1
|
Klein C, Liu H, Zhao C, Huang W. Altered flexor carpi radialis motor axon excitability properties after cerebrovascular stroke. Front Neurol 2023; 14:1172960. [PMID: 37284180 PMCID: PMC10240235 DOI: 10.3389/fneur.2023.1172960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Background Spinal motoneurons may become hyperexcitable after a stroke. Knowledge about motoneuron hyperexcitability remains clinically important as it may contribute to a number of phenomena including spasticity, flexion synergies, and abnormal limb postures. Hyperexcitability seems to occur more often in muscles that flex the wrist and fingers (forearm flexors) compared to other upper limb muscles. The cause of hyperexcitability remains uncertain but may involve plastic changes in motoneurons and their axons. Aim To characterize intrinsic membrane properties of flexor carpi radialis (FCR) motor axons after stroke using nerve excitability testing. Methods Nerve excitability testing using threshold tracking techniques was applied to characterize FCR motor axon properties in persons who suffered a first-time unilateral cortical/subcortical stroke 23 to 308 days earlier. The median nerve was stimulated at the elbow bilaterally in 16 male stroke subjects (51.4 ± 2.9 y) with compound muscle action potentials recorded from the FCR. Nineteen age-matched males (52.7 ± 2.4 y) were also tested to serve as controls. Results Axon parameters after stroke were consistent with bilateral hyperpolarization of the resting potential. Nonparetic and paretic side axons were modeled by a 2.6-fold increase in pump currents (IPumpNI) together with an increase (38%-33%) in internodal leak conductance (GLkI) and a decrease (23%-29%) in internodal H conductance (Ih) relative to control axons. A decrease (14%) in Na+ channel inactivation rate (Aah) was also needed to fit the paretic axon recovery cycle. "Fanning out" of threshold electrotonus and the resting I/V slope (stroke limbs combined) correlated with blood potassium [K+] (R = -0.61 to 0.62, p< 0.01) and disability (R = -0.58 to 0.55, p < 0.05), but not with spasticity, grip strength, or maximal FCR activity. Conclusion In contrast to our expectations, FCR axons were not hyperexcitable after stroke. Rather, FCR axons were found to be hyperpolarized bilaterally post stroke, and this was associated with disability and [K+]. Reduced FCR axon excitability may represent a kind of bilateral trans-synaptic homeostatic mechanism that acts to minimize motoneuron hyperexcitability.
Collapse
|
2
|
Ranzani R, Chiriatti G, Schwarz A, Devittori G, Gassert R, Lambercy O. An online method to monitor hand muscle tone during robot-assisted rehabilitation. Front Robot AI 2023; 10:1093124. [PMID: 36814447 PMCID: PMC9939644 DOI: 10.3389/frobt.2023.1093124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction: Robot-assisted neurorehabilitation is becoming an established method to complement conventional therapy after stroke and provide intensive therapy regimes in unsupervised settings (e.g., home rehabilitation). Intensive therapies may temporarily contribute to increasing muscle tone and spasticity, especially in stroke patients presenting tone alterations. If sustained without supervision, such an increase in muscle tone could have negative effects (e.g., functional disability, pain). We propose an online perturbation-based method that monitors finger muscle tone during unsupervised robot-assisted hand therapy exercises. Methods: We used the ReHandyBot, a novel 2 degrees of freedom (DOF) haptic device to perform robot-assisted therapy exercises training hand grasping (i.e., flexion-extension of the fingers) and forearm pronosupination. The tone estimation method consisted of fast (150 ms) and slow (250 ms) 20 mm ramp-and-hold perturbations on the grasping DOF, which were applied during the exercises to stretch the finger flexors. The perturbation-induced peak force at the finger pads was used to compute tone. In this work, we evaluated the method performance in a stiffness identification experiment with springs (0.97 and 1.57 N/mm), which simulated the stiffness of a human hand, and in a pilot study with subjects with increased muscle tone after stroke and unimpaired, which performed one active sensorimotor exercise embedding the tone monitoring method. Results: The method accurately estimates forces with root mean square percentage errors of 3.8% and 11.3% for the soft and stiff spring, respectively. In the pilot study, six chronic ischemic stroke patients [141.8 (56.7) months after stroke, 64.3 (9.5) years old, expressed as mean (std)] and ten unimpaired subjects [59.9 (6.1) years old] were tested without adverse events. The average reaction force at the level of the fingertip during slow and fast perturbations in the exercise were respectively 10.7 (5.6) N and 13.7 (5.6) N for the patients and 5.8 (4.2) N and 6.8 (5.1) N for the unimpaired subjects. Discussion: The proposed method estimates reaction forces of physical springs accurately, and captures online increased reaction forces in persons with stroke compared to unimpaired subjects within unsupervised human-robot interactions. In the future, the identified range of muscle tone increase after stroke could be used to customize therapy for each subject and maintain safety during intensive robot-assisted rehabilitation.
Collapse
Affiliation(s)
- Raffaele Ranzani
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Giorgia Chiriatti
- Department of Industrial Engineering and Mathematical Science, Polytechnic University of Marche, Ancona, Italy
| | - Anne Schwarz
- Vascular Neurology and Neurorehabilitation, Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giada Devittori
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore—ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore—ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
3
|
Force acquisition frequency is less impaired compared to grip strength or hand dexterity in individuals with chronic stroke. Exp Brain Res 2022; 240:2513-2521. [DOI: 10.1007/s00221-022-06432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
4
|
Shi XQ, Heung HL, Tang ZQ, Tong KY, Li Z. Verification of Finger Joint Stiffness Estimation Method With Soft Robotic Actuator. Front Bioeng Biotechnol 2020; 8:592637. [PMID: 33392166 PMCID: PMC7775510 DOI: 10.3389/fbioe.2020.592637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/03/2020] [Indexed: 12/03/2022] Open
Abstract
Stroke has been the leading cause of disability due to the induced spasticity in the upper extremity. The constant flexion of spastic fingers following stroke has not been well described. Accurate measurements for joint stiffness help clinicians have a better access to the level of impairment after stroke. Previously, we conducted a method for quantifying the passive finger joint stiffness based on the pressure-angle relationship between the spastic fingers and the soft-elastic composite actuator (SECA). However, it lacks a ground-truth to demonstrate the compatibility between the SECA-facilitated stiffness estimation and standard joint stiffness quantification procedure. In this study, we compare the passive metacarpophalangeal (MCP) joint stiffness measured using the SECA with the results from our designed standalone mechatronics device, which measures the passive metacarpophalangeal joint torque and angle during passive finger rotation. Results obtained from the fitting model that concludes the stiffness characteristic are further compared with the results obtained from SECA-Finger model, as well as the clinical score of Modified Ashworth Scale (MAS) for grading spasticity. These findings suggest the possibility of passive MCP joint stiffness quantification using the soft robotic actuator during the performance of different tasks in hand rehabilitation.
Collapse
Affiliation(s)
- Xiang Qian Shi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ho Lam Heung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhi Qiang Tang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zheng Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
Huang TY, Pan LLH, Yang WW, Huang LY, Sun PC, Chen CS. Biomechanical Evaluation of Three-Dimensional Printed Dynamic Hand Device for Patients With Chronic Stroke. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1246-1252. [DOI: 10.1109/tnsre.2019.2915260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Kurihara J, Lee B, Hara D, Noguchi N, Yamazaki T. Increased center of pressure trajectory of the finger during precision grip task in stroke patients. Exp Brain Res 2018; 237:327-333. [PMID: 30406395 DOI: 10.1007/s00221-018-5425-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 11/01/2018] [Indexed: 11/28/2022]
Abstract
The aim of this study was to assess the spatial stability of stroke patients while holding a freely movable object. Twenty-two acute stroke patients with mild hand impairment performed a grip and lift task using the thumb and index finger. The displacement of the center of pressure (COP) trajectory, the grip force (GF) and several clinical parameters were monitored. Although the GF was not different between paretic and nonparetic hands, the COP trajectory of the paretic index finger was increased. Moreover, the COP trajectories of the thumb and index finger in hemorrhagic patients were longer than those in ischemic patients. These discrepancies between kinetic parameters suggest that different aspects of grip force control may be considered in patients with mild stroke.
Collapse
Affiliation(s)
- Junichi Kurihara
- Division of Rehabilitation Service, Geriatrics Research Institute and Hospital, 3-26-8, Otomachi, Maebashi, Gunma, 371-0847, Japan
| | - Bumsuk Lee
- Gunma University Graduate School of Health Sciences, 3-39-22, Showa, Maebashi, Gunma, 371-8514, Japan.
| | - Daichi Hara
- Department of Rehabilitation, Maebashi Red Cross Hospital, 3-21-26, Asahi, Maebashi, Gunma, 371-0014, Japan
| | - Naoto Noguchi
- Gunma University Graduate School of Health Sciences, 3-39-22, Showa, Maebashi, Gunma, 371-8514, Japan
| | - Tsuneo Yamazaki
- Gunma University Graduate School of Health Sciences, 3-39-22, Showa, Maebashi, Gunma, 371-8514, Japan
| |
Collapse
|
7
|
Huang Y, Lai WP, Qian Q, Hu X, Tam EWC, Zheng Y. Translation of robot-assisted rehabilitation to clinical service: a comparison of the rehabilitation effectiveness of EMG-driven robot hand assisted upper limb training in practical clinical service and in clinical trial with laboratory configuration for chronic stroke. Biomed Eng Online 2018; 17:91. [PMID: 29941043 PMCID: PMC6019523 DOI: 10.1186/s12938-018-0516-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rehabilitation robots can provide intensive physical training after stroke. However, variations of the rehabilitation effects in translation from well-controlled research studies to clinical services have not been well evaluated yet. This study aims to compare the rehabilitation effects of the upper limb training by an electromyography (EMG)-driven robotic hand achieved in a well-controlled research environment and in a practical clinical service. METHODS It was a non-randomized controlled trial, and thirty-two participants with chronic stroke were recruited either in the clinical service (n = 16, clinic group), or in the research setting (n = 16, lab group). Each participant received 20-session EMG-driven robotic hand assisted upper limb training. The training frequency (4 sessions/week) and the pace in a session were fixed for the lab group, while they were flexible (1-3 sessions/week) and adaptive for the clinic group. The training effects were evaluated before and after the treatment with clinical scores of the Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), Functional Independence Measure (FIM), and Modified Ashworth Scale (MAS). RESULTS Significant improvements in the FMA full score, shoulder/elbow and wrist/hand (P < 0.001), ARAT (P < 0.001), and MAS elbow (P < 0.05) were observed after the training for both groups. Significant improvements in the FIM (P < 0.05), MAS wrist (P < 0.001) and MAS hand (P < 0.05) were only obtained after the training in the clinic group. Compared with the lab group, higher FIM improvement in the clinic group was observed (P < 0.05). CONCLUSIONS The functional improvements after the robotic hand training in the clinical service were comparable to the effectiveness achieved in the research setting, through flexible training schedules even with a lower training frequency every week. Higher independence in the daily living and a more effective release in muscle tones were achieved in the clinic group than the lab group.
Collapse
Affiliation(s)
- Yanhuan Huang
- Department of Biomedical Engineering, Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Will Poyan Lai
- Jockey Club Rehabilitation Engineering Clinic, Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qiuyang Qian
- Department of Biomedical Engineering, Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Eric W. C. Tam
- Department of Biomedical Engineering, Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Jockey Club Rehabilitation Engineering Clinic, Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yongping Zheng
- Department of Biomedical Engineering, Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
8
|
Jones CL, Kamper DG. Involuntary Neuromuscular Coupling between the Thumb and Finger of Stroke Survivors during Dynamic Movement. Front Neurol 2018; 9:84. [PMID: 29545767 PMCID: PMC5837983 DOI: 10.3389/fneur.2018.00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/06/2018] [Indexed: 11/13/2022] Open
Abstract
Finger-thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger-thumb coupling during close-open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb (p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing (p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI (p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm (p < 0.001). A greater effect was seen during the opening phase (p < 0.044). Thus, involuntary finger-thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies.
Collapse
Affiliation(s)
| | - Derek G. Kamper
- UNC/NC State Joint Department of Biomedical Engineering, Rehabilitation Engineering Core, Raleigh, NC, United States
| |
Collapse
|
9
|
Suarez-Escobar M, Rendon-Velez E. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation. Disabil Rehabil Assist Technol 2018; 13:683-703. [PMID: 29334274 DOI: 10.1080/17483107.2018.1425746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE This article aims to clarify the current state-of-the-art of robotic/mechanical devices for post-stroke thumb rehabilitation as well as the anatomical characteristics and motions of the thumb that are crucial for the development of any device that aims to support its motion. METHODS A systematic literature search was conducted to identify robotic/mechanical devices for post-stroke thumb rehabilitation. Specific electronic databases and well-defined search terms and inclusion/exclusion criteria were used for such purpose. A reasoning model was devised to support the structured abstraction of relevant data from the literature of interest. RESULTS Following the main search and after removing duplicated and other non-relevant studies, 68 articles (corresponding to 32 devices) were left for further examination. These articles were analyzed to extract data relative to (i) the motions assisted/permitted - either actively or passively - by the device per anatomical joint of the thumb and (ii) mechanical-related aspects (i.e., architecture, connections to thumb, other fingers supported, adjustability to different hand sizes, actuators - type, quantity, location, power transmission and motion trajectory). CONCLUSIONS Most articles describe preliminary design and testing of prototypes, rather than the thorough evaluation of commercially ready devices. Defining appropriate kinematic models of the thumb upon which to design such devices still remains a challenging and unresolved task. Further research is needed before these devices can actually be implemented in clinical environments to serve their intended purpose of complementing the labour of therapists by facilitating intensive treatment with precise and repeatable exercises. Implications for Rehabilitation Post-stroke functional disability of the hand, and particularly of the thumb, significantly affects the capability to perform activities of daily living, threatening the independence and quality of life of the stroke survivors. The latest studies show that a high-dose intensive therapy (in terms of frequency, duration and intensity/effort) is the key to effectively modify neural organization and recover the motor skills that were lost after a stroke. Conventional therapy based on manual interaction with physical therapists makes the procedure labour intensive and increases the costs. Robotic/mechanical devices hold promise for complementing conventional post-stroke therapy. Specifically, these devices can provide reliable and accurate therapy for long periods of time without the associated fatigue. Also, they can be used as a means to assess patients? performance and progress in an objective and consistent manner. The full potential of robot-assisted therapy is still to be unveiled. Further exploration will surely lead to devices that can be well accepted equally by therapists and patients and that can be useful both in clinical and home-based rehabilitation practice such that motor recovery of the hand becomes a common outcome in stroke survivors. This overview provides the reader, possibly a designer of such a device, with a complete overview of the state-of-the-art of robotic/mechanical devices consisting of or including features for the rehabilitation of the thumb. Also, we clarify the anatomical characteristics and motions of the thumb that are crucial for the development of any device that aims to support its motion. Hopefully, this?combined with the outlined opportunities for further research?leads to the improvement of current devices and the development of new technology and knowledge in the field.
Collapse
Affiliation(s)
- Marian Suarez-Escobar
- a Design Engineering Research Group (GRID), Department of Product Design Engineering , Universidad EAFIT , Medellin , Colombia
| | - Elizabeth Rendon-Velez
- a Design Engineering Research Group (GRID), Department of Product Design Engineering , Universidad EAFIT , Medellin , Colombia
| |
Collapse
|
10
|
Nam C, Rong W, Li W, Xie Y, Hu X, Zheng Y. The Effects of Upper-Limb Training Assisted with an Electromyography-Driven Neuromuscular Electrical Stimulation Robotic Hand on Chronic Stroke. Front Neurol 2017; 8:679. [PMID: 29312116 PMCID: PMC5735084 DOI: 10.3389/fneur.2017.00679] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 01/03/2023] Open
Abstract
Background Impaired hand dexterity is a major disability of the upper limb after stroke. An electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand was designed previously, whereas its rehabilitation effects were not investigated. Objectives This study aims to investigate the rehabilitation effectiveness of the EMG-driven NMES-robotic hand-assisted upper-limb training on persons with chronic stroke. Method A clinical trial with single-group design was conducted on chronic stroke participants (n = 15) who received 20 sessions of EMG-driven NMES-robotic hand-assisted upper-limb training. The training effects were evaluated by pretraining, posttraining, and 3-month follow-up assessments with the clinical scores of the Fugl-Meyer Assessment (FMA), the Action Research Arm Test (ARAT), the Wolf Motor Function Test, the Motor Functional Independence Measure, and the Modified Ashworth Scale (MAS). Improvements in the muscle coordination across the sessions were investigated by EMG parameters, including EMG activation level and Co-contraction Indexes (CIs) of the target muscles in the upper limb. Results Significant improvements in the FMA shoulder/elbow and wrist/hand scores (P < 0.05), the ARAT (P < 0.05), and in the MAS (P < 0.05) were observed after the training and sustained 3 months later. The EMG parameters indicated a significant decrease of the muscle activation level in flexor digitorum (FD) and biceps brachii (P < 0.05), as well as a significant reduction of CIs in the muscle pairs of FD and triceps brachii and biceps brachii and triceps brachii (P < 0.05). Conclusion The upper-limb training integrated with the assistance from the EMG-driven NMES-robotic hand is effective for the improvements of the voluntary motor functions and the muscle coordination in the proximal and distal joints. Furthermore, the motor improvement after the training could be maintained till 3 months later. Trial registration ClinicalTrials.gov. NCT02117089; date of registration: April 10, 2014.
Collapse
Affiliation(s)
- Chingyi Nam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Wei Rong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Waiming Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yunong Xie
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yongping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
11
|
Wang F, Jones CL, Shastri M, Qian K, Kamper DG, Sarkar N. Design and Evaluation of an Actuated Exoskeleton for Examining Motor Control in Stroke Thumb. Adv Robot 2016; 30:165-177. [PMID: 27672232 PMCID: PMC5035118 DOI: 10.1080/01691864.2015.1105867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic hand impairment is common following stroke. This paper presents an actuated thumb exoskeleton (ATX) to facilitate research in examining motor control and hand rehabilitation. The ATX presented in this work aims to provide independent bi-directional actuation in each of the 5 degrees-of-freedom (DOF) of the thumb using a novel flexible shaft based mechanism that has 5 active DOF and 3 passive DOF. A prototype has been built and experiments have been conducted to measure the allowable workspace at the thumb and evaluate the kinematic and kinetic performance of the ATX. The experimental results show that the ATX is able to provide individual actuation at all 5 thumb joints with high joint velocity and torque capacities. Further improvement and future work are discussed.
Collapse
Affiliation(s)
- Furui Wang
- TRUMPF Photonics Inc, Cranbury, NJ, 08512, USA
| | - Christopher L. Jones
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA 60616
| | - Milind Shastri
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA 37212
| | - Kai Qian
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA 60616
| | - Derek G. Kamper
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA 60616
- Rehabilitation Institute of Chicago, Chicago, IL, 60611
| | - Nilanjan Sarkar
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA 37212
| |
Collapse
|
12
|
Kamper DG, Fischer HC, Conrad MO, Towles JD, Rymer WZ, Triandafilou KM. Finger-thumb coupling contributes to exaggerated thumb flexion in stroke survivors. J Neurophysiol 2014; 111:2665-74. [PMID: 24671534 DOI: 10.1152/jn.00413.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to investigate altered finger-thumb coupling in individuals with chronic hemiparesis poststroke. First, an external device stretched finger flexor muscles by passively rotating the metacarpophalangeal (MCP) joints. Subjects then performed isometric finger or thumb force generation. Forces/torques and electromyographic signals were recorded for both the thumb and finger muscles. Stroke survivors with moderate (n = 9) and severe (n = 9) chronic hand impairment participated, along with neurologically intact individuals (n = 9). Stroke survivors exhibited strong interactions between finger and thumb flexors. The stretch reflex evoked by stretch of the finger flexors of stroke survivors led to heteronymous reflex activity in the thumb, while attempts to produce isolated voluntary finger MCP flexion torque/thumb flexion force led to increased and undesired thumb force/finger MCP torque production poststroke with a striking asymmetry between voluntary flexion and extension. Coherence between the long finger and thumb flexors estimated using intermuscular electromyographic correlations, however, was small. Coactivation of thumb and finger flexor muscles was common in stroke survivors, whether activation was evoked by passive stretch or voluntary activation. The coupling appears to arise from subcortical or spinal sources. Flexor coupling between the thumb and fingers seems to contribute to undesired thumb flexor activity after stroke and may impact rehabilitation outcomes.
Collapse
Affiliation(s)
- Derek G Kamper
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; and
| | - Heidi C Fischer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; and
| | - Megan O Conrad
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; and
| | - Joseph D Towles
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; and Rehabilitation R&D Service, Edward Hines Jr. Veterans Affairs Hospital, Hines, Illinois
| | - William Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; and Rehabilitation R&D Service, Edward Hines Jr. Veterans Affairs Hospital, Hines, Illinois
| | - Kristen M Triandafilou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; and
| |
Collapse
|
13
|
Hu XL, Tong KY, Wei XJ, Rong W, Susanto EA, Ho SK. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J Electromyogr Kinesiol 2013; 23:1065-74. [PMID: 23932795 DOI: 10.1016/j.jelekin.2013.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/05/2013] [Accepted: 07/13/2013] [Indexed: 01/10/2023] Open
Abstract
Loss of hand function and finger dexterity are main disabilities in the upper limb after stroke. An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Significant motor improvements were observed in the Fugl-Meyer hand/wrist and shoulder/elbow scores (p<0.05), and also in the Action Research Arm Test and Wolf Motor Function Test (p<0.05). Significant reduction in spasticity of the fingers as was measured by the Modified Ashworth Score (p<0.05). The training improved the muscle co-ordination between the antagonist muscle pair (flexor digitorum (FD) and extensor digitorum (ED)), associated with a significant reduction in the ED EMG level (p<0.05) and a significant decrease of ED and FD co-contraction during the training (p<0.05); the excessive muscle activities in the biceps brachii were also reduced significantly after the training (p<0.05).
Collapse
Affiliation(s)
- X L Hu
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong
| | | | | | | | | | | |
Collapse
|
14
|
Reciprocal inhibition versus unloading response during stretch reflex in humans. Exp Brain Res 2013; 226:33-43. [PMID: 23354665 DOI: 10.1007/s00221-013-3408-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/03/2013] [Indexed: 01/08/2023]
Abstract
Rotation of an upper limb joint produces excitatory stretch reflex peaks M1 and M2 in the stretched muscles and simultaneous decrease in electromyographic (EMG) activity in the shortened muscles. The objective of this study was to examine whether the decreased activity in the antagonists (rINHIB) is purely from unloading of the spindles or receives active inhibition involving inhibitory interneurons. If rINHIB is due only to unloading, then the termination of rINHIB should vary with the duration of perturbation used to elicit stretch reflex, namely shorter stretches should result in shorter values of decreased periods of EMG. To examine this question, rectangular pulses, ranging in duration from 25 to 150 ms, were used to stretch wrist flexors or extensors with a torque motor. These rectangular pulses resulted in joint rotations which peaked at times (T(peak)) ranging from approximately 75-160 ms. As shown by previous authors, when the duration of rotation was shortened, the magnitude of M1 did not change, while the magnitude of M2 decreased. However, termination time of rINHIB in the shortened muscles did not change with change in T(peak), implying thereby that unloading of spindles of the antagonist muscles is not the only mechanism for the reduction in activity and that inhibitory reflex pathways most likely contribute. Possible sources of inhibition are discussed for the short- and long-latency inhibition.
Collapse
|
15
|
Triandafilou KM, Fischer HC, Towles JD, Kamper DG, Rymer WZ. Diminished capacity to modulate motor activation patterns according to task contributes to thumb deficits following stroke. J Neurophysiol 2011; 106:1644-51. [PMID: 21753022 DOI: 10.1152/jn.00936.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to explore motor impairment of the thumb following stroke. More specifically, we quantitatively examined kinetic deficits of the thumb. We anticipated that force deficits would be nonuniformly distributed across the kinetic workspace, due in part to varying levels of difficulty in altering the motor activation pattern to meet the task. Eighteen stroke survivors with chronic hemiparesis participated in the trials, along with nine age-matched controls. Of the stroke-survivor group, nine subjects had moderate hand impairment, and the other nine subjects had severe hand impairment. Subjects were instructed to generate maximal isometric thumb-tip force, as measured with a load cell, in each of six orthogonal directions with respect to the thumb tip. Activity of three representative thumb muscles was monitored through intramuscular and surface electrodes. Univariate split-plot analysis of variance revealed that clinical impairment level had a significant effect on measured force (P < 0.001), with the severely impaired group producing only 13% of the control forces, and the moderately impaired group generating 32% of control forces, on average. Weakness in the moderately impaired group exhibited a dependence on force direction (P = 0.015), with the least-relative weakness in the medial direction. Electromyographic recordings revealed that stroke survivors exhibited limited modulation of thumb-muscle activity with intended force direction. The difference in activation presented by the control group for a given muscle was equal to 40% of its full activation range across force directions, whereas this difference was only 26% for the moderately impaired group and 15% for the severely impaired group. This diminished ability to modify voluntary activation patterns, which we observed previously in index-finger muscles as well, appears to be a primary factor in hand impairment following stroke.
Collapse
Affiliation(s)
- Kristen M Triandafilou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|