in the level of assistance provided by clinicians when intent and BWS are modified. Methods: Two individuals with chronic, mid thoracic, clinically complete SCI, enrolled in an IRB and FDA (IDE G150167) approved clinical trial. A 16-contact electrode array was implanted in the epidural space between the T11-L1 vertebral regions. Lower extremity motor output and vertical ground reaction forces were obtained during clinician-assisted ES-enabled treadmill stepping with BWS. Consecutive steps were achieved during various experimentally-controlled conditions, including intentional participation and varied BWS (60% and 20%) while ES parameters remain unchanged. Results: During ES-enabled BWST stepping, the knee extensors exhibited an increase in motor activation during trials in which stepping was passive compared to active or during trials in which 60% BWS was provided compared to 20% BWS. As a result of this increased motor activation, perceived clinician assistance increased during the transition from stance to swing. Intentional participation and 20% BWS resulted in timely and purposeful activation of the lower extremities muscles, which improved independence and decreased clinician assistance. Conclusion: Maximizing participant intention and optimizing proprioceptive inputs through BWS during ES-enabled BWST stepping may facilitate greater independence during BWST stepping for individuals with clinically complete SCI. Clinical Trial Registration:ClinicalTrials.gov identifier: NCT02592668.
Collapse
Affiliation(s)
- Megan L Gill
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Margaux B Linde
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Rena F Hale
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kalli J Fautsch
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Jonathan S Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Veith
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lisa A Beck
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kristin L Garlanger
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Hospital, Houston, TX, United States
| | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew R Thoreson
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Peter J Grahn
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States.,Office for Education Diversity, Equity and Inclusion, Mayo Clinic, Rochester, MN, United States
| | - Kristin D Zhao
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Sunshine MD, Cassarà AM, Neufeld E, Grossman N, Mareci TH, Otto KJ, Boyden ES, Fuller DD. Restoration of breathing after opioid overdose and spinal cord injury using temporal interference stimulation. Commun Biol 2021; 4:107. [PMID: 33495588 PMCID: PMC7835220 DOI: 10.1038/s42003-020-01604-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/14/2020] [Indexed: 01/05/2023] Open
Abstract
Respiratory insufficiency is a leading cause of death due to drug overdose or neuromuscular disease. We hypothesized that a stimulation paradigm using temporal interference (TI) could restore breathing in such conditions. Following opioid overdose in rats, two high frequency (5000 Hz and 5001 Hz), low amplitude waveforms delivered via intramuscular wires in the neck immediately activated the diaphragm and restored ventilation in phase with waveform offset (1 Hz or 60 breaths/min). Following cervical spinal cord injury (SCI), TI stimulation via dorsally placed epidural electrodes uni- or bilaterally activated the diaphragm depending on current and electrode position. In silico modeling indicated that an interferential signal in the ventral spinal cord predicted the evoked response (left versus right diaphragm) and current-ratio-based steering. We conclude that TI stimulation can activate spinal motor neurons after SCI and prevent fatal apnea during drug overdose by restoring ventilation with minimally invasive electrodes.
Collapse
Affiliation(s)
- Michael D Sunshine
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, 32611, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32611, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Antonino M Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS), 8004, Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), 8004, Zurich, Switzerland
| | - Nir Grossman
- Division of Brain Sciences, Imperial College London, London, SW7 2BU, United Kingdom
- United Kingdom Dementia Research Institute, Imperial College London, London, SW7 2BU, United Kingdom
| | - Thomas H Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL, 32611, USA
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Edward S Boyden
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, McGovern and Koch Institutes, MIT, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02138, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32611, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, 32611, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
9
|
Oscillator Motif as Design Pattern for the Spinal Cord Circuitry Reconstruction. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Changes in spinal cord hemodynamics reflect modulation of spinal network with different parameters of epidural stimulation. Neuroimage 2020; 221:117183. [PMID: 32702485 PMCID: PMC7802109 DOI: 10.1016/j.neuroimage.2020.117183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 11/29/2022] Open
Abstract
In this study functional ultrasound (fUS) imaging has been implemented to explore the local hemodynamics response induced by electrical epidural stimulation and to study real-time in vivo functional changes of the spinal cord, taking advantage of the superior spatiotemporal resolution provided by fUS. By quantifying the hemodynamics and electromyographic response features, we tested the hypothesis that the temporal hemodynamics response of the spinal cord to electrical epidural stimulation could reflect modulation of the spinal circuitry and accordingly respond to the changes in parameters of electrical stimulation. The results of this study for the first time demonstrate that the hemodynamics response to electrical stimulation could reflect a neural-vascular coupling of the spinal cord. Response in the dorsal areas to epidural stimulation was significantly higher and faster compared to the response in ventral spinal cord. Positive relation between the hemodynamics and the EMG responses was observed at the lower frequencies of epidural stimulation (20 and 40 Hz), which according to our previous findings can facilitate spinal circuitry after spinal cord injury, compared to higher frequencies (200 and 500 Hz). These findings suggest that different mechanisms could be involved in spinal cord hemodynamics changes during different parameters of electrical stimulation and for the first time provide the evidence that neural-vascular coupling of the spinal cord circuitry could be related to specific organization of spinal cord vasculature and hemodynamics.
Collapse
|
11
|
Acute neuromodulation restores spinally-induced motor responses after severe spinal cord injury. Exp Neurol 2020; 327:113246. [DOI: 10.1016/j.expneurol.2020.113246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
|
12
|
Mikhaylov A, Pimashkin A, Pigareva Y, Gerasimova S, Gryaznov E, Shchanikov S, Zuev A, Talanov M, Lavrov I, Demin V, Erokhin V, Lobov S, Mukhina I, Kazantsev V, Wu H, Spagnolo B. Neurohybrid Memristive CMOS-Integrated Systems for Biosensors and Neuroprosthetics. Front Neurosci 2020; 14:358. [PMID: 32410943 PMCID: PMC7199501 DOI: 10.3389/fnins.2020.00358] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Here we provide a perspective concept of neurohybrid memristive chip based on the combination of living neural networks cultivated in microfluidic/microelectrode system, metal-oxide memristive devices or arrays integrated with mixed-signal CMOS layer to control the analog memristive circuits, process the decoded information, and arrange a feedback stimulation of biological culture as parts of a bidirectional neurointerface. Our main focus is on the state-of-the-art approaches for cultivation and spatial ordering of the network of dissociated hippocampal neuron cells, fabrication of a large-scale cross-bar array of memristive devices tailored using device engineering, resistive state programming, or non-linear dynamics, as well as hardware implementation of spiking neural networks (SNNs) based on the arrays of memristive devices and integrated CMOS electronics. The concept represents an example of a brain-on-chip system belonging to a more general class of memristive neurohybrid systems for a new-generation robotics, artificial intelligence, and personalized medicine, discussed in the framework of the proposed roadmap for the next decade period.
Collapse
Affiliation(s)
- Alexey Mikhaylov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Pimashkin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Yana Pigareva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | - Evgeny Gryaznov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Sergey Shchanikov
- Department of Information Technologies, Vladimir State University, Murom, Russia
| | - Anton Zuev
- Department of Information Technologies, Vladimir State University, Murom, Russia
| | - Max Talanov
- Neuroscience Laboratory, Kazan Federal University, Kazan, Russia
| | - Igor Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Laboratory of Motor Neurorehabilitation, Kazan Federal University, Kazan, Russia
| | | | - Victor Erokhin
- Neuroscience Laboratory, Kazan Federal University, Kazan, Russia
- Kurchatov Institute, Moscow, Russia
- CNR-Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parma, Italy
| | - Sergey Lobov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Irina Mukhina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Technology Group, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Victor Kazantsev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Huaqiang Wu
- Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Bernardo Spagnolo
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Dipartimento di Fisica e Chimica-Emilio Segrè, Group of Interdisciplinary Theoretical Physics, Università di Palermo and CNISM, Unità di Palermo, Palermo, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy
| |
Collapse
|
13
|
Chia R, Zhong H, Vissel B, Edgerton VR, Gad P. Novel Activity Detection Algorithm to Characterize Spontaneous Stepping During Multimodal Spinal Neuromodulation After Mid-Thoracic Spinal Cord Injury in Rats. Front Syst Neurosci 2020; 13:82. [PMID: 32009910 PMCID: PMC6974470 DOI: 10.3389/fnsys.2019.00082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
A mid-thoracic spinal cord injury (SCI) severely impairs activation of the lower limb sensorimotor spinal networks, leading to paralysis. Various neuromodulatory techniques including electrical and pharmacological activation of the spinal networks have been successful in restoring locomotor function after SCI. We hypothesized that the combination of self-training in a natural environment with epidural stimulation (ES), quipazine (Quip), and strychnine (Strych) would result in greater activity in a cage environment after paralysis compared to either intervention alone. To assess this, we developed a method measuring and characterizing the chronic EMG recordings from tibialis anterior (TA) and soleus (Sol) muscles while rats were freely moving in their home cages. We then assessed the relationship between the change in recorded activity over time and motor-evoked potentials (MEPs) in animals receiving treatments. We found that the combination of ES, Quip, and Strych (sqES) generated the greatest level of recovery followed by ES + Quip (qES) while ES + Strych (sES) and ES alone showed least improvement in recorded activity. Further, we observed an exponential relationship between late response (LR) component of the MEPs and spontaneously generated step-like activity. Our data demonstrate the feasibility and potential importance of quantitatively monitoring mechanistic factors linked to activity-dependence in response to combinatorial interventions compared to individual therapies after SCI.
Collapse
Affiliation(s)
- Raymond Chia
- Faculty of Science, Centre for Neuroscience and Regenerative Medicine, University of Technology Sydney, Sydney, NSW, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bryce Vissel
- Faculty of Science, Centre for Neuroscience and Regenerative Medicine, University of Technology Sydney, Sydney, NSW, Australia.,St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - V Reggie Edgerton
- Faculty of Science, Centre for Neuroscience and Regenerative Medicine, University of Technology Sydney, Sydney, NSW, Australia.,Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Parag Gad
- Faculty of Science, Centre for Neuroscience and Regenerative Medicine, University of Technology Sydney, Sydney, NSW, Australia.,Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Islam R, Cuellar CA, Felmlee B, Riccelli T, Silvernail J, Boschen SL, Grahn P, Lavrov I. Multifactorial motor behavior assessment for real-time evaluation of emerging therapeutics to treat neurologic impairments. Sci Rep 2019; 9:16503. [PMID: 31712725 PMCID: PMC6848091 DOI: 10.1038/s41598-019-52806-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Integrating multiple assessment parameters of motor behavior is critical for understanding neural activity dynamics during motor control in both intact and dysfunctional nervous systems. Here, we described a novel approach (termed Multifactorial Behavioral Assessment (MfBA)) to integrate, in real-time, electrophysiological and biomechanical properties of rodent spinal sensorimotor network activity with behavioral aspects of motor task performance. Specifically, the MfBA simultaneously records limb kinematics, multi-directional forces and electrophysiological metrics, such as high-fidelity chronic intramuscular electromyography synchronized in time to spinal stimulation in order to characterize spinal cord functional motor evoked potentials (fMEPs). Additionally, we designed the MfBA to incorporate a body weight support system to allow bipedal and quadrupedal stepping on a treadmill and in an open field environment to assess function in rodent models of neurologic disorders that impact motor activity. This novel approach was validated using, a neurologically intact cohort, a cohort with unilateral Parkinsonian motor deficits due to midbrain lesioning, and a cohort with complete hind limb paralysis due to T8 spinal cord transection. In the SCI cohort, lumbosacral epidural electrical stimulation (EES) was applied, with and without administration of the serotonergic agonist Quipazine, to enable hind limb motor functions following paralysis. The results presented herein demonstrate the MfBA is capable of integrating multiple metrics of motor activity in order to characterize relationships between EES inputs that modulate mono- and polysynaptic outputs from spinal circuitry which in turn, can be used to elucidate underlying electrophysiologic mechanisms of motor behavior. These results also demonstrate that proposed MfBA is an effective tool to integrate biomechanical and electrophysiology metrics, synchronized to therapeutic inputs such as EES or pharmacology, during body weight supported treadmill or open field motor activities, to target a high range of variations in motor behavior as a result of neurological deficit at the different levels of CNS.
Collapse
Affiliation(s)
- Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Carlos A Cuellar
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México, Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ben Felmlee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Peter Grahn
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Taccola G, Gad P, Culaclii S, Ichiyama RM, Liu W, Edgerton VR. Using EMG to deliver lumbar dynamic electrical stimulation to facilitate cortico-spinal excitability. Brain Stimul 2019; 13:20-34. [PMID: 31585723 DOI: 10.1016/j.brs.2019.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/06/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Potentiation of synaptic activity in spinal networks is reflected in the magnitude of modulation of motor responses evoked by spinal and cortical input. After spinal cord injury, motor evoked responses can be facilitated by pairing cortical and peripheral nerve stimuli. OBJECTIVE To facilitate synaptic potentiation of cortico-spinal input with epidural electrical stimulation, we designed a novel neuromodulation method called dynamic stimulation (DS), using patterns derived from hind limb EMG signal during stepping. METHODS DS was applied dorsally to the lumbar enlargement through a high-density epidural array composed of independent platinum-based micro-electrodes. RESULTS In fully anesthetized intact adult rats, at the interface array/spinal cord, the temporal and spatial features of DS neuromodulation affected the entire lumbosacral network, particularly the most rostral and caudal segments covered by the array. DS induced a transient (at least 1 min) increase in spinal cord excitability and, compared to tonic stimulation, generated a more robust potentiation of the motor output evoked by single pulses applied to the spinal cord. When sub-threshold pulses were selectively applied to a cortical motor area, EMG responses from the contralateral leg were facilitated by the delivery of DS to the lumbosacral cord. Finally, based on motor-evoked responses, DS was linked to a greater amplitude of motor output shortly after a calibrated spinal cord contusion. CONCLUSION Compared to traditional tonic waveforms, DS amplifies both spinal and cortico-spinal input aimed at spinal networks, thus significantly increasing the potential and accelerating the rate of functional recovery after a severe spinal lesion.
Collapse
Affiliation(s)
- Giuliano Taccola
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA; Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy; School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Parag Gad
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Stanislav Culaclii
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | | | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA; Brain Research Institute, University of California, Los Angeles, CA, 90095, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA; Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA; Department of Neurosurgery, University of California, Los Angeles, CA, 90095, USA; Brain Research Institute, University of California, Los Angeles, CA, 90095, USA; The Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, 2007, NSW, Australia; Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari Adscrit a La Universitat Autònoma de Barcelona, Barcelona, 08916, Badalona, Spain.
| |
Collapse
|
16
|
Calvert JS, Grahn PJ, Zhao KD, Lee KH. Emergence of Epidural Electrical Stimulation to Facilitate Sensorimotor Network Functionality After Spinal Cord Injury. Neuromodulation 2019; 22:244-252. [PMID: 30840354 DOI: 10.1111/ner.12938] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) disrupts signaling pathways between the brain and spinal networks below the level of injury. In cases of severe SCI, permanent loss of sensorimotor and autonomic function can occur. The standard of care for severe SCI uses compensation strategies to maximize independence during activities of daily living while living with chronic SCI-related dysfunctions. Over the past several years, the research field of spinal neuromodulation has generated promising results that hold potential to enable recovery of functions via epidural electrical stimulation (EES). METHODS This review provides a historical account of the translational research efforts that led to the emergence of EES of the spinal cord to enable intentional control of motor functions that were lost after SCI. We also highlight the major limitations associated with EES after SCI and propose future directions of spinal neuromodulation research. RESULTS Multiple, independent studies have demonstrated return of motor function via EES in individuals with chronic SCI. These enabled motor functions include intentional, controlled movement of previously paralyzed extremities, independent standing and stepping, and increased grip strength. In addition, improvements in cardiovascular health, respiratory function, body composition, and urologic function have been reported. CONCLUSIONS EES holds promise to enable functions thought to be permanently lost due to SCI. However, EES is currently restricted to scientific investigation in humans with SCI and requires further validation of factors such as safety and efficacy before clinical translation.
Collapse
Affiliation(s)
| | - Peter J Grahn
- Department of Neurologic Surgery, Rochester, MN, USA.,Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, MN, USA
| | - Kristin D Zhao
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Rochester, MN, USA.,Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Taccola G, Sayenko D, Gad P, Gerasimenko Y, Edgerton VR. And yet it moves: Recovery of volitional control after spinal cord injury. Prog Neurobiol 2017; 160:64-81. [PMID: 29102670 PMCID: PMC5773077 DOI: 10.1016/j.pneurobio.2017.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical neurophysiological and neurorehabilitation research has generated rather surprising levels of recovery of volitional sensory-motor function in persons with chronic motor paralysis following a spinal cord injury. The key factor in this recovery is largely activity-dependent plasticity of spinal and supraspinal networks. This key factor can be triggered by neuromodulation of these networks with electrical and pharmacological interventions. This review addresses some of the systems-level physiological mechanisms that might explain the effects of electrical modulation and how repetitive training facilitates the recovery of volitional motor control. In particular, we substantiate the hypotheses that: (1) in the majority of spinal lesions, a critical number and type of neurons in the region of the injury survive, but cannot conduct action potentials, and thus are electrically non-responsive; (2) these neuronal networks within the lesioned area can be neuromodulated to a transformed state of electrical competency; (3) these two factors enable the potential for extensive activity-dependent reorganization of neuronal networks in the spinal cord and brain, and (4) propriospinal networks play a critical role in driving this activity-dependent reorganization after injury. Real-time proprioceptive input to spinal networks provides the template for reorganization of spinal networks that play a leading role in the level of coordination of motor pools required to perform a given functional task. Repetitive exposure of multi-segmental sensory-motor networks to the dynamics of task-specific sensory input as occurs with repetitive training can functionally reshape spinal and supraspinal connectivity thus re-enabling one to perform complex motor tasks, even years post injury.
Collapse
Affiliation(s)
- G Taccola
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
| | - D Sayenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA
| | - P Gad
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA
| | - Y Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Pavlov Institute of Physiology, St. Petersburg 199034, Russia
| | - V R Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Department of Neurobiology, University of California, Los Angeles, CA 90095 USA; Department of Neurosurgery, University of California, Los Angeles, CA 90095 USA; Brain Research Institute, University of California, Los Angeles, CA 90095 USA; The Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, 2007 NSW, Australia; Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, 08916 Badalona, Spain.
| |
Collapse
|
18
|
Cuellar CA, Mendez AA, Islam R, Calvert JS, Grahn PJ, Knudsen B, Pham T, Lee KH, Lavrov IA. The Role of Functional Neuroanatomy of the Lumbar Spinal Cord in Effect of Epidural Stimulation. Front Neuroanat 2017; 11:82. [PMID: 29075183 PMCID: PMC5642185 DOI: 10.3389/fnana.2017.00082] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/07/2017] [Indexed: 01/07/2023] Open
Abstract
In this study, the neuroanatomy of the swine lumbar spinal cord, particularly the spatial orientation of dorsal roots was correlated to the anatomical landmarks of the lumbar spine and to the magnitude of motor evoked potentials during epidural electrical stimulation (EES). We found that the proximity of the stimulating electrode to the dorsal roots entry zone across spinal segments was a critical factor to evoke higher peak-to-peak motor responses. Positioning the electrode close to the dorsal roots produced a significantly higher impact on motor evoked responses than rostro-caudal shift of electrode from segment to segment. Based on anatomical measurements of the lumbar spine and spinal cord, significant differences were found between L1-L4 to L5-L6 segments in terms of spinal cord gross anatomy, dorsal roots and spine landmarks. Linear regression analysis between intersegmental landmarks was performed and L2 intervertebral spinous process length was selected as the anatomical reference in order to correlate vertebral landmarks and the spinal cord structures. These findings present for the first time, the influence of spinal cord anatomy on the effects of epidural stimulation and the role of specific orientation of electrodes on the dorsal surface of the dura mater in relation to the dorsal roots. These results are critical to consider as spinal cord neuromodulation strategies continue to evolve and novel spinal interfaces translate into clinical practice.
Collapse
Affiliation(s)
- Carlos A Cuellar
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, United States
| | - Aldo A Mendez
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, United States
| | - Riazul Islam
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, United States
| | - Jonathan S Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo ClinicRochester, MN, United States
| | - Peter J Grahn
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, United States
| | - Bruce Knudsen
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, United States
| | - Tuan Pham
- Department of Biological Sciences, Lehigh UniversityBethlehem, PA, United States
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, United States.,Department of Physical Medicine and Rehabilitation, Mayo ClinicRochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo ClinicRochester, MN, United States
| | - Igor A Lavrov
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo ClinicRochester, MN, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia
| |
Collapse
|
19
|
Shah PK, Lavrov I. Spinal Epidural Stimulation Strategies: Clinical Implications of Locomotor Studies in Spinal Rats. Neuroscientist 2017; 23:664-680. [PMID: 28345483 DOI: 10.1177/1073858417699554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Significant advancements in spinal epidural stimulation (ES) strategies to enable volitional motor control in persons with a complete spinal cord injury (SCI) have generated much excitement in the field of neurorehabilitation. Still, an obvious gap lies in the ability of ES to effectively generate a robust locomotor stepping response after a complete SCI in rodents, but not in humans. In order to reveal potential discrepancies between rodent and human studies that account for this void, in this review, we summarize the findings of studies that have utilized ES strategies to enable successful hindlimb stepping in spinal rats. Recent clinical and preclinical evidence indicates that motor training with ES plays a crucial role in tuning spinal neural circuitry to generate meaningful motor output. Concurrently administered pharmacology can also facilitate the circuitry to provide near optimal motor performance in SCI rats. However, as of today, the evidence for pharmacological agents to enhance motor function in persons with complete SCI is insignificant. These and other recent findings discussed in this review provide insight into addressing the translational gap, guide the design of relevant preclinical experiments, and facilitate development of new approaches for motor recovery in patients with complete SCIs.
Collapse
Affiliation(s)
- Prithvi K Shah
- 1 Division of Rehabilitation Sciences, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, USA.,2 Department of Neurobiology, Stony Brook University, Stony Brook, NY, USA
| | - Igor Lavrov
- 3 Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.,4 Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,5 Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
20
|
Islamov RR, Sokolov ME, Bashirov FV, Fadeev FO, Shmarov MM, Naroditskiy BS, Povysheva TV, Shaymardanova GF, Yakupov RA, Chelyshev YA, Lavrov IA. A pilot study of cell-mediated gene therapy for spinal cord injury in mini pigs. Neurosci Lett 2017; 644:67-75. [PMID: 28213069 DOI: 10.1016/j.neulet.2017.02.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/24/2016] [Accepted: 02/12/2017] [Indexed: 11/26/2022]
Abstract
Currently, in clinical practice there is no efficient way to overcome the sequences of neurodegeneration after spinal cord traumatic injury. Using a new experimental model of spinal cord contusion injury on miniature pigs, we proposed to deliver therapeutic genes encoding vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF) and neural cell adhesion molecule (NCAM) to the damaged area, using umbilical cord blood mononuclear cells (UCBC). In this study, genetically engineered UCBC (2×106 cells in 200 ml of saline) were injected intrathecally to mini-pigs 10days after SCI. Control and experimental mini pigs were observed for 60days after surgery. Histological, electrophysiological, and clinical evaluation demonstrated significant improvement in animal treated with genetically engineered UCBCs. Difference in recovery of the somatosensory evoked potentials and in histological findings in control and treated animals support the positive effect of the gene-cell constriction for recovery after spinal cord injury. Results of this study suggest that transplantation of UCBCs simultaneously transduced with three recombinant adenoviruses Ad5-VEGF, Ad5-GDNF and Ad5-NCAM represent a novel potentially successful approach for treatment of spinal cord injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Igor Aleksandrovich Lavrov
- Kazan Federal University, Kazan, Russia; Departments of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
21
|
Khodadadi Z, Kobravi HR, Majd MF. A Fuzzy Controller for Movement Stabilization Using Afferent Control: Controller Synthesis and Simulation. JOURNAL OF MEDICAL SIGNALS AND SENSORS 2017; 7:239-246. [PMID: 29204381 PMCID: PMC5691563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stimulation of spinal sensorimotor circuits can improve motor control in animal models and humans with spinal cord injury (SCI). More recent evidence suggests that the stimulation increases the level of excitability in the spinal circuits, activates central pattern generators, and it is also able to recruit distinctive afferent pathways connected to specific sensorimotor circuits. In addition, the stimulation generates well-defined responses in leg muscles after each pulse. The problem is that in most of the neuromodulation devices, electrical stimulation parameters are regulated manually and stay constant during movement. Such a technique is likely suboptimal to intercede maximum therapeutic effects in patients. Therefore, in this article, a fuzzy controller has been designed to control limb kinematics during locomotion using the afferent control in a neuromechanical model without supraspinal drive simulating post-SCI situation. The proposed controller automatically tunes the weights of group Ia afferent inputs of the spinal cord to reset the phase appropriately during the reaction to an external perturbation. The kinematic motion data and weights of group Ia afferent inputs were the input and output of the controller, respectively. Simulation results showed the acceptable performance of the controller to establish adaptive locomotion against the perturbing forces based on the phase resetting of the walking rhythm.
Collapse
Affiliation(s)
- Zahra Khodadadi
- Research Center of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hamid R. Kobravi
- Research Center of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran,Address for correspondence: Dr. Hamid R. Kobravi, Department of Electrical Engineering, Faculty of Engineering, Islamic Azad University of Mashhad, Iran. E-mail:
| | - Milad F. Majd
- Research Center of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
22
|
Neuromodulation of the neural circuits controlling the lower urinary tract. Exp Neurol 2016; 285:182-189. [PMID: 27381425 DOI: 10.1016/j.expneurol.2016.06.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023]
Abstract
The inability to control timely bladder emptying is one of the most serious challenges among the many functional deficits that occur after a spinal cord injury. We previously demonstrated that electrodes placed epidurally on the dorsum of the spinal cord can be used in animals and humans to recover postural and locomotor function after complete paralysis and can be used to enable voiding in spinal rats. In the present study, we examined the neuromodulation of lower urinary tract function associated with acute epidural spinal cord stimulation, locomotion, and peripheral nerve stimulation in adult rats. Herein we demonstrate that electrically evoked potentials in the hindlimb muscles and external urethral sphincter are modulated uniquely when the rat is stepping bipedally and not voiding, immediately pre-voiding, or when voiding. We also show that spinal cord stimulation can effectively neuromodulate the lower urinary tract via frequency-dependent stimulation patterns and that neural peripheral nerve stimulation can activate the external urethral sphincter both directly and via relays in the spinal cord. The data demonstrate that the sensorimotor networks controlling bladder and locomotion are highly integrated neurophysiologically and behaviorally and demonstrate how these two functions are modulated by sensory input from the tibial and pudental nerves. A more detailed understanding of the high level of interaction between these networks could lead to the integration of multiple neurophysiological strategies to improve bladder function. These data suggest that the development of strategies to improve bladder function should simultaneously engage these highly integrated networks in an activity-dependent manner.
Collapse
|
23
|
Wenger N, Moraud EM, Raspopovic S, Bonizzato M, DiGiovanna J, Musienko P, Morari M, Micera S, Courtine G. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med 2016; 6:255ra133. [PMID: 25253676 DOI: 10.1126/scitranslmed.3008325] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuromodulation of spinal sensorimotor circuits improves motor control in animal models and humans with spinal cord injury. With common neuromodulation devices, electrical stimulation parameters are tuned manually and remain constant during movement. We developed a mechanistic framework to optimize neuromodulation in real time to achieve high-fidelity control of leg kinematics during locomotion in rats. We first uncovered relationships between neuromodulation parameters and recruitment of distinct sensorimotor circuits, resulting in predictive adjustments of leg kinematics. Second, we established a technological platform with embedded control policies that integrated robust movement feedback and feed-forward control loops in real time. These developments allowed us to conceive a neuroprosthetic system that controlled a broad range of foot trajectories during continuous locomotion in paralyzed rats. Animals with complete spinal cord injury performed more than 1000 successive steps without failure, and were able to climb staircases of various heights and lengths with precision and fluidity. Beyond therapeutic potential, these findings provide a conceptual and technical framework to personalize neuromodulation treatments for other neurological disorders.
Collapse
Affiliation(s)
- Nikolaus Wenger
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Eduardo Martin Moraud
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland. Automatic Control Laboratory, Swiss Federal Institute of Technology (ETHZ), Zurich CH-8092, Switzerland
| | - Stanisa Raspopovic
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland. The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa IT-56025, Italy
| | - Marco Bonizzato
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Jack DiGiovanna
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland
| | - Pavel Musienko
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland. Pavlov Institute of Physiology, St. Petersburg RU-100034, Russia
| | - Manfred Morari
- Automatic Control Laboratory, Swiss Federal Institute of Technology (ETHZ), Zurich CH-8092, Switzerland
| | - Silvestro Micera
- Translational Neural Engineering Lab, Center for Neuroprosthetics and Institute of Bioengineering, School of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland. The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa IT-56025, Italy
| | - Grégoire Courtine
- International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
24
|
Gerasimenko YP, Lu DC, Modaber M, Zdunowski S, Gad P, Sayenko DG, Morikawa E, Haakana P, Ferguson AR, Roy RR, Edgerton VR. Noninvasive Reactivation of Motor Descending Control after Paralysis. J Neurotrauma 2015; 32:1968-80. [PMID: 26077679 DOI: 10.1089/neu.2015.4008] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The present prognosis for the recovery of voluntary control of movement in patients diagnosed as motor complete is generally poor. Herein we introduce a novel and noninvasive stimulation strategy of painless transcutaneous electrical enabling motor control and a pharmacological enabling motor control strategy to neuromodulate the physiological state of the spinal cord. This neuromodulation enabled the spinal locomotor networks of individuals with motor complete paralysis for 2-6 years American Spinal Cord Injury Association Impairment Scale (AIS) to be re-engaged and trained. We showed that locomotor-like stepping could be induced without voluntary effort within a single test session using electrical stimulation and training. We also observed significant facilitation of voluntary influence on the stepping movements in the presence of stimulation over a 4-week period in each subject. Using these strategies we transformed brain-spinal neuronal networks from a dormant to a functional state sufficiently to enable recovery of voluntary movement in five out of five subjects. Pharmacological intervention combined with stimulation and training resulted in further improvement in voluntary motor control of stepping-like movements in all subjects. We also observed on-command selective activation of the gastrocnemius and soleus muscles when attempting to plantarflex. At the end of 18 weeks of weekly interventions the mean changes in the amplitude of voluntarily controlled movement without stimulation was as high as occurred when combined with electrical stimulation. Additionally, spinally evoked motor potentials were readily modulated in the presence of voluntary effort, providing electrophysiological evidence of the re-establishment of functional connectivity among neural networks between the brain and the spinal cord.
Collapse
Affiliation(s)
- Yury P Gerasimenko
- 1 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,2 Pavlov Institute of Physiology , St. Petersburg, Russia .,3 Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan, Russia
| | - Daniel C Lu
- 4 Department of Neurosurgery, University of California , Los Angeles, Los Angeles, California.,5 Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Morteza Modaber
- 4 Department of Neurosurgery, University of California , Los Angeles, Los Angeles, California.,5 Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Sharon Zdunowski
- 1 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California
| | - Parag Gad
- 1 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California
| | - Dimitry G Sayenko
- 1 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California
| | - Erika Morikawa
- 4 Department of Neurosurgery, University of California , Los Angeles, Los Angeles, California.,5 Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Piia Haakana
- 4 Department of Neurosurgery, University of California , Los Angeles, Los Angeles, California.,5 Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | - Adam R Ferguson
- 6 Brain and Spinal Injury Center, Department of Neurological Surgery, University of California , San Francisco, San Francisco, California
| | - Roland R Roy
- 1 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,7 Brain Research Institute, University of California , Los Angeles, Los Angeles, California
| | - V Reggie Edgerton
- 1 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,4 Department of Neurosurgery, University of California , Los Angeles, Los Angeles, California.,7 Brain Research Institute, University of California , Los Angeles, Los Angeles, California
| |
Collapse
|
25
|
Gad P, Roy RR, Choe J, Zhong H, Nandra MS, Tai YC, Gerasimenko Y, Edgerton VR. Electrophysiological mapping of rat sensorimotor lumbosacral spinal networks after complete paralysis. PROGRESS IN BRAIN RESEARCH 2015; 218:199-212. [PMID: 25890138 DOI: 10.1016/bs.pbr.2015.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this chapter, we outline the use of a multisite electrode array in the spinal rat model to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats. The results demonstrate that spinal rats can stand and step when the spinal cord is stimulated tonically via electrodes located at specific sites on the spinal cord. The quality of stepping and standing was dependent on the location of the electrodes on the spinal cord, the specific stimulation parameters, and the orientation of the cathode and anode. The spinal motor evoked potentials in selected muscles during standing and stepping are shown to be critical tools to study selective activation of interneuronal circuits via responses of varying latencies. The present results provide further evidence that the assessment of functional networks in the background of behaviorally relevant functional states is likely to be a physiological tool of considerable importance in developing strategies to facilitate recovery of motor function after a number of neuromotor disorders.
Collapse
Affiliation(s)
- Parag Gad
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Roland R Roy
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Jaehoon Choe
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Department of Neuroscience, University of California, Los Angeles, CA, USA
| | - Hui Zhong
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | | | - Yu-Chong Tai
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yury Gerasimenko
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Pavlov Institute of Physiology, St. Petersburg, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - V Reggie Edgerton
- Departments of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Department of Neurobiology, University of California, Los Angeles, CA, USA; Department of Neurosurgery, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Alam M, Garcia-Alias G, Shah PK, Gerasimenko Y, Zhong H, Roy RR, Edgerton VR. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats. J Neurosci Methods 2015; 247:50-7. [PMID: 25791014 DOI: 10.1016/j.jneumeth.2015.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Epidural spinal cord stimulation is a promising technique for modulating the level of excitability and reactivation of dormant spinal neuronal circuits after spinal cord injury (SCI). We examined the ability of chronically implanted epidural stimulation electrodes within the cervical spinal cord to (1) directly elicit spinal motor evoked potentials (sMEPs) in forelimb muscles and (2) determine whether these sMEPs can serve as a biomarker of forelimb motor function after SCI. NEW METHOD We implanted EMG electrodes in forelimb muscles and epidural stimulation electrodes at C6 and C8 in adult rats. After recovering from a dorsal funiculi crush (C4), rats were tested with different stimulation configurations and current intensities to elicit sMEPs and determined forelimb grip strength. RESULTS sMEPs were evoked in all muscles tested and their characteristics were dependent on electrode configurations and current intensities. C6(-) stimulation elicited more robust sMEPs than stimulation at C8(-). Stimulating C6 and C8 simultaneously produced better muscle recruitment and higher grip strengths than stimulation at one site. COMPARISON WITH EXISTING METHOD(S) Classical method to select the most optimal stimulation configuration is to empirically test each combination individually for every subject and relate to functional improvements. This approach is impractical, requiring extensively long experimental time to determine the more effective stimulation parameters. Our proposed method is fast and physiologically sound. CONCLUSIONS Results suggest that sMEPs from forelimb muscles can be useful biomarkers for identifying optimal parameters for epidural stimulation of the cervical spinal cord after SCI.
Collapse
Affiliation(s)
- Monzurul Alam
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, United States
| | - Guillermo Garcia-Alias
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States
| | - Prithvi K Shah
- Health &Technology and Neurobiology, Stony Brook University, Stony Brook, New York, United States
| | - Yury Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States; Pavlov Institute of Physiology, St. Petersburg 199034, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420006, Russia
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States
| | - Roland R Roy
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States; Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, United States; Brain Research Institute, University of California, Los Angeles, CA 90095, United States; Department of Neurobiology, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
27
|
Gad P, Roy RR, Choe J, Creagmile J, Zhong H, Gerasimenko Y, Edgerton VR. Electrophysiological biomarkers of neuromodulatory strategies to recover motor function after spinal cord injury. J Neurophysiol 2015; 113:3386-96. [PMID: 25695648 DOI: 10.1152/jn.00918.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
The spinal cord contains the circuitry to control posture and locomotion after complete paralysis, and this circuitry can be enabled with epidural stimulation [electrical enabling motor control (eEmc)] and/or administration of pharmacological agents [pharmacological enabling motor control (fEmc)] when combined with motor training. We hypothesized that the characteristics of the spinally evoked potentials after chronic administration of both strychnine and quipazine under the influence of eEmc during standing and stepping can be used as biomarkers to predict successful motor performance. To test this hypothesis we trained rats to step bipedally for 7 wk after paralysis and characterized the motor potentials evoked in the soleus and tibialis anterior (TA) muscles with the rats in a non-weight-bearing position, standing and stepping. The middle responses (MRs) to spinally evoked stimuli were suppressed with either or both drugs when the rat was suspended, whereas the addition of either or both drugs resulted in an overall activation of the extensor muscles during stepping and/or standing and reduced the drag duration and cocontraction between the TA and soleus muscles during stepping. The administration of quipazine and strychnine in concert with eEmc and step training after injury resulted in larger-amplitude evoked potentials [MRs and late responses (LRs)] in flexors and extensors, with the LRs consisting of a more normal bursting pattern, i.e., randomly generated action potentials within the bursts. This pattern was linked to more successful standing and stepping. Thus it appears that selected features of the patterns of potentials evoked in specific muscles with stimulation can serve as effective biomarkers and predictors of motor performance.
Collapse
Affiliation(s)
- Parag Gad
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Roland R Roy
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, California
| | - Jaehoon Choe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Jack Creagmile
- Department of Neuroscience, University of California, Los Angeles, California
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Yury Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Pavlov Institute of Physiology, St. Petersburg, Russia; and Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Department of Neurobiology, University of California, Los Angeles, California; Department of Neurosurgery, University of California, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, California;
| |
Collapse
|
28
|
Gad PN, Roy RR, Zhong H, Lu DC, Gerasimenko YP, Edgerton VR. Initiation of bladder voiding with epidural stimulation in paralyzed, step trained rats. PLoS One 2014; 9:e108184. [PMID: 25264607 PMCID: PMC4180450 DOI: 10.1371/journal.pone.0108184] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/15/2014] [Indexed: 11/26/2022] Open
Abstract
The inability to control timely bladder emptying is one of the most serious challenges among the several functional deficits that occur after a complete spinal cord injury. Having demonstrated that electrodes placed epidurally on the dorsum of the spinal cord can be used in animals and humans to recover postural and locomotor function after complete paralysis, we hypothesized that a similar approach could be used to recover bladder function after paralysis. Also knowing that posture and locomotion can be initiated immediately with a specific frequency-dependent stimulation pattern and that with repeated stimulation-training sessions these functions can improve even further, we reasoned that the same two strategies could be used to regain bladder function. Recent evidence suggests that rats with severe paralysis can be rehabilitated with a multisystem neuroprosthetic training regime that counteracts the development of neurogenic bladder dysfunction. No data regarding the acute effects of locomotion on bladder function, however, were reported. In this study we show that enabling of locomotor-related spinal neuronal circuits by epidural stimulation also influences neural networks controlling bladder function and can play a vital role in recovering bladder function after complete paralysis. We have identified specific spinal cord stimulation parameters that initiate bladder emptying within seconds of the initiation of epidural stimulation. The clinical implications of these results are substantial in that this strategy could have a major impact in improving the quality of life and longevity of patients while simultaneously dramatically reducing ongoing health maintenance after a spinal cord injury.
Collapse
Affiliation(s)
- Parag N. Gad
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Roland R. Roy
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel C. Lu
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yury P. Gerasimenko
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - V. Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|