1
|
Fló E, Fraiman D, Sitt JD. Assessing brain-muscle networks during motor imagery to detect covert command-following. BMC Med 2025; 23:68. [PMID: 39915775 PMCID: PMC11803995 DOI: 10.1186/s12916-025-03846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND In this study, we evaluated the potential of a network approach to electromyography and electroencephalography recordings to detect covert command-following in healthy participants. The motivation underlying this study was the development of a diagnostic tool that can be applied in common clinical settings to detect awareness in patients that are unable to convey explicit motor or verbal responses, such as patients that suffer from disorders of consciousness (DoC). METHODS We examined the brain and muscle response during movement and imagined movement of simple motor tasks, as well as during resting state. Brain-muscle networks were obtained using non-negative matrix factorization (NMF) of the coherence spectra for all the channel pairs. For the 15/38 participants who showed motor imagery, as indexed by common spatial filters and linear discriminant analysis, we contrasted the configuration of the networks during imagined movement and resting state at the group level, and subject-level classifiers were implemented using as features the weights of the NMF together with trial-wise power modulations and heart response to classify resting state from motor imagery. RESULTS Kinesthetic motor imagery produced decreases in the mu-beta band compared to resting state, and a small correlation was found between mu-beta power and the kinesthetic imagery scores of the Movement Imagery Questionnaire-Revised Second version. The full-feature classifiers successfully distinguished between motor imagery and resting state for all participants, and brain-muscle functional networks did not contribute to the overall classification. Nevertheless, heart activity and cortical power were crucial to detect when a participant was mentally rehearsing a movement. CONCLUSIONS Our work highlights the importance of combining EEG and peripheral measurements to detect command-following, which could be important for improving the detection of covert responses consistent with volition in unresponsive patients.
Collapse
Affiliation(s)
- Emilia Fló
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Paris, France.
| | - Daniel Fraiman
- Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Jacobo Diego Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Paris, France.
| |
Collapse
|
2
|
Azhdari M, Zur Hausen A. Wnt/β-catenin and notch signaling pathways in cardiovascular disease: Mechanisms and therapeutics approaches. Pharmacol Res 2025; 211:107565. [PMID: 39725339 DOI: 10.1016/j.phrs.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels. In the adult cardiovascular system, these pathways continue to maintain tissue homeostasis and arrange adaptive responses to various physiological and pathological stimuli. Dysregulation of Wnt and Notch signaling has been involved in the pathogenesis of numerous cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and heart failure. Abnormal activation or suppression of these pathways in specific cell types can contribute to endothelial dysfunction, vascular remodeling, cardiomyocyte hypertrophy, impaired cardiac contractility and dead. Understanding the complex interplay between Wnt and Notch signaling in the cardiovascular system has led to the investigation of these pathways as potential therapeutic targets in clinical trials. In conclusion, this review summarizes the current knowledge on the roles of Wnt and Notch signaling in the development and homeostasis of cardiomyocytes, endothelial cells, and smooth muscle cells. It further discusses the dysregulation of these pathways in the context of major cardiovascular diseases and the ongoing clinical investigations targeting Wnt and Notch signaling for therapeutic intervention.
Collapse
Affiliation(s)
- Manizheh Azhdari
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| | - Axel Zur Hausen
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| |
Collapse
|
3
|
Suzuki S, Nakajima T, Irie S, Ariyasu R, Ohtsuka H, Komiyama T, Ohki Y. Subcortical Contribution of Corticospinal Transmission during Visually Guided Switching Movements of the Arm. Cereb Cortex 2021; 32:380-396. [PMID: 34231853 DOI: 10.1093/cercor/bhab214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/12/2022] Open
Abstract
In animal experiments, the indirect corticospinal tract (CST) system via cervical interneurons has been shown to mediate motor commands for online adjustment of visuomotor behaviors, such as target-reaching. However, it is still unclear whether the similar CST system functions to perform similar motor behaviors in humans. To clarify this, we investigated changes in motor-evoked potentials (MEPs) in the elbow muscles following transcranial magnetic stimulation, transcranial electrical stimulation, or cervicomedullary stimulation while participants executed target-reaching and switching movements. We found that the MEP, whether elicited cortically or subcortically, was modulated depending on the direction of the switching movements. MEP facilitation began around the onset of the switching activities in an agonist muscle. Furthermore, ulnar nerve-induced MEP facilitation, which could be mediated by presumed cervical interneuronal systems, also increased at the onset of MEP facilitation. In a patient with cortical hemianopsia who showed switching movements in the scotoma, the MEPs were facilitated just before the switching activities. Our findings suggested that CST excitation was flexibly tuned with the switching movement initiation, which could partly take place in the subcortical networks, including the presumed cervical interneuronal systems.
Collapse
Affiliation(s)
- Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan.,School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Shun Irie
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Ryohei Ariyasu
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ohtsuka
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Komiyama
- Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan.,Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Fisher KM, Baker SN. A Re-evaluation of Whether Non-monosynaptic Homonymous H Reflex Facilitation Tests Propriospinal Circuits. Front Syst Neurosci 2021; 15:641816. [PMID: 33833670 PMCID: PMC8021928 DOI: 10.3389/fnsys.2021.641816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The C3-C4 propriospinal system is an important pathway mediating movement in cats; it contributes to movements in primates (including humans), and may have a role in recovery after lesion. Validated clinical tests of this system would find many applications, therefore we sought to test whether non-monosynaptic homonymous facilitation of the forearm flexor H reflex is mediated solely via a C3-C4 propriospinal pathway. In one anesthetized macaque monkey, median nerve stimulation elicited an H reflex in the flexor carpi radialis (FCR). Median nerve conditioning stimuli at sub-threshold intensities facilitated the H reflex, for inter-stimulus intervals up to 30 ms. Successive spinal surgical hemisections were then made. C2 lesion left the homonymous facilitation intact, suggesting mediation by spinal, not supraspinal pathways. Facilitation also remained after a second lesion at C5, indicating a major role for segmental (C7-C8) rather than propriospinal (C3-C4) interneurons. In separate experiments in five healthy human subjects, a threshold tracking approach assessed changes in peripheral axon excitability after conditioning stimulation. This was found to be enhanced up to 20 ms after the conditioning stimulus, and could partly, although not completely, underlie the H reflex facilitation seen. We conclude that homonymous facilitation of the H reflex in FCR can be produced by segmental spinal mechanisms, as well as by a supranormal period of nerve excitability. Unfortunately, this straightforward test cannot therefore be used for selective assessment of propriospinal circuits.
Collapse
Affiliation(s)
- Karen M. Fisher
- Henry Wellcome Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N. Baker
- Henry Wellcome Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Nakajima T, Ohtsuka H, Irie S, Suzuki S, Ariyasu R, Komiyama T, Ohki Y. Visual information increases the indirect corticospinal excitation via cervical interneurons in humans. J Neurophysiol 2021; 125:828-842. [PMID: 33502947 DOI: 10.1152/jn.00425.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulatory actions of inputs from the visual system to cervical interneurons (IN) for arm muscle control are poorly understood in humans. In the present study, we examined whether visual stimulation modulates the excitation of cervical IN systems mediating corticospinal tract (CST) inputs to biceps brachii (BB). Twenty-eight healthy volunteers were seated, and electromyogram recordings from the BB were performed across six experiments, each with discrete objectives. A flash stimulator for visual stimulation (50-μs duration) was placed 60 cm from the participant's eye. The CST was stimulated with transcranial magnetic/electrical stimulation (TMS/TES, respectively) contralateral to the recording site. Visual stimulation with TMS/TES was randomly delivered during weak tonic BB contractions. Single TMS/TES-induced motor-evoked potentials (MEPs) were markedly enhanced from 60-100 ms after visual stimulation compared with the control condition. The MEPs were significantly increased by combining the electrical stimulation of the ulnar nerve at the wrist [7.5-12 ms of nerve stimulation (NERVE)/TMS interval] with and without visual stimulation compared with the algebraic summation of responses obtained with either TMS or NERVE. Interestingly, the combined stimulation-induced MEP facilitation was significantly increased after visual stimulation compared with the control. Single motor unit (MU) recording also revealed the further enhancement of combined stimulation effects on the firing probabilities of MU during visual stimulation, which was observed in the peaks of the peristimulus time histogram, 1-2 ms later than the onset latency. The present findings suggest that visual stimulation facilitates the oligosynaptic CST excitation of arm motoneurons mediated by the cervical IN system.NEW & NOTEWORTHY To date, little is known about how visual information modulates the human cervical motor systems, including the presumed interneuron (IN) circuitry. This study demonstrates that photic visual stimulation influences presumed oligosynaptic corticospinal transmission to arm motoneurons, which are mediated by cervical INs. In animals, these systems are known to be crucial for visually guided switching movements, and similar visual input systems to INs may exist in humans.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Hiroyuki Ohtsuka
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Shun Irie
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan.,Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| | - Ryohei Ariyasu
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Tomoyoshi Komiyama
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Koganei City, Tokyo, Japan.,Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba City, Chiba, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| |
Collapse
|