Wang CY, Trotter JH, Liakath-Ali K, Lee SJ, Liu X, Südhof TC. Molecular self-avoidance in synaptic neurexin complexes.
SCIENCE ADVANCES 2021;
7:eabk1924. [PMID:
34919427 PMCID:
PMC8682996 DOI:
10.1126/sciadv.abk1924]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 05/30/2023]
Abstract
Synapses are thought to be organized by interactions of presynaptic neurexins with postsynaptic ligands, particularly with neuroligins and cerebellins. However, when a neuron forms adjacent pre- and postsynaptic specializations, as in dendrodendritic or axo-axonic synapses, nonfunctional cis neurexin/ligand interactions would be energetically favored. Here, we reveal an organizational principle for preventing synaptic cis interactions (“self-avoidance”). Using dendrodendritic synapses between mitral and granule cells in the olfactory bulb as a paradigm, we show that, owing to its higher binding affinity, cerebellin-1 blocks the cis interaction of neurexins with neuroligins, thereby enabling trans neurexin/neuroligin interaction. In mitral cells, ablating either cerebellin-1 or neuroligins severely impaired granule cell➔mitral cell synapses, as did overexpression of wild-type neurexins but not of mutant neurexins unable to bind to neuroligins. Our data uncover a molecular interaction network that organizes the self-avoidance of nonfunctional neurexin/ligand cis interactions, thus allowing assembly of physiological trans interactions.
Collapse