1
|
Wang Q, Shi B, Jia J, Hu J, Li H, Jin X, Chen A. Distinct role of primate DLPFC and LIP in hierarchical control of learned saccade sequences. iScience 2025; 28:111694. [PMID: 39877070 PMCID: PMC11773476 DOI: 10.1016/j.isci.2024.111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Learned action sequences are suggested to be organized hierarchically, but how the various hierarchical levels are processed by different cortical regions remains largely unknown. By training monkeys to perform heterogeneous saccade sequences, we investigated the role of the dorsolateral prefrontal cortex (DLPFC) and the lateral intraparietal cortex (LIP) in sequence planning and execution. The electrophysiological recording revealed that sequence-level initiation information was mostly signaled by DLPFC neurons, whereas subsequence-level transition was largely encoded by LIP neurons. Although electrical microstimulation on DLPFC weakly affected sequence performance, inactivating DLPFC significantly increased the initiation latency of the entire sequences, indicating that DLPFC was involved in the sequence initiation. In contrast, either microstimulation or inactivation of area LIP caused improper switches between subsequences, suggesting that LIP played a role in subsequence switch. Overall, these results demonstrated that frontal and parietal cortices play distinct yet complementary roles in controlling learned saccade sequences.
Collapse
Affiliation(s)
- Qingjun Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
| | - Binchao Shi
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
| | - Jing Jia
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
| | - Jingyu Hu
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
| | - Haoran Li
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
| | - Xin Jin
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
- New Cornerstone Science Laboratory, Center for Motor Control and Disease, East China Normal University, Shanghai 200062, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
2
|
Flierman NA, Koay SA, van Hoogstraten WS, Ruigrok TJH, Roelfsema P, Badura A, De Zeeuw CI. Encoding of cerebellar dentate neuron activity during visual attention in rhesus macaques. eLife 2025; 13:RP99696. [PMID: 39819496 PMCID: PMC11737872 DOI: 10.7554/elife.99696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.
Collapse
Affiliation(s)
- Nico A Flierman
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Sue Ann Koay
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tom JH Ruigrok
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Pieter Roelfsema
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Integrative Neurophysiology, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical CentreAmsterdamNetherlands
| | | | - Chris I De Zeeuw
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| |
Collapse
|
3
|
Zimmermann E. Compression of time in double-step saccades. J Neurophysiol 2024; 132:61-67. [PMID: 38810256 PMCID: PMC11381116 DOI: 10.1152/jn.00117.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Temporal intervals appear compressed at the time of saccades. Here, I asked if saccadic compression of time is related to motor planning or to saccade execution. To dissociate saccade motor planning from its execution, I used the double-step paradigm, in which subjects have to perform two horizontal saccades successively. At various times around the saccade sequence, I presented two large horizontal bars, which marked an interval lasting 100 ms. After 700 ms, a second temporal interval was presented, varying in duration across trials. Subjects were required to judge which interval appeared shorter. I found that during the first saccades in the double-step paradigm, temporal intervals were compressed. Maximum temporal compression coincided with saccade onset. Around the time of the second saccade, I found temporal compression as well, however, the time of maximum compression preceded saccade onset by about 70 ms. I compared the magnitude and time of temporal compression between double-step saccades and amplitude-matched single saccades, which I measured separately. Although I found no difference in time compression magnitude, the time when maximum compression occurred differed significantly. I conclude that the temporal shift of time compression in double-step saccades demonstrates the influence of saccade motor planning on time perception.NEW & NOTEWORTHY Visually defined temporal intervals appear compressed at the time of saccades. Here, I tested time perception during double-step saccades dissociating saccade planning from execution. Although around the time of the first saccade, peak compression was found at saccade onset, compression around the time of the second saccade peaked 70 ms before saccade onset. The results suggest that saccade motor planning influences time perception.
Collapse
Affiliation(s)
- Eckart Zimmermann
- Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Han NX, Eckstein MP. Inferential eye movement control while following dynamic gaze. eLife 2023; 12:e83187. [PMID: 37615158 PMCID: PMC10473837 DOI: 10.7554/elife.83187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Attending to other people's gaze is evolutionary important to make inferences about intentions and actions. Gaze influences covert attention and triggers eye movements. However, we know little about how the brain controls the fine-grain dynamics of eye movements during gaze following. Observers followed people's gaze shifts in videos during search and we related the observer eye movement dynamics to the time course of gazer head movements extracted by a deep neural network. We show that the observers' brains use information in the visual periphery to execute predictive saccades that anticipate the information in the gazer's head direction by 190-350ms. The brain simultaneously monitors moment-to-moment changes in the gazer's head velocity to dynamically alter eye movements and re-fixate the gazer (reverse saccades) when the head accelerates before the initiation of the first forward gaze-following saccade. Using saccade-contingent manipulations of the videos, we experimentally show that the reverse saccades are planned concurrently with the first forward gaze-following saccade and have a functional role in reducing subsequent errors fixating on the gaze goal. Together, our findings characterize the inferential and functional nature of social attention's fine-grain eye movement dynamics.
Collapse
Affiliation(s)
- Nicole Xiao Han
- Department of Psychological and Brain Sciences, Institute for Collaborative Biotechnologies, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Miguel Patricio Eckstein
- Department of Psychological and Brain Sciences, Department of Electrical and Computer Engineering, Department of Computer Science, Institute for Collaborative Biotechnologies, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
5
|
Azadi R, McPeek RM. Contextual saccade adaptation induced by sequential saccades. J Neurophysiol 2022; 127:746-755. [PMID: 35171695 PMCID: PMC8917932 DOI: 10.1152/jn.00221.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Saccade adaptation is the gradual adjustment of saccade end point to maintain spatial accuracy. Contextual adaptation refers to a situation in which the adaptation-related change in saccade end point is contingent on the behavioral context in which the saccade is made. For example, in some situations, the same saccade to the same retinotopic location can be simultaneously adapted in opposite directions depending on the context in which it is made. Saccade adaptation has traditionally been studied in isolated movements, but in everyday life, saccades are often planned and executed in sequences. The oculomotor system may therefore have adaptive mechanisms specific to sequential saccades. Here, in five experiments, we investigated contextual saccade adaptation in sequences of saccades. In the first experiment, we demonstrate that saccades to a given retinotopic location can be simultaneously adapted in opposite directions depending on whether they occur in isolation or in a sequence. In the other experiments, we measured the extent to which properties of the previous and following saccades in a sequence can induce contextual saccade adaptation. Overall, we find that the existence, direction, and amplitude of previous and subsequent saccades, as well as the order of the current saccade within a movement sequence, can all induce contextual adaptation. These novel findings demonstrate the surprising flexibility of the system in maintaining end point accuracy, and support the idea that saccades made in a movement sequence are planned concurrently rather than independently.NEW & NOTEWORTHY This study reveals a new type of contextual saccade adaptation: sequential saccades are able to induce contextual saccade adaptation when direction, amplitude, or the existence of preceding and following saccades are used as contexts. These novel findings are also consistent with the idea that saccades made in a sequence are planned concurrently rather than independently.
Collapse
Affiliation(s)
- Reza Azadi
- 1Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland,2Graduate Center for Vision Research, State University of
New York College of Optometry, New York, New York
| | - Robert M. McPeek
- 2Graduate Center for Vision Research, State University of
New York College of Optometry, New York, New York
| |
Collapse
|
6
|
Neural mechanisms underlying the temporal control of sequential saccade planning in the frontal eye field. Proc Natl Acad Sci U S A 2021; 118:2108922118. [PMID: 34599104 DOI: 10.1073/pnas.2108922118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Sequences of saccadic eye movements are instrumental in navigating our visual environment. While neural activity has been shown to ramp up to a threshold before single saccades, the neural underpinnings of multiple saccades is unknown. To understand the neural control of saccade sequences, we recorded from the frontal eye field (FEF) of macaque monkeys while they performed a sequential saccade task. We show that the concurrent planning of two saccade plans brings forth processing bottlenecks, specifically by decreasing the growth rate and increasing the threshold of saccade-related ramping activity. The rate disruption affected both saccade plans, and a computational model, wherein activity related to the two saccade plans mutually and asymmetrically inhibited each other, predicted the behavioral and neural results observed experimentally. Borrowing from models in psychology, our results demonstrate a capacity-sharing mechanism of processing bottlenecks, wherein multiple saccade plans in a sequence compete for the processing capacity by the perturbation of the saccade-related ramping activity. Finally, we show that, in contrast to movement-related neurons, visual activity in FEF neurons is not affected by the presence of multiple saccade targets, indicating that, for perceptually simple tasks, inhibition within movement-related neurons mainly instantiates capacity sharing. Taken together, we show how psychology-inspired models of capacity sharing can be mapped onto neural responses to understand the control of rapid saccade sequences.
Collapse
|
7
|
Jia J, Puyang Z, Wang Q, Jin X, Chen A. Dynamic encoding of saccade sequences in primate frontal eye field. J Physiol 2021; 599:5061-5084. [PMID: 34555188 DOI: 10.1113/jp282094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022] Open
Abstract
The frontal eye field (FEF) is a key part of the oculomotor system, with dominant responses to the direction of single saccades. However, whether and how FEF contributes to sequential saccades remain largely unknown. By training rhesus monkeys to perform saccade sequences, we found sequence-related activities in FEF neurons, whose selectivity to saccade direction undergoes dynamic changes during sequential vs. single saccades. These sequence-related activities are context-dependent, exhibiting different firing activities during memory- vs. visually guided sequences. When the monkey was performing the sequential saccade task, the thresholds of microstimulation to evoke saccades in FEF were increased and the percentage of the successfully induced saccades was significantly reduced compared with the fixation condition. Pharmacological inactivation of FEF impaired the monkey's performance of previously learned sequential saccades, with different effects on the same actions depending on its position within the sequence. These results reveal the context-dependent, sequence-specific dynamic encoding of saccades in FEF, and underscore the crucial role of FEF in the planning and execution of sequential saccades. KEY POINTS: FEF neurons respond differently during sequential vs. single saccades Sequence-related FEF activity is context-dependent The microstimulation threshold in FEF was increased during the sequential task but the evoked saccade did not alter the sequence structure FEF inactivation severely impaired the performance of sequential saccades.
Collapse
Affiliation(s)
- Jing Jia
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Zhen Puyang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Qingjun Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| | - Xin Jin
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China.,Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Center for Motor Control and Disease, East China Normal University, Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China
| |
Collapse
|
8
|
Abstract
What are the cortical neural correlates that distinguish goal-directed and non-goal-directed movements? We investigated this question in the monkey frontal eye field (FEF), which is implicated in voluntary control of saccades. Here, we compared FEF activity associated with goal-directed (G) saccades and non-goal-directed (nG) saccades made by the monkey. Although the FEF neurons discharged before these nG saccades, there were three major differences in the neural activity: First, the variability in spike rate across trials decreased only for G saccades. Second, the local field potential beta-band power decreased during G saccades but did not change during nG saccades. Third, the time from saccade direction selection to the saccade onset was significantly longer for G saccades compared with nG saccades. Overall, our results reveal unexpected differences in neural signatures for G versus nG saccades in a brain area that has been implicated selectively in voluntary control. Taken together, these data add critical constraints to the way we think about saccade generation in the brain.
Collapse
|
9
|
Mantziara M, Ivanov T, Houghton G, Kornysheva K. Competitive state of movements during planning predicts sequence performance. J Neurophysiol 2021; 125:1251-1268. [PMID: 33656932 DOI: 10.1152/jn.00645.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans can learn and produce skilled movement sequences from memory, yet the nature of sequence planning is not well understood. Previous computational and neurophysiological work suggests that movements in a sequence are planned as parallel graded activations and selected for output through competition. However, the relevance of this planning pattern to sequence production fluency and accuracy, as opposed to the temporal structure of sequences, is unclear. To resolve this question, we assessed the relative availability of constituent movements behaviorally during the preparation of motor sequences from memory. In three separate multisession experiments, healthy participants were trained to retrieve and produce four-element finger press sequences with particular timing according to an abstract sequence cue. We evaluated reaction time (RT) and error rate as markers of movement availability to constituent movement probes. Our results demonstrate that longer preparation time produces more pronounced differences in availability between adjacent sequence elements, whereas no effect was found for sequence speed or temporal grouping. Further, participants with larger position-dependent differences in movement availability tended to initiate correct sequences faster and with a higher temporal accuracy. Our results suggest that competitive preactivation is established gradually during sequence planning and predicts sequence skill, rather than the temporal structure of the motor sequence.NEW & NOTEWORTHY Sequence planning is an integral part of motor sequence control. Here, we demonstrate that the competitive state of sequential movements during sequence planning can be read out behaviorally through movement probes. We show that position-dependent differences in movement availability during planning reflect sequence preparedness and skill but not the timing of the planned sequence. Behavioral access to the preparatory state of movements may serve as a marker of sequence planning capacity.
Collapse
Affiliation(s)
- Myrto Mantziara
- School of Psychology, Bangor University, Bangor, Wales, United Kingdom.,Bangor Imaging Unit, Bangor University, Bangor, Wales, United Kingdom
| | - Tsvetoslav Ivanov
- School of Psychology, Bangor University, Bangor, Wales, United Kingdom
| | - George Houghton
- School of Psychology, Bangor University, Bangor, Wales, United Kingdom
| | - Katja Kornysheva
- School of Psychology, Bangor University, Bangor, Wales, United Kingdom.,Bangor Imaging Unit, Bangor University, Bangor, Wales, United Kingdom
| |
Collapse
|