1
|
Knikou M, Sayed Ahmad AM. Transspinal stimulation downregulates flexion reflex pathways during walking in healthy humans. J Neurophysiol 2025; 133:530-538. [PMID: 39772934 DOI: 10.1152/jn.00453.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
The phase-dependent modulation pattern of the tibialis anterior (TA) flexion reflex was characterized during treadmill walking while transspinal stimulation was delivered at 15, 30, and 50 Hz above and below paresthesia in healthy participants. The flexion reflex was elicited following medial arch foot stimulation with a 30 ms (300 Hz) pulse train. During treadmill walking, the flexion reflex was evoked in the right leg every 3-5 steps, and stimuli were randomly dispersed across the step cycle that was divided into 16 equal bins. For each participant, condition and bin of the step cycle, the flexion reflex was measured as the area of the linear EMG envelope starting 20 ms after the end of the pulse train up to 200 ms and was normalized to the maximum locomotor TA EMG activity. The unconditioned flexion reflex was modulated in a phase-dependent manner. Transspinal stimulation, regardless frequency, or intensity produced pronounced flexion reflex depression during walking that coincided with an unchanged slope and intercept, computed from the linear relationship between the flexion reflex and background EMG activity. These findings suggest that transspinal stimulation above and below paresthesia intensities at 15, 30, and 50 Hz downregulates the flexion reflex. Based on our recently reported absent effects on the soleus H-reflex under similar conditions and our current findings we propose that transspinal stimulation downregulates flexion and not extension reflex pathways. More research is needed to delineate whether similar neuromodulation effects are present in flexion and extension reflexes after spinal cord injury in humans.NEW & NOTEWORTHY Transspinal stimulation over the thoracolumbar region above and below paresthesia intensities at 15, 30, and 50 Hz produces a generalized depression of the tibialis anterior flexion reflex during walking in healthy participants. This finding supports strong actions of transspinal stimulation on spinal neuronal networks engaged in walking. This finding may be helpful for recovery of walking after spinal cord injury in humans because suppression of exaggerated flexion reflexes enables smooth stance-to-swing transition and foot clearance.
Collapse
Affiliation(s)
- Maria Knikou
- Klab4Recovery SCI Research Program, The City University of New York, Staten Island, New York, United States
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York, United States
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Staten Island, New York, United States
| | - Abdullah M Sayed Ahmad
- Klab4Recovery SCI Research Program, The City University of New York, Staten Island, New York, United States
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York, United States
| |
Collapse
|
2
|
Finn HT, Parono M, Bye EA, Taylor JL, Gandevia SC, Héroux ME, Butler JE. Differential effects of stimulation waveform and intensity on the neural structures activated by lumbar transcutaneous spinal cord stimulation. J Neurophysiol 2025; 133:447-463. [PMID: 39718492 DOI: 10.1152/jn.00266.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown. In 15 participants (9 F, 6 M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) with conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MG) muscles. TSS was paired with transcranial magnetic stimulation (TMS) over the contralateral motor cortex at relative interstimulus intervals (ISIs) (-10 ms to 11 ms), centered on the ISI when TSS and TMS inputs simultaneously activated VM motoneurons. Doublet TSS was delivered at 80-ms ISI. For VM, the area of the combined response evoked by paired TMS and TSS was not facilitated at any ISI. For TA and MG, combined responses were facilitated by ∼40-100% when TMS activated the motoneurons before or at a similar time as TSS, particularly with suprathreshold TSS. Additionally, for TA, there was greater suppression of the second sEMR evoked by TSS doublets using suprathreshold conventional TSS compared to high-frequency burst TSS (P < 0.001). The results suggest that for VM TSS activated predominantly motor axons, but for TA and MG facilitation of the sEMR by TMS suggests that TSS activated sensory axons. Stimulation waveforms had similar outcomes in most conditions.NEW & NOTEWORTHY Transcutaneous spinal cord stimulation (TSS) can evoke muscle responses by activation of sensory and/or motor axons. The relative contribution of these varies across the muscles tested. We found evidence for activation of sensory axons with TSS for tibialis anterior and medial gastrocnemius but not for vastus medialis. In cases where sensory axons were activated, conventional TSS activated relatively more sensory axons than high-frequency burst TSS.
Collapse
Affiliation(s)
- Harrison T Finn
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Marel Parono
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Elizabeth A Bye
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- Edith Cowan University, Joondalup, Western Australia, Australia
| | - Simon C Gandevia
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Martin E Héroux
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E Butler
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Gigliotti A, Pereira HM. Emerging evidence on the effects of electrode arrangements and other parameters on the application of transcutaneous spinal direct current stimulation. J Neurophysiol 2025; 133:709-721. [PMID: 39819139 DOI: 10.1152/jn.00441.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025] Open
Abstract
Transcutaneous spinal direct current stimulation (TSDCS) has the potential to modulate spinal circuits and induce functional changes in humans. Nevertheless, differences across studies on basic parameters used and obtained metrics represent a confounding factor. Computer simulations are instrumental in improving the application of the TSDCS technique. Their findings allow a better interpretation of the tissue conductivities heterogeneity. Emerging findings indicate the electric field is maximal in the segments located between the electrodes, and that factors such as the depth of the targeted area, and location of the electrodes on low conductive points, such as the spinous processes, may impact the electric field generated in the spinal cord, with consequences for thoracic versus lumbar or cervical applications. Recently, growing attention has been directed toward the importance of the TSDCS reference electrode's position and its influence on the current field properties at the targeted site. This review highlights the influence of dosage, polarity, and electrode position on the variety of TSDCS results in healthy and some clinical populations. Based on the available evidence, we suggest that although the current dosage appears to have a negligible effect, the variety of electrode montages and configurations of TSDCS can significantly impact the electric field distributions and potentially explain the conflicting results of experimental studies. Future human trials should systematically and thoughtfully evaluate the location of TSDCS electrodes based on the targeted neural structures.
Collapse
Affiliation(s)
- Andrea Gigliotti
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| | - Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, United States
| |
Collapse
|
4
|
Skiadopoulos A, Knikou M. Optimal sigmoid function models for analysis of transspinal evoked potential recruitment curves recorded from different muscles. PLoS One 2025; 20:e0317218. [PMID: 39841641 PMCID: PMC11753661 DOI: 10.1371/journal.pone.0317218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Recruitment input-output curves of transspinal evoked potentials that represent the net output of spinal neuronal networks during which cortical, spinal and peripheral inputs are integrated as well as motor evoked potentials and H-reflexes are used extensively in research as neurophysiological biomarkers to establish physiological or pathological motor behavior and post-treatment recovery. A comparison between different sigmoidal models to fit the transspinal evoked potentials recruitment curve and estimate the parameters of physiological importance has not been performed. This study sought to address this gap by fitting eight sigmoidal models (Boltzmann, Hill, Log-Logistic, Log-Normal, Weibull-1, Weibull-2, Gompertz, Extreme Value Function) to the transspinal evoked potentials recruitment curves of soleus and tibialis anterior recorded under four different cathodal stimulation settings. The sigmoidal models were ranked based on the Akaike information criterion, and their performance was assessed in terms of Akaike differences and weights values. Additionally, an interclass correlation coefficient between the predicted parameters derived from the best models fitted to the recruitment curves was also established. A Bland-Altman analysis was conducted to evaluate the agreement between the predicted parameters from the best models. The findings revealed a muscle dependency, with the Boltzmann and Hill models identified as the best fits for the soleus, while the Extreme Value Function and Boltzmann models were optimal for the tibialis anterior transspinal evoked potentials recruitment curves. Excellent agreement for the upper asymptote, slope, and inflection point parameters was found between Boltzmann and Hill models for the soleus, and for the slope and inflection point parameters between Extreme Value Function and Boltzmann models for the tibialis anterior. Notably, the Boltzmann model for soleus and the Extreme Value Function model for tibialis anterior exhibited less susceptibility to inaccuracies in estimated parameters. Based on these findings, we suggest the Boltzmann and the Extreme Value Function models for fitting the soleus and the tibialis anterior transspinal evoked potentials recruitment curve, respectively.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, Staten Island, New York, United States of America
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York, United States of America
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, Staten Island, New York, United States of America
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York, United States of America
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Staten Island, New York, United States of America
| |
Collapse
|
5
|
Thatcher KL, Nielsen KE, Sandler EB, Daliet OJ, Iddings JA, Field-Fote EC. Optimizing transcutaneous spinal stimulation: excitability of evoked spinal reflexes is dependent on electrode montage. J Neuroeng Rehabil 2025; 22:2. [PMID: 39762915 PMCID: PMC11702053 DOI: 10.1186/s12984-024-01524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages. Additionally, we assessed tolerability of the stimulation during PRM reflex testing. METHODS Fifteen adults with intact neurological systems participated in this randomized crossover study. PRM reflexes were evoked transcutaneously using electrode montages with dorsal-ventral (DV) or dorsal-midline (DM) current flow. DV montages included: [1] cathode over T11/T12, anodes over iliac crests (DV-I), [2] cathode over T11/T12, anodes over umbilicus (DV-U), [3] dual paraspinal cathodes at T11/12, anodes over iliac crests (DV-PI), and [4] dual paraspinal cathodes at T11/12, anodes over umbilicus (DV-PU). DM montages included: [5] cathode over T11/12, anode 5 cm caudal (DM-C), and [6] cathode over T11/12, anode 5 cm rostral (DM-R). PRM reflex recruitment curves were obtained in the soleus muscle of both lower extremities. RESULTS Lower reflex thresholds (mA) for dominant (D) and nondominant (ND) soleus muscles were elicited in DV-U (D: 46.7[33.9, 59.4], ND: 45.4[32.5, 58.2]) and DV-I (D: 48.1[35.3, 60.8], ND: 45.4[32.5, 58.2]) montages compared to DV-PU (D: 64.3[51.4, 77.1], ND:61.7[48.8, 74.6]), DV-PI (D:64.9[52.1, 77.7], ND:61.4[48.5, 75.5]), DM-C(D:60.0[46.9, 73.1], ND:63.6[50.8, 76.5]), and DM-R(D:63.1[50.3, 76.0], ND:62.6[49.8, 75.5]). DV-U and DV-I montages demonstrated larger recruitment curve area than other montages. There were no differences in response amplitude at 120% of RT(1.2xRT) or tolerability among montages. CONCLUSIONS Differences in spinal circuit recruitment are reflected in the response amplitude of the PRM reflexes. DV-I and DV-U montages were associated with lower reflex thresholds, indicating that motor responses can be evoked with lower stimulation intensity. DV-I and DV-U montages therefore have the potential for lower and more tolerable interventional stimulation intensities. Our findings optimize electrode placement for interventional TSS and PRM reflex assessments. CLINICAL TRIAL NUMBER NCT04243044.
Collapse
Affiliation(s)
- Kelly Lynn Thatcher
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
| | - Karen Emily Nielsen
- Department of Population Health Sciences, Georgia State University, 140 Decatur Street, Atlanta, GA, USA
| | - Evan Blake Sandler
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
- Department of Applied Physiology, Georgia Institute of Technology, 555 14th Street NW, Atlanta, GA, USA
| | - Oliver John Daliet
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
| | - Jennifer Ann Iddings
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
| | - Edelle Carmen Field-Fote
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
- Department of Applied Physiology, Georgia Institute of Technology, 555 14th Street NW, Atlanta, GA, USA.
- Department of Physical Therapy, Emory University, 1462 Clifton Road NE, Atlanta, GA, USA.
| |
Collapse
|
6
|
Sayed Ahmad AM, Skiadopoulos A, Knikou M. Interactions between arm and leg neuronal circuits following paired cervical and lumbosacral transspinal stimulation in healthy humans. Exp Brain Res 2024; 242:2229-2239. [PMID: 39034329 DOI: 10.1007/s00221-024-06891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
Transspinal (or transcutaneous spinal cord) stimulation is a promising noninvasive method that may strengthen the intrinsic spinal neural connectivity in neurological disorders. In this study we assessed the effects of cervical transspinal stimulation on the amplitude of leg transspinal evoked potentials (TEPs), and the effects of lumbosacral transspinal stimulation on the amplitude of arm TEPs. Control TEPs were recorded following transspinal stimulation with one cathode electrode placed either on Cervical 3 (21.3 ± 1.7 mA) or Thoracic 10 (23.6 ± 16.5 mA) vertebrae levels. Associated anodes were placed bilaterally on clavicles or iliac crests. Cervical transspinal conditioning stimulation produced short latency inhibition of TEPs recorded from left soleus (ranging from - 6.11 to -3.87% of control TEP at C-T intervals of -50, -25, -20, -15, -10, 15 ms), right semitendinosus (ranging from - 11.1 to -4.55% of control TEP at C-T intervals of -20, -15, 15 ms), and right vastus lateralis (ranging from - 13.3 to -8.44% of control TEP at C-T intervals of -20 and - 15 ms) (p < 0.05). Lumbosacral transspinal conditioning stimulation produced no significant effects on arm TEPs. We conclude that in the resting state, cervical transspinal stimulation affects the net motor output of leg motoneurons under the experimental conditions used in this study. Further investigations are warranted to determine whether this protocol may reactivate local spinal circuitry after stroke or spinal cord injury and may have a significant effect in synchronization of upper and lower limb muscle synergies during rhythmic activities like locomotion or cycling.
Collapse
Affiliation(s)
- Abdullah M Sayed Ahmad
- Klab4Recovery Research Program (aka Knikou Lab), The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, 2800 Victory Blvd, 5N-207, Staten Island, NY, 10314, USA
| | - Andreas Skiadopoulos
- Klab4Recovery Research Program (aka Knikou Lab), The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, 2800 Victory Blvd, 5N-207, Staten Island, NY, 10314, USA
| | - Maria Knikou
- Klab4Recovery Research Program (aka Knikou Lab), The City University of New York, New York, NY, USA.
- Department of Physical Therapy, College of Staten Island, The City University of New York, 2800 Victory Blvd, 5N-207, Staten Island, NY, 10314, USA.
- Biology PhD Program, CUNY Graduate Center, 365 5th Ave, New York, NY, 10016, USA.
- Collaborative Neuroscience Program, College of Staten Island, 2800 Victory Blvd, 5N-207, Staten Island, NY, 10314, USA.
| |
Collapse
|
7
|
Thatcher KL, Nielsen KE, Sandler EB, Daliet OJ, Iddings JA, Field-Fote EC. Optimizing Transcutaneous Spinal Stimulation: Excitability of Evoked Spinal Reflexes is Dependent on Electrode Montage. RESEARCH SQUARE 2024:rs.3.rs-4719031. [PMID: 39149487 PMCID: PMC11326363 DOI: 10.21203/rs.3.rs-4719031/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages. Additionally, we assessed tolerability of the stimulation during PRM reflex testing. Methods Fifteen adults with intact neurological systems participated in this randomized crossover study. PRM reflexes were evoked transcutaneously using electrode montages with dorsal-ventral (DV) or dorsal-midline (DM) current flow. DV montages included: [1] cathode over T11/T12, anodes over iliac crests (DV-I), [2] cathode over T11/T12, anodes over umbilicus (DV-U), [3] dual paraspinal cathodes at T11/12, anodes over iliac crests (DV-PI), and [4] dual paraspinal cathodes at T11/12, anodes over umbilicus (DV-PU). DM montages included: [5] cathode over T11/12, anode 5cm caudal (DM-C), and [6] cathode over T11/12, anode 5cm rostral (DM-R). PRM reflex recruitment curves were obtained in the soleus muscle of both lower extremities. Results DV-U and DV-I montages elicited bilateral reflexes with lower reflex thresholds and larger recruitment curve area than other montages. There were no differences in response amplitude at 120% of RT(1.2xRT) or tolerability among montages. Conclusions Differences in spinal circuit recruitment are reflected in the response amplitude of the PRM reflexes. DV-I and DV-U montages were associated with lower reflex thresholds, indicating that motor responses can be evoked with lower stimulation intensity. DV-I and DV-U montages therefore have the potential for lower and more tolerable interventional stimulation intensities. Our findings optimize electrode placement for interventional TSS and PRM reflex assessments.
Collapse
|
8
|
Yildiz N, Cecen S, Sancar N, Karacan I, Knikou M, Türker KS. Postsynaptic potentials of soleus motor neurons produced by transspinal stimulation: a human single-motor unit study. J Neurophysiol 2024; 131:1101-1111. [PMID: 38656134 PMCID: PMC11381115 DOI: 10.1152/jn.00077.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Transspinal (or transcutaneous spinal cord) stimulation is a noninvasive, cost-effective, easily applied method with great potential as a therapeutic modality for recovering somatic and nonsomatic functions in upper motor neuron disorders. However, how transspinal stimulation affects motor neuron depolarization is poorly understood, limiting the development of effective transspinal stimulation protocols for rehabilitation. In this study, we characterized the responses of soleus α motor neurons to single-pulse transspinal stimulation using single-motor unit (SMU) discharges as a proxy given the 1:1 discharge activation between the motor neuron and the motor unit. Peristimulus time histogram, peristimulus frequencygram, and surface electromyography (sEMG) were used to characterize the postsynaptic potentials of soleus motor neurons. Transspinal stimulation produced short-latency excitatory postsynaptic potentials (EPSPs) followed by two distinct phases of inhibitory postsynaptic potentials (IPSPs) in most soleus motor neurons and only IPSPs in others. Transspinal stimulation generated double discharges at short interspike intervals in a few motor units. The short-latency EPSPs were likely mediated by muscle spindle group Ia and II afferents, and the IPSPs via excitation of group Ib afferents and recurrent collaterals of motor neurons leading to activation of diverse spinal inhibitory interneuronal circuits. Further studies are warranted to understand better how transspinal stimulation affects depolarization of α motor neurons over multiple spinal segments. This knowledge will be seminal for developing effective transspinal stimulation protocols in upper motor neuron lesions.NEW & NOTEWORTHY Transspinal stimulation produces distinct actions on soleus motor neurons: an early short-latency excitation followed by two inhibitions or only inhibition and doublets. These results show how transspinal stimulation affects depolarization of soleus α motor neurons in healthy humans.
Collapse
Affiliation(s)
- Nilgün Yildiz
- Faculty of Dentistry & Physiology, Istanbul Gelisim University, Istanbul, Türkiye
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Gelisim University, Istanbul, Türkiye
| | - Serpil Cecen
- Department of Physiology, Hamidiye Medical School, Health Science University, Istanbul, Türkiye
| | - Nuray Sancar
- Faculty of Dentistry & Physiology, Istanbul Gelisim University, Istanbul, Türkiye
| | - Ilhan Karacan
- Hamidiye Medical School, Physical Therapy Research and Education Hospital, Health Science University, Istanbul, Türkiye
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, New York, United States
- Department of Physical Therapy, College of Staten Island, The City University of New York, New York, New York, United States
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, New York, New York, United States
| | - Kemal S Türker
- Faculty of Dentistry & Physiology, Istanbul Gelisim University, Istanbul, Türkiye
| |
Collapse
|
9
|
Sayed Ahmad AM, Raphael M, Han JF, Ahmed Y, Moustafa M, Solomon SK, Skiadopoulos A, Knikou M. Soleus H-reflex amplitude modulation during walking remains physiological during transspinal stimulation in humans. Exp Brain Res 2024; 242:1267-1276. [PMID: 38366214 DOI: 10.1007/s00221-024-06779-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
The soleus H-reflex modulation pattern was investigated during stepping following transspinal stimulation over the thoracolumbar region at 15, 30, and 50 Hz with 10 kHz carry-over frequency above and below the paresthesia threshold. The soleus H-reflex was elicited by posterior tibial nerve stimulation with a single 1 ms pulse at an intensity that the M-wave amplitudes ranged from 0 to 15% of the maximal M-wave evoked 80 ms after the test stimulus, and the soleus H-reflex was half the size of the maximal H-reflex evoked on the ascending portion of the recruitment curve. During treadmill walking, the soleus H-reflex was elicited every 2 or 3 steps, and stimuli were randomly dispersed across the step cycle which was divided in 16 equal bins. For each subject and condition, the soleus M-wave and H-reflex were normalized to the maximal M-wave. The soleus background electromyographic (EMG) activity was estimated as the linear envelope for 50 ms duration starting at 100 ms before posterior tibial nerve stimulation for each bin. The gain was determined as the slope of the relationship between the soleus H-reflex and the soleus background EMG activity. The soleus H-reflex phase-dependent amplitude modulation remained unaltered during transspinal stimulation, regardless frequency, or intensity. Similarly, the H-reflex slope and intercept remained the same for all transspinal stimulation conditions tested. Locomotor EMG activity was increased in knee extensor muscles during transspinal stimulation at 30 and 50 Hz throughout the step cycle while no effects were observed in flexor muscles. These findings suggest that transspinal stimulation above and below the paresthesia threshold at 15, 30, and 50 Hz does not block or impair spinal integration of proprioceptive inputs and increases activity of thigh muscles that affect both hip and knee joint movement. Transspinal stimulation may serve as a neurorecovery strategy to augment standing or walking ability in upper motoneuron lesions.
Collapse
Affiliation(s)
- Abdullah M Sayed Ahmad
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Meghan Raphael
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Jessy Feng Han
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Yoseph Ahmed
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Mohamed Moustafa
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Shammah K Solomon
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA.
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA.
- PhD Program in Biology and Collaborative Neuroscience Program, DPT Department, Graduate Center of The City University of New York and College of Staten Island, Staten Island, NY, USA.
| |
Collapse
|
10
|
Skiadopoulos A, Knikou M. Tapping into the human spinal locomotor centres with transspinal stimulation. Sci Rep 2024; 14:5990. [PMID: 38472313 PMCID: PMC10933285 DOI: 10.1038/s41598-024-56579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Human locomotion is controlled by spinal neuronal networks of similar properties, function, and organization to those described in animals. Transspinal stimulation affects the spinal locomotor networks and is used to improve standing and walking ability in paralyzed people. However, the function of locomotor centers during transspinal stimulation at different frequencies and intensities is not known. Here, we document the 3D joint kinematics and spatiotemporal gait characteristics during transspinal stimulation at 15, 30, and 50 Hz at sub-threshold and supra-threshold stimulation intensities. We document the temporal structure of gait patterns, dynamic stability of joint movements over stride-to-stride fluctuations, and limb coordination during walking at a self-selected speed in healthy subjects. We found that transspinal stimulation (1) affects the kinematics of the hip, knee, and ankle joints, (2) promotes a more stable coordination at the left ankle, (3) affects interlimb coordination of the thighs, and (4) intralimb coordination between thigh and foot, (5) promotes greater dynamic stability of the hips, (6) increases the persistence of fluctuations in step length variability, and lastly (7) affects mechanical walking stability. These results support that transspinal stimulation is an important neuromodulatory strategy that directly affects gait symmetry and dynamic stability. The conservation of main effects at different frequencies and intensities calls for systematic investigation of stimulation protocols for clinical applications.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, New York, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, USA.
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA.
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, New York, USA.
- Klab4Recovery Research Program, Neurosciences/Graduate Center of CUNY, DPT Department/College of Staten Island, 2800 Victory Blvd, 5N-207, New York, 10314, USA.
| |
Collapse
|
11
|
Gordineer EA, Stokic DS, Krenn MJ. Distinguishing reflex from non-reflex responses elicited by transcutaneous spinal stimulation targeting the lumbosacral cord in healthy individuals. Exp Brain Res 2024:10.1007/s00221-024-06790-2. [PMID: 38416179 DOI: 10.1007/s00221-024-06790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
Transcutaneous spinal stimulation (TSS) studies rely on the depolarization of afferent fibers to provide input to the spinal cord; however, this has not been routinely ascertained. Thus, we aimed to characterize the types of responses evoked by TSS and establish paired-pulse ratio cutoffs that distinguish posterior root reflexes, evoked by stimulation of afferent nerve fibers, from motor responses, evoked by stimulation of efferent nerve fibers. Twelve neurologically intact participants (six women) underwent unipolar TSS (cathode over T11-12 spinal processes, anode paraumbilically) while resting supine. In six participants, unipolar TSS was repeated 2-3 months later and also compared to a bipolar TSS configuration (cathode 2.5 cm below T11-12, anode 5 cm above cathode). EMG signals were recorded from 16 leg muscles. A paired-pulse paradigm was applied at interstimulus intervals (ISIs) of 25, 50, 100, 200, and 400 ms. Responses were categorized by three assessors into reflexes, motor responses, or their combination (mixed responses) based on the visual presence/absence of paired-pulse suppression across ISIs. The paired-pulse ratio that best discriminated between response types was derived for each ISI. These cutoffs were validated by repeating unipolar TSS 2-3 months later and with bipolar TSS. Unipolar TSS evoked only reflexes (90%) and mixed responses (10%), which were mainly recorded in the quadriceps muscles (25-42%). Paired-pulse ratios of 0.51 (25-ms ISI) and 0.47 (50-ms ISI) best distinguished reflexes from mixed responses (100% sensitivity, > 99.2% specificity). These cutoffs performed well in the repeated unipolar TSS session (100% sensitivity, > 89% specificity). Bipolar TSS exclusively elicited reflexes which were all correctly classified. These results can be utilized in future studies to ensure that the input to the spinal cord originates from the depolarization of large afferents. This knowledge can be applied to improve the design of future neurophysiological studies and increase the fidelity of neuromodulation interventions.
Collapse
Affiliation(s)
- Elizabeth A Gordineer
- School of Graduate Studies in the Health Sciences, Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Matthias J Krenn
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA.
- Department of Neurosurgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
12
|
Skiadopoulos A, Knikou M. Tapping Into the Human Spinal Locomotor Centres With Transspinal Stimulation. RESEARCH SQUARE 2024:rs.3.rs-3818499. [PMID: 38260677 PMCID: PMC10802712 DOI: 10.21203/rs.3.rs-3818499/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human locomotion is controlled by spinal neuronal networks of similar properties, function, and organization to those described in animals. Transspinal stimulation affects the spinal locomotor networks and is used to improve standing and walking ability in paralyzed people. However, the function of locomotor centers during transspinal stimulation at different frequencies and intensities is not known. Here, we document the 3D joint kinematics and spatiotemporal gait characteristics during transspinal stimulation at 15, 30, and 50 Hz at sub-threshold and supra-threshold stimulation intensities. We document the temporal structure of gait patterns, dynamic stability of joint movements over stride-to-stride fluctuations, and limb coordination during walking at a self-selected speed in healthy subjects. We found that transspinal stimulation 1) affects the kinematics of the hip, knee, and ankle joints, 2) promotes a more stable coordination at the left ankle, 3) improves interlimb coordination of the thighs, 4) improves intralimb coordination between thigh and foot, 5) promotes greater dynamic stability of the hips, and lastly 6) affects the mechanical stability of the joints. These results support that transspinal stimulation is an important neuromodulatory strategy that directly affects gait symmetry and dynamic stability. The conservation of main effects at different frequencies and intensities calls for systematic investigation of stimulation protocols for clinical applications.
Collapse
Affiliation(s)
| | - Maria Knikou
- City University of New York and College of Staten Island
| |
Collapse
|
13
|
Bryson N, Lombardi L, Hawthorn R, Fei J, Keesey R, Peiffer J, Seáñez I. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration. J Neural Eng 2023; 20:10.1088/1741-2552/ace552. [PMID: 37419109 PMCID: PMC10481387 DOI: 10.1088/1741-2552/ace552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective.Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation.Approach.In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS.Results.Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position.Significance. Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.
Collapse
Affiliation(s)
- Noah Bryson
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Lorenzo Lombardi
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rachel Hawthorn
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Jie Fei
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rodolfo Keesey
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - J.D. Peiffer
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Biomedical Engineering, Northwestern University
| | - Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Neurosurgery, Washington University School of Medicine in St. Louis
| |
Collapse
|
14
|
Finn HT, Bye EA, Elphick TG, Boswell-Ruys CL, Gandevia SC, Butler JE, Héroux ME. Transcutaneous spinal stimulation in people with and without spinal cord injury: Effect of electrode placement and trains of stimulation on threshold intensity. Physiol Rep 2023; 11:e15692. [PMID: 37269156 PMCID: PMC10238786 DOI: 10.14814/phy2.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023] Open
Abstract
Transcutaneous spinal cord stimulation (TSS) is purported to improve motor function in people after spinal cord injury (SCI). However, several methodology aspects are yet to be explored. We investigated whether stimulation configuration affected the intensity needed to elicit spinally evoked motor responses (sEMR) in four lower limb muscles bilaterally. Also, since stimulation intensity for therapeutic TSS (i.e., trains of stimulation, typically delivered at 15-50 Hz) is sometimes based on the single-pulse threshold intensity, we compared these two stimulation types. In non-SCI participants (n = 9) and participants with a SCI (n = 9), three different electrode configurations (cathode-anode); L1-midline (below the umbilicus), T11-midline and L1-ASIS (anterior superior iliac spine; non-SCI only) were compared for the sEMR threshold intensity using single pulses or trains of stimulation which were recorded in the vastus medialis, medial hamstring, tibialis anterior, medial gastrocnemius muscles. In non-SCI participants, the L1-midline configuration showed lower sEMR thresholds compared to T11-midline (p = 0.002) and L1-ASIS (p < 0.001). There was no difference between T11-midline and L1-midline for participants with SCI (p = 0.245). Spinally evoked motor response thresholds were ~13% lower during trains of stimulation compared to single pulses in non-SCI participants (p < 0.001), but not in participants with SCI (p = 0.101). With trains of stimulation, threshold intensities were slightly lower and the incidence of sEMR was considerably lower. Overall, stimulation threshold intensities were generally lower with the L1-midline electrode configuration and is therefore preferred. While single-pulse threshold intensities may overestimate threshold intensities for therapeutic TSS, tolerance to trains of stimulation will be the limiting factor in most cases.
Collapse
Affiliation(s)
- Harrison T Finn
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Elizabeth A Bye
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Thomas G Elphick
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, New South Wales, Kensington, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Martin E Héroux
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| |
Collapse
|
15
|
Bryson N, Lombardi L, Hawthorn R, Fei J, Keesey R, Peiffer JD, Seáñez I. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534835. [PMID: 37034788 PMCID: PMC10081184 DOI: 10.1101/2023.03.30.534835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Objective Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation. Approach In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS. Results Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position. Significance Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.
Collapse
|
16
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agarwal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. Trials 2023; 24:145. [PMID: 36841773 PMCID: PMC9960224 DOI: 10.1186/s13063-023-07193-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. METHODS Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30 min of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30 min of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder, and sexual function are taken. DISCUSSION The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because, in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. TRIAL REGISTRATION ClinicalTrials.gov NCT04807764 . Registered on March 19, 2021.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Grace O. Famodimu
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA
| | - Shammah K. Solomon
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Parul Agarwal
- grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Noam Y. Harel
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA ,grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY, USA. .,Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA. .,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Manhattan & Staten Island, NY, USA.
| |
Collapse
|
17
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agrawal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. RESEARCH SQUARE 2023:rs.3.rs-2527617. [PMID: 36824823 PMCID: PMC9949167 DOI: 10.21203/rs.3.rs-2527617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. Methods Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30-minutes of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30-minutes of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder and sexual function are taken. Discussion The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. Trial registration ClinicalTrials.gov: NCT04807764; Registered on March 19, 2021.
Collapse
Affiliation(s)
| | | | | | - Parul Agrawal
- Icahn School of Medicine at Mount Sinai Department of Population Health Science and Policy
| | - Noam Y Harel
- James J Peters VAMC: James J Peters VA Medical Center
| | - Maria Knikou
- College of Staten Island School of Health Sciences
| |
Collapse
|