1
|
Verdel D, Bastide S, Geffard F, Bruneau O, Vignais N, Berret B. Reoptimization of single-joint motor patterns to non-Earth gravity torques induced by a robotic exoskeleton. iScience 2023; 26:108350. [PMID: 38026148 PMCID: PMC10665922 DOI: 10.1016/j.isci.2023.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/29/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Gravity is a ubiquitous component of our environment that we have learned to optimally integrate in movement control. Yet, altered gravity conditions arise in numerous applications from space exploration to rehabilitation, thereby pressing the sensorimotor system to adapt. Here, we used a robotic exoskeleton to reproduce the elbow joint-level effects of arbitrary gravity fields ranging from 1g to -1g, passing through Mars- and Moon-like gravities, and tested whether humans can reoptimize their motor patterns accordingly. By comparing the motor patterns of actual arm movements with those predicted by an optimal control model, we show that our participants (N = 61 ) adapted optimally to each gravity-like torque. These findings suggest that the joint-level effects of a large range of gravities can be efficiently apprehended by humans, thus opening new perspectives in arm weight support training in manipulation tasks, whether it be for patients or astronauts.
Collapse
Affiliation(s)
- Dorian Verdel
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Simon Bastide
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | | | - Olivier Bruneau
- LURPA, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Nicolas Vignais
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Bastien Berret
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Jamšek M, Kunavar T, Blohm G, Nozaki D, Papaxanthis C, White O, Babič J. Effects of Simulated Microgravity and Hypergravity Conditions on Arm Movements in Normogravity. Front Neural Circuits 2021; 15:750176. [PMID: 34970122 PMCID: PMC8712641 DOI: 10.3389/fncir.2021.750176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
The human sensorimotor control has evolved in the Earth's environment where all movement is influenced by the gravitational force. Changes in this environmental force can severely impact the performance of arm movements which can be detrimental in completing certain tasks such as piloting or controlling complex vehicles. For this reason, subjects that are required to perform such tasks undergo extensive training procedures in order to minimize the chances of failure. We investigated whether local gravity simulation of altered gravitational conditions on the arm would lead to changes in kinematic parameters comparable to the full-body experience of microgravity and hypergravity onboard a parabolic flight. To see if this would be a feasible approach for on-ground training of arm reaching movements in altered gravity conditions we developed a robotic device that was able to apply forces at the wrist in order to simulate micro- or hypergravity conditions for the arm while subjects performed pointing movements on a touch screen. We analyzed and compared the results of several kinematic parameters along with muscle activity using this system with data of the same subjects being fully exposed to microgravity and hypergravity conditions on a parabolic flight. Both in our simulation and in-flight, we observed a significant increase in movement durations in microgravity conditions and increased velocities in hypergravity for upward movements. Additionally, we noted a reduced accuracy of pointing both in-flight and in our simulation. These promising results suggest, that locally simulated altered gravity can elicit similar changes in some movement characteristics for arm reaching movements. This could potentially be exploited as a means of developing devices such as exoskeletons to aid in training individuals prior to undertaking tasks in changed gravitational conditions.
Collapse
Affiliation(s)
- Marko Jamšek
- Laboratory for Neuromechanics and Biorobotics, Jožef Stefan Institute, Department of Automatics, Biocybernetics and Robotics, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tjaša Kunavar
- Laboratory for Neuromechanics and Biorobotics, Jožef Stefan Institute, Department of Automatics, Biocybernetics and Robotics, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Daichi Nozaki
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Olivier White
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Jožef Stefan Institute, Department of Automatics, Biocybernetics and Robotics, Ljubljana, Slovenia
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Gallagher M, Kearney B, Ferrè ER. Where is my hand in space? The internal model of gravity influences proprioception. Biol Lett 2021; 17:20210115. [PMID: 34062087 DOI: 10.1098/rsbl.2021.0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Knowing where our limbs are in space is crucial for a successful interaction with the external world. Joint position sense (JPS) relies on both cues from muscle spindles and joint mechanoreceptors, as well as the effort required to move. However, JPS may also rely on the perceived external force on the limb, such as the gravitational field. It is well known that the internal model of gravity plays a large role in perception and behaviour. Thus, we have explored whether direct vestibular-gravitational cues could influence JPS. Participants passively estimated the position of their hand while they were upright and therefore aligned with terrestrial gravity, or pitch-tilted 45° backwards from gravity. Overall participants overestimated the position of their hand in both upright and tilted postures; however, the proprioceptive bias was significantly reduced when participants were tilted. Our findings therefore suggest that the internal model of gravity may influence and update JPS in order to allow the organism to interact with the environment.
Collapse
Affiliation(s)
- Maria Gallagher
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.,School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Breanne Kearney
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Elisa Raffaella Ferrè
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
4
|
Bringoux L, Macaluso T, Sainton P, Chomienne L, Buloup F, Mouchnino L, Simoneau M, Blouin J. Double-Step Paradigm in Microgravity: Preservation of Sensorimotor Flexibility in Altered Gravitational Force Field. Front Physiol 2020; 11:377. [PMID: 32390872 PMCID: PMC7193114 DOI: 10.3389/fphys.2020.00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/30/2020] [Indexed: 12/02/2022] Open
Abstract
The way we can correct our ongoing movements to sudden and unforeseen perturbations is key to our ability to rapidly adjust our behavior to novel environmental demands. Referred to as sensorimotor flexibility, this ability can be assessed by the double-step paradigm in which participants must correct their ongoing arm movements to reach targets that unexpectedly change location (i.e., target jump). While this type of corrections has been demonstrated in normogravity in the extent of reasonable spatiotemporal constraints underpinning the target jumps, less is known about sensorimotor flexibility in altered gravitational force fields. We thus aimed to assess sensorimotor flexibility by comparing online arm pointing corrections observed during microgravity episodes of parabolic flights with normogravity standards. Seven participants were asked to point as fast and as accurately as possible toward one of two visual targets with their right index finger. The targets were aligned vertically in the mid-sagittal plane and were separated by 10 cm. In 20% of the trials, the initially illuminated lower target was switched off at movement onset while the upper target was concomitantly switched on prompting participants to change the trajectory of their ongoing movements. Results showed that, both in normogravity and microgravity, participants successfully performed the pointing task including when the target jumped unexpectedly (i.e., comparable success rate). Most importantly, no significant difference was found in target jump trials regarding arm kinematics between both gravitational environments, neither in terms of peak velocity, relative deceleration duration, peak acceleration or time to peak acceleration. Using inverse dynamics based on experimental and anthropometrical data, we demonstrated that the shoulder torques for accelerating and decelerating the vertical arm movements substantially differed between microgravity and normogravity. Our data therefore highlight the capacity of the central nervous system to perform very fast neuromuscular adjustments that are adapted to the gravitational constraints. We discuss our findings by considering the contribution of feedforward and feedback mechanisms in the online control of arm pointing movements.
Collapse
Affiliation(s)
- L Bringoux
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | - T Macaluso
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | - P Sainton
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | - L Chomienne
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | - F Buloup
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | - L Mouchnino
- Aix Marseille Univ, CNRS, LNC, Marseille, France
| | - M Simoneau
- Département de Kinésiologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS) du CIUSSS de la Capitale Nationale, Quebec, QC, Canada
| | - J Blouin
- Aix Marseille Univ, CNRS, LNC, Marseille, France
| |
Collapse
|
5
|
White O, Gaveau J, Bringoux L, Crevecoeur F. The gravitational imprint on sensorimotor planning and control. J Neurophysiol 2020; 124:4-19. [PMID: 32348686 DOI: 10.1152/jn.00381.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans excel at learning complex tasks, and elite performers such as musicians or athletes develop motor skills that defy biomechanical constraints. All actions require the movement of massive bodies. Of particular interest in the process of sensorimotor learning and control is the impact of gravitational forces on the body. Indeed, efficient control and accurate internal representations of the body configuration in space depend on our ability to feel and anticipate the action of gravity. Here we review studies on perception and sensorimotor control in both normal and altered gravity. Behavioral and modeling studies together suggested that the nervous system develops efficient strategies to take advantage of gravitational forces across a wide variety of tasks. However, when the body was exposed to altered gravity, the rate and amount of adaptation exhibited substantial variation from one experiment to another and sometimes led to partial adjustment only. Overall, these results support the hypothesis that the brain uses a multimodal and flexible representation of the effect of gravity on our body and movements. Future work is necessary to better characterize the nature of this internal representation and the extent to which it can adapt to novel contexts.
Collapse
Affiliation(s)
- O White
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - J Gaveau
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - L Bringoux
- Institut des Sciences du Mouvement, CNRS, Aix Marseille Université, Marseille, France
| | - F Crevecoeur
- Institute of Communication and Information Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Belgium.,Institute of Neuroscience (IoNS), UCLouvain, Belgium
| |
Collapse
|
6
|
Poirier G, Papaxanthis C, Mourey F, Gaveau J. Motor Planning of Vertical Arm Movements in Healthy Older Adults: Does Effort Minimization Persist With Aging? Front Aging Neurosci 2020; 12:37. [PMID: 32161533 PMCID: PMC7052522 DOI: 10.3389/fnagi.2020.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
Several sensorimotor modifications are known to occur with aging, possibly leading to adverse outcomes such as falls. Recently, some of those modifications have been proposed to emerge from motor planning deteriorations. Motor planning of vertical movements is thought to engage an internal model of gravity to anticipate its mechanical effects on the body-limbs and thus to genuinely produce movements that minimize muscle effort. This is supported, amongst other results, by direction-dependent kinematics where relative durations to peak accelerations and peak velocity are shorter for upward than for downward movements. The present study compares the motor planning of fast and slow vertical arm reaching movements between 18 young (24 ± 3 years old) and 17 older adults (70 ± 5 years old). We found that older participants still exhibit strong directional asymmetries (i.e., differences between upward and downward movements), indicating that optimization processes during motor planning persist with healthy aging. However, the size of these differences was increased in older participants, indicating that gravity-related motor planning changes with age. We discuss this increase as the possible result of an overestimation of gravity torque or increased weight of the effort cost in the optimization process. Overall, these results support the hypothesis that feedforward processes and, more precisely, optimal motor planning, remain active with healthy aging.
Collapse
|
7
|
Macaluso T, Bourdin C, Buloup F, Mille ML, Sainton P, Sarlegna FR, Vercher JL, Bringoux L. Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity. Front Physiol 2017; 8:821. [PMID: 29104544 PMCID: PMC5654841 DOI: 10.3389/fphys.2017.00821] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding the impact of weightlessness on human behavior during the forthcoming long-term space missions is of critical importance, especially when considering the efficiency of goal-directed movements in these unusual environments. Several studies provided a large set of evidence that gravity is taken into account during the planning stage of arm reaching movements to optimally anticipate its consequence upon the moving limbs. However, less is known about sensorimotor changes required to face weightless environments when individuals have to perform fast and accurate goal-directed actions with whole-body displacement. We thus aimed at characterizing kinematic features of whole-body reaching movements in microgravity, involving high spatiotemporal constraints of execution, to question whether and how humans are able to maintain the performance of a functional behavior in the standards of normogravity execution. Seven participants were asked to reach as fast and as accurately as possible visual targets while standing during microgravity episodes in parabolic flight. Small and large targets were presented either close or far from the participants (requiring, in the latter case, additional whole-body displacement). Results reported that participants successfully performed the reaching task with general temporal features of movement (e.g., movement speed) close to land observations. However, our analyses also demonstrated substantial kinematic changes related to the temporal structure of focal movement and the postural strategy to successfully perform -constrained- whole-body reaching movements in microgravity. These immediate reorganizations are likely achieved by rapidly taking into account the absence of gravity in motor preparation and execution (presumably from cues about body limbs unweighting). Specifically, when compared to normogravity, the arm deceleration phase substantially increased. Furthermore, greater whole-body forward displacements due to smaller trunk flexions occurred when reaching far targets in microgravity. Remarkably, these changes of focal kinematics and postural strategy appear close to those previously reported when participants performed the same task underwater with neutral buoyancy applied to body limbs. Overall, these novel findings reveal that humans are able to maintain the performance of functional goal-directed whole-body actions in weightlessness by successfully managing spatiotemporal constraints of execution in this unusual environment.
Collapse
Affiliation(s)
| | | | - Frank Buloup
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | - Marie-Laure Mille
- Aix Marseille Univ, CNRS, ISM, Marseille, France.,UFR STAPS, Université de Toulon, La Garde, France.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | | | |
Collapse
|
8
|
Olesh EV, Pollard BS, Gritsenko V. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching. Front Hum Neurosci 2017; 11:474. [PMID: 29018339 PMCID: PMC5623018 DOI: 10.3389/fnhum.2017.00474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.
Collapse
Affiliation(s)
- Erienne V Olesh
- Department of Human Performance, School of Medicine, West Virginia University, Morgantown, WV, United States.,Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Bradley S Pollard
- Department of Human Performance, School of Medicine, West Virginia University, Morgantown, WV, United States.,Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Valeriya Gritsenko
- Department of Human Performance, School of Medicine, West Virginia University, Morgantown, WV, United States.,Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States.,Department of Mechanical and Aerospace Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
9
|
Barbiero M, Rousseau C, Papaxanthis C, White O. Coherent Multimodal Sensory Information Allows Switching between Gravitoinertial Contexts. Front Physiol 2017; 8:290. [PMID: 28553233 PMCID: PMC5425486 DOI: 10.3389/fphys.2017.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/21/2017] [Indexed: 11/24/2022] Open
Abstract
Whether the central nervous system is capable to switch between contexts critically depends on experimental details. Motor control studies regularly adopt robotic devices to perturb the dynamics of a certain task. Other approaches investigate motor control by altering the gravitoinertial context itself as in parabolic flights and human centrifuges. In contrast to conventional robotic experiments, where only the hand is perturbed, these gravitoinertial or immersive settings coherently plunge participants into new environments. However, radically different they are, perfect adaptation of motor responses are commonly reported. In object manipulation tasks, this translates into a good matching of the grasping force or grip force to the destabilizing load force. One possible bias in these protocols is the predictability of the forthcoming dynamics. Here we test whether the successful switching and adaptation processes observed in immersive environments are a consequence of the fact that participants can predict the perturbation schedule. We used a short arm human centrifuge to decouple the effects of space and time on the dynamics of an object manipulation task by adding an unnatural explicit position-dependent force. We created different dynamical contexts by asking 20 participants to move the object at three different paces. These contextual sessions were interleaved such that we could simulate concurrent learning. We assessed adaptation by measuring how grip force was adjusted to this unnatural load force. We found that the motor system can switch between new unusual dynamical contexts, as reported by surprisingly well-adjusted grip forces, and that this capacity is not a mere consequence of the ability to predict the time course of the upcoming dynamics. We posit that a coherent flow of multimodal sensory information born in a homogeneous milieu allows switching between dynamical contexts.
Collapse
Affiliation(s)
- Marie Barbiero
- Université de Bourgogne Franche-Comté, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France.,Institut National de Santé et de Recherche Médicale, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France
| | - Célia Rousseau
- Université de Bourgogne Franche-Comté, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France.,Institut National de Santé et de Recherche Médicale, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France
| | - Charalambos Papaxanthis
- Université de Bourgogne Franche-Comté, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France.,Institut National de Santé et de Recherche Médicale, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France
| | - Olivier White
- Université de Bourgogne Franche-Comté, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France.,Institut National de Santé et de Recherche Médicale, Cognition Action et Plasticité Sensorimotrice UMR1093Dijon, France
| |
Collapse
|