1
|
Sakamoto D, Hamaguchi T, Kanemura N, Yasojima T, Kubota K, Suwabe R, Nakayama Y, Abo M. Feature analysis of joint motion in paralyzed and non-paralyzed upper limbs while reaching the occiput: A cross-sectional study in patients with mild hemiplegia. PLoS One 2024; 19:e0295101. [PMID: 38781257 PMCID: PMC11115294 DOI: 10.1371/journal.pone.0295101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
The reaching motion to the back of the head with the hand is an important movement for daily living. The scores of upper limb function tests used in clinical practice alone are difficult to use as a reference when planning exercises for movement improvements. This cross-sectional study aimed to clarify in patients with mild hemiplegia the kinematic characteristics of paralyzed and non-paralyzed upper limbs reaching the occiput. Ten patients with post-stroke hemiplegia who attended the Department of Rehabilitation Medicine of the Jikei University Hospital and met the eligibility criteria were included. Reaching motion to the back of the head by the participants' paralyzed and non-paralyzed upper limbs was measured using three-dimensional motion analysis, and the motor time, joint angles, and angular velocities were calculated. Repeated measures multivariate analysis of covariance was performed on these data. After confirming the fit to the binomial logistic regression model, the cutoff values were calculated using receiver operating characteristic curves. Pattern identification using random forest clustering was performed to analyze the pattern of motor time and joint angles. The cutoff values for the movement until the hand reached the back of the head were 1.6 s for the motor time, 55° for the maximum shoulder joint flexion angle, and 145° for the maximum elbow joint flexion angle. The cutoff values for the movement from the back of the head to the hand being returned to its original position were 1.6 s for the motor time, 145° for the maximum elbow joint flexion angle, 53°/s for the maximum angular velocity of shoulder joint abduction, and 62°/s for the maximum angular velocity of elbow joint flexion. The numbers of clusters were three, four, and four for the outward non-paralyzed side, outward and return paralyzed side, and return non-paralyzed side, respectively. The findings obtained by this study can be used for practice planning in patients with mild hemiplegia who aim to improve the reaching motion to the occiput.
Collapse
Affiliation(s)
- Daigo Sakamoto
- Department of Rehabilitation Medicine, The Jikei University School of Medicine Hospital, Tokyo, Japan
- Department of Rehabilitation, Graduate School of Health Science, Saitama Prefectural University, Saitama, Japan
| | - Toyohiro Hamaguchi
- Department of Rehabilitation, Graduate School of Health Science, Saitama Prefectural University, Saitama, Japan
| | - Naohiko Kanemura
- Department of Rehabilitation, Graduate School of Health Science, Saitama Prefectural University, Saitama, Japan
| | - Takashi Yasojima
- Department of Rehabilitation, Graduate School of Health Science, Saitama Prefectural University, Saitama, Japan
| | - Keisuke Kubota
- Research Development Center, Saitama Prefectural University, Saitama, Japan
| | - Ryota Suwabe
- Department of Rehabilitation Medicine, The Jikei University School of Medicine Hospital, Tokyo, Japan
| | - Yasuhide Nakayama
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Tomita Y, Mullick AA, Feldman AG, Levin MF. Altered Anticipatory Postural Adjustments During Whole-Body Reaching in Subjects With Stroke. Neurorehabil Neural Repair 2024; 38:176-186. [PMID: 38347695 DOI: 10.1177/15459683241231528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
BACKGROUND Coordination between arm movements and postural adjustments is crucial for reaching-while-stepping tasks involving both anticipatory postural adjustments (APAs) and compensatory movements to effectively propel the whole-body forward so that the hand can reach the target. Stroke impairs the ability to coordinate the action of multiple body segments but the underlying mechanisms are unclear. Objective. To determine the effects of stroke on reaching performance and APAs during whole-body reaching. METHODS We tested arm reaching in standing (stand-reach) and reaching-while-stepping (step-reach; 15 trials/condition) in individuals with chronic stroke (n = 18) and age-matched healthy subjects (n = 13). Whole-body kinematics and kinetic data were collected during the tasks. The primary outcome measure for step-reach was "gain" (g), defined as the extent to which the hip displacement contributing to hand motion was neutralized by appropriate changes in upper limb movements (g = 1 indicates complete compensation) and APAs measured as spatio-temporal profiles of the center-of-pressure shifts preceding stepping. RESULTS Individuals with stroke had lower gains and altered APAs compared to healthy controls. In addition, step onset was delayed, and the timing of endpoint, trunk, and foot movement offset was prolonged during step-reach compared to healthy controls. Those with milder sensorimotor impairment and better balance function had higher gains. Altered APAs were also related to reduced balance function. CONCLUSIONS Altered APAs and prolonged movement offset in stroke may lead to a greater reliance on compensatory arm movements. Altered APAs in individuals with stroke may be associated with a reduced shift of referent body configuration during the movement.
Collapse
Affiliation(s)
- Yosuke Tomita
- Department of Physical Therapy, Faculty of Health Care, Takasaki University of Health and Welfare, Gunma, Japan
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Aditi A Mullick
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Anatol G Feldman
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| |
Collapse
|
3
|
Ager AL, Roy JS, Hébert LJ, Roos M, Borms D, Cools AM. Measuring upper limb active joint position sense: Introducing a new clinical tool - The Upper Limb Proprioception Reaching Test. Musculoskelet Sci Pract 2023; 66:102829. [PMID: 37473497 DOI: 10.1016/j.msksp.2023.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Proprioception is our sense of body awareness, including the sub-category of active joint position sense (AJPS). AJPS is fundamental to joint stability and movement coordination. Despite its importance, there remain few confident ways to measure upper limb AJPS in a clinic. OBJECTIVE To assess a new AJPS clinical tool, the Upper Limb Proprioception Reaching Test (PRO-Reach; seven targets), for discriminant validity, intra-rater and absolute reliability. DESIGN Cross-sectional measurement study. METHODS Seventy-five healthy participants took part in a single session with 2 consecutive evaluations (E1 and E2) (within-day reliability). Twenty participants were randomly selected to perform a dominant shoulder fatigue protocol (discriminant validity), whereafter a third evaluation was repeated (E3). The PRO-Reach was analyzed with paired t tests (discriminant validity), intra-class correlation coefficients (ICCs) and minimal detectable change [MDC]) (intra-rater: within-day and between-trial relative and absolute reliability). RESULTS The PRO-Reach supports moderate (mostly superior targets) to excellent (mostly inferior targets) reliability. Between-trial ICCs (T1/T2/T3) varied between 0.72 and 0.90, and within-day (E1/E2) ICCs between 0.45 and 0.72, with associated MDC95 values (3.9-5.0 cm). The overall scores (seven targets) supported the strongest within-day reliability (ICC = 0.77). The inferior targets demonstrated the highest between-trial and within-day reliability (ICCs = 0.90 and 0.72). A fatigue effect was found with the superior and superior-lateral targets (P < .05). CONCLUSIONS The inferior targets and overall scores demonstrate the strongest reliability. The use of the PRO-Reach tool may be suitable for clinical use upon further psychometric testing amongst pathological populations. LEVEL OF EVIDENCE Level III cross-sectional study.
Collapse
Affiliation(s)
- Amanda L Ager
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Rehabilitation Institute (Cirris), Québec City, Québec, Canada; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Jean-Sébastien Roy
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Rehabilitation Institute (Cirris), Québec City, Québec, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Luc J Hébert
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Rehabilitation Institute (Cirris), Québec City, Québec, Canada; Departments of Rehabilitation and Radiology/Nuclear Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Marianne Roos
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Rehabilitation Institute (Cirris), Québec City, Québec, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Dorien Borms
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ann M Cools
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Motor Control: A Conceptual Framework for Rehabilitation. Motor Control 2022; 26:497-517. [PMID: 35894963 DOI: 10.1123/mc.2022-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022]
Abstract
There is a lack of conceptual and theoretical clarity among clinicians and researchers regarding the control of motor actions based on the use of the term "motor control." It is important to differentiate control processes from observations of motor output to improve communication and to make progress in understanding motor disorders and their remediation. This article clarifies terminology related to theoretical concepts underlying the control of motor actions, emphasizing how the term "motor control" is applied in neurorehabilitation. Two major opposing theoretical frameworks are described (i.e., direct and indirect), and their strengths and pitfalls are discussed. Then, based on the proposition that sensorimotor rehabilitation should be predicated on one comprehensive theory instead of an eclectic mix of theories and models, several solutions are offered about how to address controversies in motor learning, optimality, and adaptability of movement.
Collapse
|
5
|
Hasanbarani F, Batalla MAP, Feldman AG, Levin MF. Mild Stroke Affects Pointing Movements Made in Different Frames of Reference. Neurorehabil Neural Repair 2021; 35:207-219. [PMID: 33514272 PMCID: PMC7934162 DOI: 10.1177/1545968321989348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Motor performance is a complex process controlled in task-specific spatial frames of reference (FRs). Movements can be made within the framework of the body (egocentric FR) or external space (exocentric FR). People with stroke have impaired reaching, which may be related to deficits in movement production in different FRs. Objective To characterize rapid motor responses to changes in the number of degrees of freedom for movements made in different FRs and their relationship with sensorimotor and cognitive impairment in individuals with mild chronic stroke. Methods Healthy and poststroke individuals moved their hand along the contralateral forearm (egocentric task) and between targets in the peripersonal space (exocentric task) without vision while flexing the trunk. Trunk movement was blocked in randomized trials. Results For the egocentric task, controls produced the same endpoint trajectories in both conditions (free- and blocked-trunk) by preserving similar shoulder-elbow interjoint coordination (IJC). However, endpoint trajectories were dissimilar because of altered IJC in stroke. For the exocentric task, controls produced the same endpoint trajectories when the trunk was free or blocked by rapidly changing the IJC, whereas this was not the case in stroke. Deficits in exocentric movement after stroke were related to cognitive but not sensorimotor impairment. Conclusions Individuals with mild stroke have deficits rapidly responding to changing conditions for complex reaching tasks. This may be related to cognitive deficits and limitations in the regulation of tonic stretch reflex thresholds. Such deficits should be considered in rehabilitation programs encouraging the reintegration of the affected arm into activities of daily living.
Collapse
Affiliation(s)
- Fariba Hasanbarani
- School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal, CRIR, Montréal, QC, Canada
| | - Marc Aureli Pique Batalla
- School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal, CRIR, Montréal, QC, Canada.,Faculty of Health, Medicine and Life Sciences, Maastricht University, Limburg, Netherlands
| | - Anatol G Feldman
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal, CRIR, Montréal, QC, Canada.,Department of Neuroscience, University of Montréal, QC, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal, CRIR, Montréal, QC, Canada
| |
Collapse
|
6
|
Faure C, Fortin-Cote A, Robitaille N, Cardou P, Gosselin C, Laurendeau D, Mercier C, Bouyer L, McFadyen BJ. Adding Haptic Feedback to Virtual Environments With a Cable-Driven Robot Improves Upper Limb Spatio-Temporal Parameters During a Manual Handling Task. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2246-2254. [PMID: 32877337 DOI: 10.1109/tnsre.2020.3021200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Physical interactions within virtual environments are often limited to visual information within a restricted workspace. A new system exploiting a cable-driven parallel robot to combine visual and haptic information related to environmental physical constraints (e.g. shelving, object weight) was developed. The aim of this study was to evaluate the impact on user movement patterns of adding haptic feedback in a virtual environment with this robot. Twelve healthy participants executed a manual handling task under three conditions: 1) in a virtual environment with haptic feedback; 2) in a virtual environment without haptic feedback; 3) in a real physical environment. Temporal parameters (movement time, peak velocity, movement smoothness, time to maximum flexion, time to peak wrist velocity) and spatial parameters of movement (maximum trunk flexion, range of motion of the trunk, length of the trajectory, index of curvature and maximum clearance from the shelf) were analysed during the reaching, lowering and lifting phases. Our results suggest that adding haptic feedback improves spatial parameters of movement to better respect the environmental constraints. However, the visual information presented in the virtual environment through the head mounted display appears to have an impact on temporal parameters of movement leading to greater movement time. Taken together, our results suggest that a cable-driven robot can be a promising device to provide a more ecological context during complex tasks in virtual reality.
Collapse
|
7
|
Tomita Y, Turpin NA, Piscitelli D, Feldman AG, Levin MF. Stability of reaching during standing in stroke. J Neurophysiol 2020; 123:1756-1765. [PMID: 32233891 DOI: 10.1152/jn.00729.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reaching from standing requires simultaneous adjustments of focal and postural task elements. We investigated the ability of people with stroke to stabilize the endpoint trajectory while maintaining balance during standing reaches. Nineteen stroke and 11 age-equivalent healthy subjects reached toward a target (n = 30 trials) located beyond arm length from standing. Endpoint and center-of-mass (COM) trajectories were analyzed using the uncontrolled manifold (UCM) approach, with segment angles as elemental variables. A synergy index (SI) represented the normalized difference between segment angle combinations, leading to endpoint or COM trajectory stabilization (VUCM) and lack of stabilization (in an orthogonal space; VORT). A higher SI reflects greater stability. In both groups, the endpoint SI (SIEND) decreased in parallel with endpoint velocity and returned close to baseline at the end of the movement. The range of SIEND was significantly greater in stroke (median: 0.87; QR:0.54) compared with healthy subjects (median: 0.58; QR: 0.33; P = 0.009). In both groups, the lowest SIEND occurred at the endpoint peak velocity, whereas the minimal SIEND of the stroke group (median: 0.51; QR:0.41) was lower than the healthy group (median: 0.25; QR: 0.50; P = 0.033). The COM SI (SICOM) remained stable in both groups (~0.8). The maintenance of a high SICOM despite a large reduction of SIEND in stroke subjects suggests that kinematic redundancy was effectively used to stabilize the COM position, but less so for endpoint position stabilization. Both focal and postural task elements should be considered when analyzing whole body reaching deficits in patients with stroke.NEW & NOTEWORTHY Reaching from standing requires simultaneous adjustments of endpoint and center-of-mass (COM) positions. We used uncontrolled manifold analysis to investigate the impact of stroke on the ability to use kinematic redundancy in this task. Our results showed that COM position was stabilized, whereas endpoint trajectory was more variable in stroke than healthy subjects. Enhancing the capacity to meet multiple task goals may be beneficial for motor recovery after stroke.
Collapse
Affiliation(s)
- Yosuke Tomita
- Department of Physical Therapy, Faculty of Health Care, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Nicolas A Turpin
- IRISSE (EA 4075), Department of Sport Sciences (STAPS), University of la Réunion; Tampon, France
| | - Daniele Piscitelli
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada.,Centre of the Center for Interdisciplinary Research in Rehabilitation of Greater Montreal, Montreal, Quebec, Canada
| | - Anatol G Feldman
- Centre of the Center for Interdisciplinary Research in Rehabilitation of Greater Montreal, Montreal, Quebec, Canada.,Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada.,Centre of the Center for Interdisciplinary Research in Rehabilitation of Greater Montreal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Referent control of anticipatory grip force during reaching in stroke: an experimental and modeling study. Exp Brain Res 2019; 237:1655-1672. [PMID: 30976821 DOI: 10.1007/s00221-019-05498-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
To evaluate normal and impaired control of anticipatory grip force (GF) modulation, we compared GF production during horizontal arm movements in healthy and post-stroke subjects, and, based on a physiologically feasible dynamic model, determined referent control variables underlying the GF-arm motion coordination in each group. 63% of 13 healthy and 48% of 13 stroke subjects produced low sustained initial force (< 10 N) and increased GF prior to arm movement. Movement-related GF increases were higher during fast compared to self-paced arm extension movements only in the healthy group. Differences in the patterns of anticipatory GF increases before the arm movement onset between groups occurred during fast extension arm movement only. In the stroke group, longer delays between the onset of GF change and elbow motion were related to clinical upper limb deficits. Simulations showed that GFs could emerge from the difference between the actual and the referent hand aperture (Ra) specified by the CNS. Similarly, arm movement could result from changes in the referent elbow position (Re) and could be affected by the co-activation (C) command. A subgroup of stroke subjects, who increased GF before arm movement, could specify different patterns of the referent variables while reproducing the healthy typical pattern of GF-arm coordination. Stroke subjects, who increased GF after arm movement onset, also used different referent strategies than controls. Thus, altered anticipatory GF behavior in stroke subjects may be explained by deficits in referent control.
Collapse
|
9
|
Zhang L, Feldman AG, Levin MF. Vestibular and corticospinal control of human body orientation in the gravitational field. J Neurophysiol 2018; 120:3026-3041. [PMID: 30207862 DOI: 10.1152/jn.00483.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Body orientation with respect to the direction of gravity changes when we lean forward from upright standing. We tested the hypothesis that during upright standing, the nervous system specifies the referent body orientation that defines spatial thresholds for activation of multiple muscles across the body. To intentionally lean the body forward, the system is postulated to transfer balance and stability to the leaned position by monotonically tilting the referent orientation, thus increasing the activation thresholds of ankle extensors and decreasing their activity. Consequently, the unbalanced gravitational torque would start to lean the body forward. With restretching, ankle extensors would be reactivated and generate increasing electromyographic (EMG) activity until the enhanced gravitational torque would be balanced at a new posture. As predicted, vestibular influences on motoneurons of ankle extensors evaluated by galvanic vestibular stimulation were smaller in the leaned compared with the upright position, despite higher tonic EMG activity. Defacilitation of vestibular influences was also observed during forward leaning when the EMG levels in the upright and leaned position were equalized by compensating the gravitational torque with a load. The vestibular system is involved in the active control of body orientation without directly specifying the motor outcome. Corticospinal influences originating from the primary motor cortex evaluated by transcranial magnetic stimulation remained similar at the two body postures. Thus, in contrast to the vestibular system, the corticospinal system maintains a similar descending facilitation of motoneurons of leg muscles at different body orientations. The study advances the understanding of how body orientation is controlled. NEW & NOTEWORTHY The brain changes the referent body orientation with respect to gravity to lean the body forward. Physiologically, this is achieved by shifts in spatial thresholds for activation of ankle muscles, which involves the vestibular system. Results advance the understanding of how the brain controls body orientation in the gravitational field. The study also extends previous evidence of empirical control of motor function, i.e., without the reliance on model-based computations and direct specification of motor outcome.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neuroscience, University of Montreal , Montreal, Quebec , Canada.,Institut de Réadaptation Gingras-Lindsay de Montréal, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) , Montreal, Quebec , Canada.,Jewish Rehabilitation Hospital, CRIR, Laval, Quebec , Canada
| | - Anatol G Feldman
- Department of Neuroscience, University of Montreal , Montreal, Quebec , Canada.,Institut de Réadaptation Gingras-Lindsay de Montréal, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) , Montreal, Quebec , Canada.,Jewish Rehabilitation Hospital, CRIR, Laval, Quebec , Canada
| | - Mindy F Levin
- Jewish Rehabilitation Hospital, CRIR, Laval, Quebec , Canada.,School of Physical and Occupational Therapy, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
10
|
Tomita Y, Mullick AA, Levin MF. Reduced Kinematic Redundancy and Motor Equivalence During Whole-Body Reaching in Individuals With Chronic Stroke. Neurorehabil Neural Repair 2018; 32:175-186. [DOI: 10.1177/1545968318760725] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yosuke Tomita
- McGill University, Montreal, Quebec, Canada
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, Quebec, Canada
| | - Aditi A. Mullick
- McGill University, Montreal, Quebec, Canada
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, Quebec, Canada
| | - Mindy F. Levin
- McGill University, Montreal, Quebec, Canada
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, Quebec, Canada
| |
Collapse
|
11
|
Referent control of the orientation of posture and movement in the gravitational field. Exp Brain Res 2017; 236:381-398. [PMID: 29164285 DOI: 10.1007/s00221-017-5133-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
This study addresses the question of how posture and movement are oriented with respect to the direction of gravity. It is suggested that neural control levels coordinate spatial thresholds at which multiple muscles begin to be activated to specify a referent body orientation (RO) at which muscle activity is minimized. Under the influence of gravity, the body is deflected from the RO to an actual orientation (AO) until the emerging muscle activity and forces begin to balance gravitational forces and maintain body stability. We assumed that (1) during quiet standing on differently tilted surfaces, the same RO and thus AO can be maintained by adjusting activation thresholds of ankle muscles according to the surface tilt angle; (2) intentional forward body leaning results from monotonic ramp-and-hold shifts in the RO; (3) rhythmic oscillation of the RO about the ankle joints during standing results in body swaying. At certain sway phases, the AO and RO may transiently overlap, resulting in minima in the activity of multiple muscles across the body. EMG kinematic patterns of the 3 tasks were recorded and explained based on the RO concept that implies that these patterns emerge due to referent control without being pre-programmed. We also confirmed the predicted occurrence of minima in the activity of multiple muscles at specific body configurations during swaying. Results re-affirm previous rejections of model-based computational theories of motor control. The role of different descending systems in the referent control of posture and movement in the gravitational field is considered.
Collapse
|