1
|
Imeson D, Gerditschke L, Brown L, Forman D. Transcranial Magnetic Stimulation Inter-Pulse Interval Does Not Influence Corticospinal Excitability to the Biceps Brachii During Submaximal Isometric Elbow Flexion. Eur J Neurosci 2025; 61:e16671. [PMID: 39810291 PMCID: PMC11733025 DOI: 10.1111/ejn.16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Previous research on resting muscles has shown that inter-pulse interval (IPI) duration influences transcranial magnetic stimulation (TMS) responses, which can introduce serious confounding variables into investigations if not accounted for. However, it is far less clear how IPI influences TMS responses in active muscles. Thus, the purpose of this study was to examine the relationship between IPI and corticospinal excitability during submaximal isometric elbow flexion. Corticospinal excitability to the biceps and triceps brachii was measured using motor evoked potentials (MEPs) elicited via TMS. Stimulation intensity was set to 120% of the biceps brachii's active motor threshold while participants produced 10% of their biceps' maximal muscle activity. TMS was delivered as separate trains of five stimulations, with experimental conditions differing between IPIs of 4, 6, 8, 10, 12 or 14 s. Results demonstrated that IPI had no influence on MEP amplitudes for either the biceps or triceps. However, when MEP amplitudes were expressed as a unitless ratio to pre-stimulus muscle activity, a main effect of time was found for the biceps; MEP amplitudes progressively decreased with successive stimulations (MEP 1:32.8 ± 5.9; MEP 5:27.7 ± 4.3, p < 0.05). These results suggest that IPI is unlikely to represent a confounding variable in TMS studies utilizing active contractions. However, studies looking to compare the amplitudes of single MEPs over time should be aware of the possibility that amplitudes may decrease with continuous stimulation. Future research should seek to examine even longer IPIs and explore the influence of higher stimulation intensities.
Collapse
Affiliation(s)
- David H. Imeson
- Department of KinesiologyTrent UniversityPeterboroughONCanada
| | - Lea Gerditschke
- Department of KinesiologyTrent UniversityPeterboroughONCanada
| | - Liana E. Brown
- Department of KinesiologyTrent UniversityPeterboroughONCanada
- Department of PsychologyTrent UniversityPeterboroughONCanada
| | - Davis A. Forman
- Department of KinesiologyTrent UniversityPeterboroughONCanada
| |
Collapse
|
2
|
Hu N, Tanel M, Baker SN, Kidgell DJ, Walker S. Inducing ipsilateral motor-evoked potentials in the biceps brachii muscle in healthy humans. Eur J Neurosci 2024; 60:6291-6299. [PMID: 39358929 DOI: 10.1111/ejn.16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
To assess reticulospinal tract excitability, high-intensity transcranial magnetic stimulation (TMS) has been used to elicit ipsilateral motor-evoked potentials (iMEPs). However, there is no consensus on robust and valid methods for use in human studies. The present study proposes a standardized method for eliciting and analysing iMEPs in the biceps brachii. Twenty-four healthy young adults participated in this study. Electromyography (EMG) electrodes recorded contralateral MEPs (cMEPs) from the right and iMEPs from the left biceps brachii. A dynamic preacher curl task was used with ~15% of the subject's one-repetition maximum load. The protocol included maximal compound action potential (M-max) determination of the right biceps brachii muscle, TMS hotspot determination, and four sets of five repetitions where 100% stimulator output was delivered at an elbow angle of 110° of flexion. We normalized cMEP amplitude by M-max (% M-max) and iMEP by cMEP amplitude ratio (ICAR). Clear iMEPs above background EMG were observed in 21 subjects (88%, ICAR = .31 ± .19). Good-to-excellent agreement (intraclass correlation coefficient [ICC] = .795-1.000) and low bias (.01-.08 mV and .60-1.11 ms) were demonstrated when comparing two different analysis methods (i.e. fixed time-window vs. manual onset detection) to determine the cMEP and iMEP amplitude and latency, respectively. Most subjects demonstrated clear iMEPs above background EMG triggered at a pre-determined joint angle during a light-load dynamic preacher curl exercise. Similar results were obtained when comparing a single-trial manual identification of iMEP and a semi-automated time-window data analysis approach.
Collapse
Affiliation(s)
- Nijia Hu
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Meghan Tanel
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Stuart N Baker
- Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Dawson J Kidgell
- Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
3
|
Garcia MAC, Carvalho TSD, Matsuda RH, Baffa O, Imbiriba LA, Souza VH. Forearm Posture Affects the Corticospinal Excitability of Intrinsic and Extrinsic Hand Muscles in Dominant and Nondominant Sides. J Appl Biomech 2024; 40:316-322. [PMID: 38925535 DOI: 10.1123/jab.2022-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/06/2023] [Accepted: 04/17/2024] [Indexed: 06/28/2024]
Abstract
Different forearm postures can modulate corticospinal excitability. However, there is no consensus on whether handedness plays a role in such a mechanism. This study investigated the effects of 3 forearm postures (pronation, neutral, and supination) on the corticospinal excitability of muscles from the dominant and nondominant upper limbs. Surface electromyography was recorded from the abductor digiti minimi, flexor pollicis brevis, and flexor carpi radialis from both sides of 12 right-handed volunteers. Transcranial magnetic stimulation pulses were applied to each muscle's hotspot in both cerebral hemispheres. Motor-evoked potential peak-to-peak amplitude and latency and resting motor threshold were measured. The data were evaluated by analysis of variance. The level of significance was set at 5%. The resting motor threshold was similar for the 3 muscles and both sides. Motor-evoked potential peak-to-peak amplitude from flexor pollicis brevis was lower during supination, and the dominant upper limb latency was longer. The flexor carpi radialis presented lower motor-evoked potential peak-to-peak amplitudes for neutral and shorter latencies during supination. Abductor digiti minimi seemed not to be affected by posture or side. Different muscles from dominant and nondominant sides may undergo corticospinal modulation, even distally localized from a particular joint and under rest.
Collapse
Affiliation(s)
- Marco Antonio Cavalcanti Garcia
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
- Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Thiago Santos de Carvalho
- Departamento de Biociências e Atividades Físicas, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renan Hiroshi Matsuda
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Oswaldo Baffa
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Aureliano Imbiriba
- Departamento de Biociências e Atividades Físicas, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Victor Hugo Souza
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| |
Collapse
|
4
|
Moraes VH, Vargas CD, Ramalho BL, Matsuda RH, Souza VH, Imbiriba LA, Garcia MAC. Effect of muscle length in a handgrip task on corticomotor excitability of extrinsic and intrinsic hand muscles under resting and submaximal contraction conditions. Scand J Med Sci Sports 2023; 33:2524-2533. [PMID: 37642219 DOI: 10.1111/sms.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/10/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
The neurophysiological mechanisms underlying muscle force control for different wrist postures still need to be better understood. To further elucidate these mechanisms, the present study aimed to investigate the effects of wrist posture on the corticospinal excitability by transcranial magnetic stimulation (TMS) of extrinsic (flexor [FCR] and extensor carpi radialis [ECR]) and intrinsic (flexor pollicis brevis (FPB)) muscles at rest and during a submaximal handgrip strength task. Fourteen subjects (24.06 ± 2.28 years) without neurological or motor disorders were included. We assessed how the wrist posture (neutral: 0°; flexed: +45°; extended: -45°) affects maximal handgrip strength (HGSmax ) and the motor evoked potentials (MEP) amplitudes during rest and active muscle contractions. HGSmax was higher at 0° (133%) than at -45° (93.6%; p < 0.001) and +45° (73.9%; p < 0.001). MEP amplitudes were higher for the FCR at +45° (83.6%) than at -45° (45.2%; p = 0.019) and at +45° (156%; p < 0.001) and 0° (146%; p = 0.014) than at -45° (106%) at rest and active condition, respectively. Regarding the ECR, the MEP amplitudes were higher at -45° (113%) than at +45° (60.8%; p < 0.001) and 0° (72.6%; p = 0.008), and at -45° (138%) than +45° (96.7%; p = 0.007) also at rest and active conditions, respectively. In contrast, the FPB did not reveal any difference among wrist postures and conditions. Although extrinsic and intrinsic hand muscles exhibit overlapping cortical representations and partially share the same innervation, they can be modulated differently depending on the biomechanical constraints.
Collapse
Affiliation(s)
- Victor Hugo Moraes
- Laboratório de Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia do Movimento do Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biociências e Atividades Físicas, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia D Vargas
- Laboratório de Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia do Movimento do Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia L Ramalho
- Laboratório de Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Difusão em Neuromatemática (NeuroMat), Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Renan H Matsuda
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Victor H Souza
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Luis Aureliano Imbiriba
- Departamento de Biociências e Atividades Físicas, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Antonio C Garcia
- Laboratório de Neurociências e Reabilitação, Instituto de Neurologia Deolindo Couto, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências da Reabilitação e Desempenho Físico-Funcional, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
- Grupo de Estudos em Neuro Biomecânica, Faculdade de Fisioterapia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
5
|
Uwamahoro R, Sundaraj K, Feroz FS. Effect of Forearm Postures and Elbow Joint Angles on Elbow Flexion Torque and Mechanomyography in Neuromuscular Electrical Stimulation of the Biceps Brachii. SENSORS (BASEL, SWITZERLAND) 2023; 23:8165. [PMID: 37836995 PMCID: PMC10575078 DOI: 10.3390/s23198165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023]
Abstract
Neuromuscular electrical stimulation plays a pivotal role in rehabilitating muscle function among individuals with neurological impairment. However, there remains uncertainty regarding whether the muscle's response to electrical excitation is affected by forearm posture, joint angle, or a combination of both factors. This study aimed to investigate the effects of forearm postures and elbow joint angles on the muscle torque and MMG signals. Measurements of the torque around the elbow and MMG of the biceps brachii (BB) muscle were conducted in 36 healthy subjects (age, 22.24 ± 2.94 years; height, 172 ± 0.5 cm; and weight, 67.01 ± 7.22 kg) using an in-house elbow flexion testbed and neuromuscular electrical stimulation (NMES) of the BB muscle. The BB muscle was stimulated while the forearm was positioned in the neutral, pronation, or supination positions. The elbow was flexed at angles of 10°, 30°, 60°, and 90°. The study analyzed the impact of the forearm posture(s) and elbow joint angle(s) on the root-mean-square value of the torque (TQRMS). Subsequently, various MMG parameters, such as the root-mean-square value (MMGRMS), the mean power frequency (MMGMPF), and the median frequency (MMGMDF), were analyzed along the longitudinal, lateral, and transverse axes of the BB muscle fibers. The test-retest interclass correlation coefficient (ICC21) for the torque and MMG ranged from 0.522 to 0.828. Repeated-measure ANOVAs showed that the forearm posture and elbow flexion angle significantly influenced the TQRMS (p < 0.05). Similarly, the MMGRMS, MMGMPF, and MMGMDF showed significant differences among all the postures and angles (p < 0.05). However, the combined main effect of the forearm posture and elbow joint angle was insignificant along the longitudinal axis (p > 0.05). The study also found that the MMGRMS and TQRMS increased with increases in the joint angle from 10° to 60° and decreased at greater angles. However, during this investigation, the MMGMPF and MMGMDF exhibited a consistent decrease in response to increases in the joint angle for the lateral and transverse axes of the BB muscle. These findings suggest that the muscle contraction evoked by NMES may be influenced by the interplay between actin and myosin filaments, which are responsible for muscle contraction and are, in turn, influenced by the muscle length. Because restoring the function of limbs is a common goal in rehabilitation services, the use of MMG in the development of methods that may enable the real-time tracking of exact muscle dimensional changes and activation levels is imperative.
Collapse
Affiliation(s)
- Raphael Uwamahoro
- Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100, Melaka, Malaysia; (R.U.); (F.S.F.)
- Regional Centre of Excellence in Biomedical Engineering and e-Health, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Kenneth Sundaraj
- Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100, Melaka, Malaysia; (R.U.); (F.S.F.)
| | - Farah Shahnaz Feroz
- Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Durian Tunggal 76100, Melaka, Malaysia; (R.U.); (F.S.F.)
| |
Collapse
|
6
|
Dayican DK, Keser I, Yavuz O, Tosun G, Kurt S, Tosun OC. Can pelvic floor muscle training positions be selected according to the functional status of pelvic floor muscles? Niger J Clin Pract 2023; 26:1309-1318. [PMID: 37794544 DOI: 10.4103/njcp.njcp_53_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Background Pelvic floor muscle (PFM) training varies according to the functional status of PFM. It is used to strengthen underactive PFM and relax overactive PFM. Aim This study aimed to determine the appropriate PFM training positions according to the functional status of the PFM in women with pelvic floor dysfunction. Materials and Methods Seventy-six women diagnosed with pelvic floor dysfunction were included. After the digital palpation, participants were divided into four groups according to the functional status of PFM: normal, overactive, underactive, and nonfunctional. Participants' PFM and abdominal muscle functions were assessed with superficial electromyography in three positions (modified butterfly pose-P1, modified child pose-P2, and modified deep squat with block pose-P3). Friedman's analysis of variance and the Kruskal-Wallis test were used to assess whether the function of the muscles differed according to the functional status of the PFM and training positions. Results Normal PFM maximally contracted and relaxed in P1, whereas nonfunctional PFM was in P3 (P > 0.05). Overactive and underactive PFM was most contracted in P2 (P > 0.05) and relaxed in P1 (P < 0.001). In each functional state of the PFM, all abdominal muscles were most relaxed in P1, while their most contracted positions varied (P < 0.05). Conclusion This study showed that the positions in which the PFM relaxes and contracts the most may vary according to the functional status of the PFM. Therefore, different PFM training positions may be preferred according to the functional status of the PFM in women with pelvic floor dysfunction. However, more study needs to be done in this subject.
Collapse
Affiliation(s)
- D K Dayican
- Department of Physiotherapy and Rehabilitation, Biruni University, Faculty of Health Sciences; Department of Physiotherapy and Rehabilitation, Biruni University, Graduate Education Institute, Istanbul, Turkey
| | - I Keser
- Dokuz Eylül University, Faculty of Physical Therapy and Rehabilitation, Izmir, Turkey
| | - O Yavuz
- Department of Obstetrics and Gynecology, Dokuz Eylül University, Izmir, Turkey
| | - G Tosun
- Department of Obstetrics and Gynecology, Tepecik Education and Research Hospital, Izmir, Turkey
| | - S Kurt
- Department of Obstetrics and Gynecology, Dokuz Eylül University, Izmir, Turkey
| | - O C Tosun
- Dokuz Eylül University, Faculty of Physical Therapy and Rehabilitation, Izmir, Turkey
| |
Collapse
|
7
|
Budini F, Christova M. Enhanced corticospinal excitability in the tibialis anterior during static stretching of the soleus in young healthy individuals. PLoS One 2023; 18:e0284289. [PMID: 37040389 PMCID: PMC10089312 DOI: 10.1371/journal.pone.0284289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Corticospinal excitability is known to be affected by afferent inflow arising from the proprioceptors during active or passive muscle movements. Also during static stretching (SS) afferent activity is enhanced, but its effect on corticospinal excitability received limited attention and has only been investigated as a single average value spread over the entire stretching period. Using transcranial magnetic stimulation (TMS) the present study was conducted to explore the time course of corticospinal excitability during 30 seconds SS. Motor evoked potentials (MEPs) after TMS were recorded from soleus (SOL) and tibialis anterior (TA) muscles in 14 participants during: a passive dynamic ankle dorsiflexion (DF), at six different time points during maximal individual SS (3, 6, 9, 18, 21 and 25 seconds into stretching), during a passive dynamic ankle plantar flexion (PF) and following SS. To explore the time course of corticospinal excitability during the static lengthened phase of a muscle stretch, the stretching protocol was repeated several times so that it was possible to collect a sufficient number of stimulations at each specific time point into SS, as well as during DF and PF. During passive DF, MEPs amplitude was greater than baseline in both TA and SOL (p = .001 and p = .005 respectively). During SS, MEPs amplitude was greater than baseline in TA (p = .006), but not in SOL. No differences between the investigated time points were found and no trend was detected throughout the stretching time. No effect in either muscle was observed during passive PF and after SS. These results could suggest that an increased activity of secondary afferents from SOL muscle spindles exert a corticomotor facilitation on TA. The muscle-nonspecific response observed during passive DF could instead be attributed to an increased activation within the sensorimotor cortical areas as a result of the awareness of the foot passive displacements.
Collapse
Affiliation(s)
- Francesco Budini
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| | - Monica Christova
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Graz, Austria
- Institute of Physiotherapy, Institute of Applied Sciences FH-Joanneum, Graz, Austria
| |
Collapse
|
8
|
Dedeoglu SS, Karslioglu B, Imren Y, Bayraktar TO, Gurbuz S, Atar S. Does forearm position matter in subpectoral biceps tenodesis? A randomised controlled trial. Arch Orthop Trauma Surg 2023; 143:1409-1415. [PMID: 35059825 DOI: 10.1007/s00402-021-04295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/27/2021] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The optimal position of the elbow and forearm during biceps tenodesis is a debated topic. The aim of our study was to compare two different forearm positions, pronation-extension (PE) or neutral, for fixation of the long head of the biceps tendon (LHB) in biceps tenodesis. MATERIALS AND METHODS Fifty patients who underwent shoulder arthroscopy between February 2016 and January 2019 were included in our study. After diagnostic arthroscopy, the LHB was cut from its origin with a thermal ablator. The LHB was then tenodesed beneath the inferior border of the pectoralis major tendon for 25 patients in the PE position and for 25 patients in the neutral position. Patients were evaluated preoperatively and 3rd, 6th and 12th months postoperatively according to the visual analog scale (VAS), American Shoulder and Elbow Surgeons (ASES) shoulder and Constant scores. Flexion and supination force measurements were made with a digital dynamometer device, compared to the healthy side for both groups. RESULTS ASES and VAS scores were statistically better in the PE group compared with the neutral group (p < 0.05), but there was no statistically significant difference between Constant scores at 3 and 6 months (p > 0.05). No significant difference was found in both groups for 3 scores at 12 months. Comparison of the PE group with the contralateral extremity and comparing the neutral group with the contralateral extremity in terms of flexion strength showed no statistically significant difference. No statistically significant difference was found between the supination powers of both comparative groups. CONCLUSION Functional scoring in the PE position is better at 3 and 6 months because patients experience less pain at 3 and 6 months. The simple change of the fixation position causes patients to feel less pain in the early period. LEVEL OF EVIDENCE: 1
Collapse
Affiliation(s)
- Suleyman Semih Dedeoglu
- University of Health Sciences, Cemil Tascioglu City Hospital, Department of Orthopedics and Traumatology, Darulaceze Street No. 25 Sisli, Istanbul, Turkey.
| | - Bulent Karslioglu
- University of Health Sciences, Cemil Tascioglu City Hospital, Department of Orthopedics and Traumatology, Darulaceze Street No. 25 Sisli, Istanbul, Turkey
| | - Yunus Imren
- University of Health Sciences, Cemil Tascioglu City Hospital, Department of Orthopedics and Traumatology, Darulaceze Street No. 25 Sisli, Istanbul, Turkey
| | - Tahsin Olgun Bayraktar
- University of Health Sciences, Cemil Tascioglu City Hospital, Department of Orthopedics and Traumatology, Darulaceze Street No. 25 Sisli, Istanbul, Turkey
| | - Serhat Gurbuz
- University of Health Sciences, Cemil Tascioglu City Hospital, Department of Orthopedics and Traumatology, Darulaceze Street No. 25 Sisli, Istanbul, Turkey
| | - Sevgi Atar
- University of Health Sciences, Cemil Tascioglu City Hospital, Department of Physical Therapy and Rehabilitation, Darulaceze Street No. 25 Sisl, Istanbul, Turkey
| |
Collapse
|
9
|
Forman DA, Forman GN, Murphy BA, Holmes MWR. Sustained Isometric Wrist Flexion and Extension Maximal Voluntary Contractions on Corticospinal Excitability to Forearm Muscles during Low-Intensity Hand-Gripping. Brain Sci 2020; 10:E445. [PMID: 32668568 PMCID: PMC7408559 DOI: 10.3390/brainsci10070445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/02/2023] Open
Abstract
The wrist extensors demonstrate an earlier fatigue onset than the wrist flexors. However, it is currently unclear whether fatigue induces unique changes in muscle activity or corticospinal excitability between these muscle groups. The purpose of this study was to examine how sustained isometric wrist extension/flexion maximal voluntary contractions (MVCs) influence muscle activity and corticospinal excitability of the forearm. Corticospinal excitability to three wrist flexors and three wrist extensors were measured using motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation. Responses were elicited while participants exerted 10% of their maximal handgrip force, before and after a sustained wrist flexion or extension MVC (performed on separate sessions). Post-fatigue measures were collected up to 10-min post-fatigue. Immediately post-fatigue, extensor muscle activity was significantly greater following the wrist flexion fatigue session, although corticospinal excitability (normalized to muscle activity) was greater on the wrist extension day. Responses were largely unchanged in the wrist flexors. However, for the flexor carpi ulnaris, normalized MEP amplitudes were significantly larger following wrist extension fatigue. These findings demonstrate that sustained isometric flexion/extension MVCs result in a complex reorganization of forearm muscle recruitment strategies during hand-gripping. Based on these findings, previously observed corticospinal behaviour following fatigue may not apply when the fatiguing task and measurement task are different.
Collapse
Affiliation(s)
- Davis A. Forman
- Faculty of Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada;
| | - Garrick N. Forman
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Bernadette A. Murphy
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada;
| | - Michael W. R. Holmes
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
| |
Collapse
|
10
|
Leonardis JM, Alkayyali AA, Lipps DB. Posture-dependent neuromuscular contributions to three-dimensional isometric shoulder torque generation. J Neurophysiol 2020; 123:1526-1535. [DOI: 10.1152/jn.00702.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study is the first to identify the muscle synergies underlying three-dimensional isometric shoulder torque generation. Although the overall structure of these synergies was unaffected by arm posture, the weighted contributions of several muscles composing two synergy patterns changed as a function of the elevation or plane of elevation of the shoulder. Our findings provide valuable insight for the development of targeted interventions for the restoration of shoulder function after neuromuscular or orthopedic pathologies.
Collapse
Affiliation(s)
| | | | - David B. Lipps
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|