1
|
Gueugneau N, Martin A, Gaveau J, Papaxanthis C. Gravity-efficient motor control is associated with contraction-dependent intracortical inhibition. iScience 2023; 26:107150. [PMID: 37534144 PMCID: PMC10391940 DOI: 10.1016/j.isci.2023.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
In humans, moving efficiently along the gravity axis requires shifts in muscular contraction modes. Raising the arm up involves shortening contractions of arm flexors, whereas the reverse movement can rely on lengthening contractions with the help of gravity. Although this control mode is universal, the neuromuscular mechanisms that drive gravity-oriented movements remain unknown. Here, we designed neurophysiological experiments that aimed to track the modulations of cortical, spinal, and muscular outputs of arm flexors during vertical movements with specific kinematics (i.e., optimal motor commands). We report a specific drop of corticospinal excitability during lengthening versus shortening contractions, with an increase of intracortical inhibition and no change in spinal motoneuron responsiveness. We discuss these contraction-dependent modulations of the supraspinal motor output in the light of feedforward mechanisms that may support gravity-tuned motor control. Generally, these results shed a new perspective on the neural policy that optimizes movement control along the gravity axis.
Collapse
Affiliation(s)
- Nicolas Gueugneau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000 Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000 Dijon, France
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000 Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000 Dijon, France
| |
Collapse
|
2
|
Kilteni K, Engeler P, Boberg I, Maurex L, Ehrsson HH. No evidence for somatosensory attenuation during action observation of self-touch. Eur J Neurosci 2021; 54:6422-6444. [PMID: 34463971 DOI: 10.1111/ejn.15436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
The discovery of mirror neurons in the macaque brain in the 1990s triggered investigations on putative human mirror neurons and their potential functionality. The leading proposed function has been action understanding: Accordingly, we understand the actions of others by 'simulating' them in our own motor system through a direct matching of the visual information to our own motor programmes. Furthermore, it has been proposed that this simulation involves the prediction of the sensory consequences of the observed action, similar to the prediction of the sensory consequences of our executed actions. Here, we tested this proposal by quantifying somatosensory attenuation behaviourally during action observation. Somatosensory attenuation manifests during voluntary action and refers to the perception of self-generated touches as less intense than identical externally generated touches because the self-generated touches are predicted from the motor command. Therefore, we reasoned that if an observer simulates the observed action and, thus, he/she predicts its somatosensory consequences, then he/she should attenuate tactile stimuli simultaneously delivered to his/her corresponding body part. In three separate experiments, we found a systematic attenuation of touches during executed self-touch actions, but we found no evidence for attenuation when such actions were observed. Failure to observe somatosensory attenuation during observation of self-touch is not compatible with the hypothesis that the putative human mirror neuron system automatically predicts the sensory consequences of the observed action. In contrast, our findings emphasize a sharp distinction between the motor representations of self and others.
Collapse
Affiliation(s)
| | - Patrick Engeler
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ida Boberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Linnea Maurex
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
4
|
Modulation of corticospinal output during goal-directed actions: Evidence for a contingent coding hypothesis. Neuropsychologia 2019; 134:107205. [DOI: 10.1016/j.neuropsychologia.2019.107205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022]
|
5
|
Oh H, Braun AR, Reggia JA, Gentili RJ. Fronto-parietal mirror neuron system modeling: Visuospatial transformations support imitation learning independently of imitator perspective. Hum Mov Sci 2019; 65:S0167-9457(17)30942-9. [DOI: 10.1016/j.humov.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022]
|
6
|
Cretu AL, Ruddy K, Germann M, Wenderoth N. Uncertainty in contextual and kinematic cues jointly modulates motor resonance in primary motor cortex. J Neurophysiol 2019; 121:1451-1464. [PMID: 30811258 DOI: 10.1152/jn.00655.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Contextual information accompanying others' actions modulates "motor resonance", i.e., neural activity within motor areas that is elicited by movement observation. One possibility is that we weigh and combine such information in a Bayesian manner according to their relative uncertainty. Therefore, contextual information becomes particularly useful when others' actions are difficult to discriminate. It is unclear, however, whether this uncertainty modulates the neural activity in primary motor cortex (M1) during movement observation. Here, we applied single-pulse transcranial magnetic stimulation (TMS) while subjects watched different grasping actions. We operationalized motor resonance as grip-specific modulation of corticomotor excitability measured in the index (FDI) versus the little finger abductor (ADM). We experimentally modulated either the availability of kinematic information ( experiment 1) or the reliability of contextual cues ( experiment 2). Our results indicate that even in the absence of movement kinematics, reliable contextual information is enough to trigger significant muscle-specific corticomotor excitability changes in M1, which are strongest when both kinematics and contextual information are available. These findings suggest that bottom-up mechanisms that activate motor representations as a function of the observed kinematics and top-down mechanisms that activate motor representations associated with arbitrary cues converge in M1. NEW & NOTEWORTHY Our study reveals new neurophysiological insights in support of the Bayesian account of action observation by showing that "motor resonance", i.e., neural activity evoked by observing others' actions, incorporates the uncertainty related to both contextual (prior beliefs) and kinematic (sensory evidence) cues. Notably, we show that muscle-specific modulation of M1 is strongest when context and movement kinematics are available, and it can be elicited even in the absence of movement kinematics.
Collapse
Affiliation(s)
- Andreea Loredana Cretu
- Neural Control of Movement Group, Department of Health Sciences and Technology, ETH Zurich, Zurich , Switzerland
| | - Kathy Ruddy
- Neural Control of Movement Group, Department of Health Sciences and Technology, ETH Zurich, Zurich , Switzerland.,Trinity College Institute of Neuroscience, Trinity College Dublin , Dublin , Ireland
| | - Maria Germann
- Neural Control of Movement Group, Department of Health Sciences and Technology, ETH Zurich, Zurich , Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Group, Department of Health Sciences and Technology, ETH Zurich, Zurich , Switzerland
| |
Collapse
|
7
|
Hannah R, Rocchi L, Rothwell JC. Observing Without Acting: A Balance of Excitation and Suppression in the Human Corticospinal Pathway? Front Neurosci 2018; 12:347. [PMID: 29875628 PMCID: PMC5974331 DOI: 10.3389/fnins.2018.00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies of human primary motor cortex (M1) indicate an increase corticospinal excitability during the observation of another's action. This appears to be somewhat at odds with recordings of pyramidal tract neurons in primate M1 showing that there is a balance of increased and decreased activity across the population. TMS is known to recruit a mixed population of cortical neurons, and so one explanation for previous results is that TMS tends to recruit those excitatory output neurons whose activity is increased during action observation. Here we took advantage of the directional sensitivity of TMS to recruit different subsets of M1 neurons and probed whether they responded differentially to action observation in a manner consistent with the balanced change in activity in primates. At the group level we did not observe the expected increase in corticospinal excitability for either TMS current direction during the observation of a precision grip movement. Instead, we observed substantial inter-individual variability ranging from strong facilitation to strong suppression of corticospinal excitability that was similar across both current directions. Thus, we found no evidence of any differential changes in the excitability of distinct M1 neuronal populations during action observation. The most notable change in corticospinal excitability at the group level was a general increase, across muscles and current directions, when participants went from a baseline state outside the task to a baseline state within the actual observation task. We attribute this to arousal- or attention-related processes, which appear to have a similar effect on the different corticospinal pathways targeted by different TMS current directions. Finally, this rather non-specific increase in corticospinal excitability suggests care should be taken when selecting a “baseline” state against which to compare changes during action observation.
Collapse
Affiliation(s)
- Ricci Hannah
- University College London Institute of Neurology, London, United Kingdom
| | - Lorenzo Rocchi
- University College London Institute of Neurology, London, United Kingdom
| | - John C Rothwell
- University College London Institute of Neurology, London, United Kingdom
| |
Collapse
|
8
|
Gueugneau N, Grosprêtre S, Stapley P, Lepers R. High-frequency neuromuscular electrical stimulation modulates interhemispheric inhibition in healthy humans. J Neurophysiol 2016; 117:467-475. [PMID: 27832594 DOI: 10.1152/jn.00355.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/27/2016] [Indexed: 01/29/2023] Open
Abstract
High-frequency neuromuscular electrical stimulation (HF NMES) induces muscular contractions through neural mechanisms that partially match physiological motor control. Indeed, a portion of the contraction arises from central mechanisms, whereby spinal motoneurons are recruited through the evoked sensory volley. However, the involvement of supraspinal centers of motor control during such stimulation remains poorly understood. Therefore, we tested whether a single HF NMES session applied to the upper limb influences interhemispheric inhibition (IHI) from left to right motor cortex (M1). Using noninvasive electrophysiology and transcranial magnetic stimulation, we evaluated the effects of a 10-min HF NMES session applied to a right wrist flexor on spinal and corticospinal excitability of both arms, as well as IHI, in healthy subjects. HF NMES induced a rapid decline in spinal excitability on the right stimulated side that closely matched the modulation of evoked force during the protocol. More importantly, IHI was significantly increased by HF NMES, and this increase was correlated to the electromyographic activity within the contralateral homologous muscle. Our study highlights a new neurophysiological mechanism, suggesting that HF NMES has an effect on the excitability of the transcallosal pathway probably to regulate the lateralization of the motor output. The data suggest that HF NMES can modify the hemispheric balance between both M1 areas. These findings provide important novel perspectives for the implementation of HF NMES in sport training and neurorehabilitation. NEW & NOTEWORTHY High-frequency neuromuscular electrical stimulation (HF NMES) induces muscular contractions that partially match physiological motor control. Here, we tested whether HF NMES applied to the upper limb influences interhemispheric inhibition. Our results show that interhemispheric inhibition was increased after HF NMES and that this increase was correlated to the electromyographic activity within the contralateral homologous muscle. This opens up original perspectives for the implementation of HF NMES in sport training and neurorehabilitation.
Collapse
Affiliation(s)
- Nicolas Gueugneau
- Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France; .,University of Bourgogne-Franche Comté, CAPS UMR 1093, Dijon, France; and
| | - Sidney Grosprêtre
- Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France.,University of Bourgogne-Franche Comté, CAPS UMR 1093, Dijon, France; and
| | - Paul Stapley
- Neural Control of Movement Laboratory, Faculty of Science, Medicine, and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Romuald Lepers
- Institut National de la Santé et de la Recherche Médicale CAPS UMR 1093, Dijon, France.,University of Bourgogne-Franche Comté, CAPS UMR 1093, Dijon, France; and
| |
Collapse
|
9
|
Nogueira-Campos AA, Saunier G, Della-Maggiore V, De Oliveira LAS, Rodrigues EC, Vargas CD. Observing Grasping Actions Directed to Emotion-Laden Objects: Effects upon Corticospinal Excitability. Front Hum Neurosci 2016; 10:434. [PMID: 27625602 PMCID: PMC5004483 DOI: 10.3389/fnhum.2016.00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
The motor system is recruited whenever one executes an action as well as when one observes the same action being executed by others. Although it is well established that emotion modulates the motor system, the effect of observing other individuals acting in an emotional context is particularly elusive. The main aim of this study was to investigate the effect induced by the observation of grasping directed to emotion-laden objects upon corticospinal excitability (CSE). Participants classified video-clips depicting the right-hand of an actor grasping emotion-laden objects. Twenty video-clips differing in terms of valence but balanced in arousal level were selected. Motor evoked potentials (MEPs) were then recorded from the first dorsal interosseous using transcranial magnetic stimulation (TMS) while the participants observed the selected emotional video-clips. During the video-clip presentation, TMS pulses were randomly applied at one of two different time points of grasping: (1) maximum grip aperture, and (2) object contact time. CSE was higher during the observation of grasping directed to unpleasant objects compared to pleasant ones. These results indicate that when someone observes an action of grasping directed to emotion-laden objects, the effect of the object valence promotes a specific modulation over the motor system.
Collapse
Affiliation(s)
| | - Ghislain Saunier
- Laboratory of Motor Cognition, Department of Anatomy, Federal University of Pará Belém, Brazil
| | - Valeria Della-Maggiore
- IFIBIO Houssay, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires Buenos Aires, Argentina
| | | | - Erika C Rodrigues
- Post-Graduate Program in Rehabilitation Sciences, Unisuam Rio de Janeiro, Brazil
| | - Claudia D Vargas
- Laboratory of Neurobiology II, Neurobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Instituto de Neurologia Deolindo Couto, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
10
|
Gueugneau N, Bove M, Ballay Y, Papaxanthis C. Interhemispheric inhibition is dynamically regulated during action observation. Cortex 2016; 78:138-149. [DOI: 10.1016/j.cortex.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
|